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Abstract: Grasslands play a vital role in the global ecosystem. Efficient and reproducible methods for
estimating the grassland aboveground biomass (AGB) are crucial for understanding grassland growth,
promoting sustainable development, and assessing the carbon cycle. Currently, the available methods
are limited by their computational inefficiency, model transfer, and sampling scale. Therefore, in this
study, the estimation of grassland AGB over a large area was achieved by coupling the PROSAIL
model with the support vector machine regression (SVR) method. The ill-posed inverse problem of the
PROSAIL model was mitigated through kernel-based regularization using the SVR model. The Zoigê
Plateau was used as the case study area, and the results demonstrated that the estimated biomass
accurately reproduced the reference AGB map generated by zooming in on on-site measurements
(R2 = 0.64, RMSE = 43.52 g/m2, RRMSE = 15.13%). The estimated AGB map also maintained a high
fitting accuracy with field sampling data (R2 = 0.69, RMSE = 44.07 g/m2, RRMSE = 14.21%). Further,
the generated time-series profiles of grass AGB for 2022 were consistent with the trends in local grass
growth dynamics. The proposed method combines the advantages of the PROSAIL model and the
regression algorithm, reduces the dependence on field sampling data, improves the universality
and repeatability of grassland AGB estimation, and provides an efficient approach for grassland
ecosystem construction and planning.

Keywords: aboveground biomass; PROSAIL; support vector machine regression; Zoigê Plateau

1. Introduction

Grassland ecosystems, as one of the most important ecosystems on Earth, are impor-
tant for the maintenance of biodiversity, climate regulation, water resource management,
and human economic and social development [1–3]. The aboveground biomass (AGB)
of grassland, defined as the dry weight of the entire above-ground portion of a plant per
unit area, is an important measure of the productivity of grassland ecosystems. It plays
a decisive role in the healthy functioning of grassland ecosystems and is important for
determining biosphere–atmosphere interactions [4–6]. The Tibetan Plateau is the most
concentrated and largest area of alpine grasslands in the world. Its geography plays an
important role in climate change on the Asian continent, making it a hotspot for the study
of global climate change [7]. The Zoigê Plateau is located at the south-eastern edge of
the Qinghai-Tibetan Plateau and contains alpine grassland and swampy meadows, which
are representative of the grassland ecosystems of the Qinghai-Tibetan Plateau. It is also
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an important water conservation area in the upper reaches of the Yangtze River and the
Yellow River, playing an important role in the “Chinese Water Pagoda”. It also occupies
a pivotal position in China’s national ecological protection and restoration projects [8,9].
Therefore, accurate assessment of the dynamic changes in the grassland AGB of the Zoigê
Plateau is crucial for the sustainable development of grassland resources and ecosystem
protection [10–12].

Traditional surveys of grassland resources are carried out by mowing the grassland.
For field investigations, this approach can only be carried out on small areas of grassland
and there is a certain degree of subjectivity in this approach. Further, this approach is time-
consuming, labour-intensive, and can easily damage grassland resources [13–16]. With the
development of remote sensing technology, satellite platforms with various spatial and
temporal resolutions can provide relatively continuous data for monitoring the grassland
biomass [1,17]. Remote sensing can achieve large-scale and long-term detection of grassland
biomass through the optical characteristics of plants; this offers a unique and efficient
method of estimation [18–20]. The study of grassland biomass using optical remote sensing
data is more biased towards empirical estimation [13]. The available empirical estimation
methods can be classified as parametric or non-parametric and include vegetation index
regression [21,22], partial least squares regression (PLSR) [23,24], machine learning [15,25],
and deep learning [26,27]. These are popular research methods as they are simple, intuitive,
and easy to implement. However, empirical methods require a large amount of on-site
measured data to calibrate the relationship between the remotely sensed data and the AGB.
They also have obvious spatial and temporal limitations, affecting their versatility and
portability [28]. Therefore, these empirical methods are difficult to apply to large-scale,
long time-series, and specific growth period studies [29,30].

The canopy radiation transfer model (RTM) is a physical remote sensing method, based
on physical principles and mathematical equations, that is used to explain the canopy’s
radiation transfer process [20,31]. Compared with empirical methods, physical models can
better reflect complex surface environments, have high inversion accuracy, and show high
adaptability in regions and grassland ecosystems with reduced data requirements [32–34].
The PROSAIL model, one of the major RTMs, has been widely applied to the inversion
of biochemical variables and biophysical parameters of vegetation, such as the leaf area
index (LAI) [35,36], leaf dry matter content (Cm) [37,38], and leaf chlorophyll content
(Cab) [39,40]. Based on the characteristics of herbaceous plants, the grassland AGB can
be expressed as the product of the leaf area index (LAI) and dry matter content (Cm)
(AGB = LAI × Cm), and the LAI and Cm can be obtained by inversion of the PROSAIL
model. Therefore, the PROSAIL model has been increasingly applied to grassland AGB
estimation. For example, Quan et al. [20] used the PROSAIL model and Landsat-8 spectral
data to invert the LAI and Cm to estimate the AGB. He et al. [30] estimated the grassland
AGB in the Zoigê Plateau using the lookup table (LUT) method based on the PROSAIL
model and MODIS products. However, due to the complexity of RTM, a large amount of
computation is required to estimate grassland AGB, resulting in low efficiency. Therefore,
some scholars have proposed the use of regression algorithms to estimate the biophysical
parameters of grasslands. The introduction of regression methods into the estimation of the
biophysical parameters of grasslands can effectively improve the accuracy and reliability
of these estimates. For example, Oluseun et al. [36] combined PROSAIL and Gaussian
process regression to estimate the phenological dynamics of the LAI of irrigated rice and
achieved a more accurate estimation of the phenological dynamics. Jiao et al. [41] used
the average leaf inclination angle of a specific crop as a priori input to estimate the canopy
chlorophyll content of different crops based on the PROSAIL model and Random Forest
regression algorithm. This approach effectively improved the inversion accuracy of canopy
chlorophyll for wheat and soybean.

The SVR model [42], a nonlinear regression algorithm, can flexibly handle complex
nonlinear patterns and has stronger expressive ability compared to some linear regression
models. Due to errors in the PROSIAL model itself and the error between the model and
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the actual data, different combinations of input parameters produce similar simulated
reflectivity. This can lead to instability of the inversion results and reduced inversion
accuracy. In contrast, the SVR model can be kernel-based regularised by setting the
regularisation parameter and the relaxation variables in the formulae, so that the simulated
training dataset built based on the PROSAIL model plays an active role in training SVR
correctly and efficiently [43,44]. For example, Liang et al. [45] proposed an inversion
method for the LAI of winter wheat using the NDVI, RVI, and four bands of blue, green,
red, and near-infrared data as the input parameters for the SVR method. The results
revealed that SVR estimation offers a better fitting effect and can make full use of the
information contained in remote sensing bands to improve the accuracy of the remote
sensing inversion of the LAI. Sawut et al. [46] estimated the betalain content using the
PROSAIL and SVR model, and achieved a relatively high accuracy (R2 = 0.82), indicating
that the model is accurate and generalisable. These examples demonstrate that coupling
PROSAIL and SVR can lead to better estimation of the biophysical parameters of grass.
However, to date, few studies have used this inversion technique to estimate the AGB
of grassland.

Therefore, this study coupled the advantages of the PROSAIL model and the SVR
model, regularised the parameters of the SVR model, i.e., the penalty coefficient C and the
slack variable ε, based on the RBF kernel, and selected the optimal hyper-parameters so as
to achieve grassland AGB estimation with high accuracy and strong universal applicability.
This study achieved the following three goals: (1) Forward inversion to create a simulated
canopy spectral dataset based on Sobel global sensitivity analysis to recalibrate the ranges
of grassland biophysical parameters that are input to the RPOSAIL model. (2) Estimation
of the grassland AGB based on the simulated canopy spectral datasets trained on the SVR
model. (3) Comparison of the estimated AGB with the reference AGB and the measured
AGB, respectively, to verify its accuracy, and further analysis of intra-annual temporal
variations in the AGB. This study meets the current needs of long series and large-scale
estimation of grassland AGB and provides evidence for the accuracy and generalisability
of estimating the grassland AGB based on the RTM and regression algorithms.

2. Materials and Methods
2.1. Region of Interest

The Zoigê plateau is located in the south-eastern margin of the Tibetan Plateau (be-
tween 31◦48′4′′~34◦48′28′′, 100◦47′35′′~103◦39′37′′) at an altitude of 3000 to 4500 masl. The
Zoigê plateau is a representative area of the grassland ecosystems of the Qinghai-Tibetan
Plateau; it is also an important water conservation area upstream of the Yangtze River
and Yellow River [47]. The ecological security of the Zoigê plateau’s rich grassland and
wetland resources is related to the socio-economic development of the western region, the
Yellow River Basin, and the Yangtze River Basin. From the perspective of geographical
and administrative regions, it involves Aba County, Zoigê County, and Hongyuan County
of Sichuan Province and Maqu County and Luqu County of Gansu Province. It occupies
a total area of 44,758 km2 (Figure 1). The average annual temperature is approximately
0–2 ◦C, and the average annual precipitation is approximately 600–800 mm [48].
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Figure 1. Zoigê Plateau topography and sampling point distribution. (a) Location of the study area
within China; (b) the study area on the Qinghai-Tibet Plateau; (c) topography and administrative regions.

2.2. Datasets
2.2.1. Field Measurements and Reference AGB Map

Grassland data were collected from the study area from 18–23 August 2022 during
the peak growing season. The sample plots were chosen based on the representativeness
of vegetation cover and type distribution. Sample plots of 61 100 × 100 m were set up
in the study area and their geographical coordinates (latitude, longitude, and elevation)
were recorded in detail using GPS. The plots were randomly sampled three times with
sample squares of 0.2 × 0.2 m. The above-ground parts of the grass in these sample squares
were completely clipped off. Impurities were removed from the grass samples, and they
were transported to the laboratory in sealed sample bags. The samples were then dried
in an air-drying oven at 80 ◦C for 48 h until a constant dry weight was obtained. The
grass samples from each plot were weighed and averaged to measure the AGB for that
plot. Yin et al. [11] used Landsat 8 OLI data and the Consistent Adjustment of Climatology
and Actual Observations (CACAO) method combined with Gaussian Process Regression
(GPR) to generate a seamless AGB map from sparse field measurements; this served as the
reference AGB.

2.2.2. MODIS Reflectance Data Collection

The MCD43A4 ground reflectance dataset generated by the MODIS satellite sensors
on board the Terra and Aqua satellites was selected to estimate the grass LAI and Cm,
which were multiplied to obtain the AGB. The MCD43A4 images provide daily reflectance
data over a distance of 500 m, and this data contains seven bands. The data were obtained
from EARTHDATA (https://www.earthdata.nasa.gov/ (accessed on 11 April 2023)). The
cloudiness of the selected data was less than 5%.

https://www.earthdata.nasa.gov/
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2.3. Research Methods

Based on the characteristics of herbaceous plants, the physical method of estimating
the AGB of grassland by coupling the PROSAIL model with SVR can be expressed as the
product of Cm and LAI, both of which are used as input parameters to the PROSAIL model.
A Sobel global sensitivity analysis was first performed on the parameters input to the
PROSAIL model to determine their step or fixed values. Based on this, forward inversion
was performed to obtain a simulated canopy spectral dataset covering the 400–2500 nm
band. The continuous spectra were filtered using the Popper response function of MODIS,
converted to pixel spectra of MCD43A4, and combined with the AGB (LAI × Cm) to create
a simulated training dataset. The SVR model was trained based on the training data and the
optimal hyperparameters were selected for the regularisation parameters and relaxation
variables in the model. Then, the grassland AGB in the study area was estimated using
the MCD43A4 surface reflectance as input data. Finally, the estimated and reference AGBs
were compared with the measured AGBs to verify their accuracy, and the time variations
were analysed. Figure 2 shows the workflow of this study.

Figure 2. An overview of the study design for the four aspects of this study: (1) creation of simulation
training datasets; (2) estimation of the grassland AGB; (3) comparison of the accuracy of the estimated
AGB with the reference AGB and measured AGB; (4) temporal change assessment.

2.3.1. PROSAIL Model

The PROSAIL model is a commonly used vegetation RTM used to model vegetation
spectral characteristics and radiative reflectance; it establishes a clear physical relation-
ship between vegetation biophysical parameters and remote sensing observations [49].
It combines two classical vegetation spectral models, the PROSPECT model [50] and the
SAILH model [51]. The PROSPECT model is a spectral model whose input parameters are
leaf structural parameters (N), water content (Cw), chlorophyll content (Cab), carotenoid
content (Car), browning pigment content (Cbq), dry matter content (Cm), etc. It is capable
of describing the interactions between light and plant leaves with high quality using a small
number of input parameters and can simulate the spectral characteristics of different leaves.
The PROSPECT model equation is shown in Equation (1) (version PROSPECT-5B) [52]. The
calculated leaf reflectance and leaf transmittance, combined with parameters such as the
LAI, hotspot effect (hotspot), soil factor (psoil), mean leaf inclination (LIDFa), observed
zenith angle (tto), solar zenith angle (tts), and relative azimuthal angle (psi) are then en-
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tered into the SAILH model to obtain the canopy reflectance ρc, as shown in Equation (2)
(Version 4SAIL) [53].

(ρi, τi) = PROSPECT(N, Cab, Cw, Cm, Car, Cbp), (1)

ρc = SAILH(LAI, hspot, psoil, LIDFa, tto, tts, psi, ρi, τi). (2)

The input parameters, descriptions, ranges, and standard values required for the
PROSAIL model are shown in Table 1.

The input data for the PROSAIL model includes all the parameters of the SAILH
and PROSPECT models. Thus, this involves a large number of parameters, redundant
calculations, and is prone to excessive data volume. This is not conducive to accurate and
efficient inversion. In previous studies where PROSAIL was used to invert the biophysical
parameters, the input parameters were mainly determined based on the biophysical data
of the canopy obtained from existing databases, and the results obtained using these
parameters could not be directly used for studies of different regions due to regional
differences. Therefore, it is necessary to conduct sensitivity analyses of these parameters to
determine their contributions to specific bands, with the aim of reducing the computational
complexity of the model and ensuring the accuracy of the simulated spectra.

Sensitivity analysis can be classified as local sensitivity analysis or global sensitivity
analysis. Local sensitivity analysis ignores the effect of changes in other parameters by
fixing them, and the contributions of each parameter are not accurately described. Global
sensitivity analysis can avoid the shortcomings of local sensitivity analysis by calculating
the changes in all of the model parameters and then obtaining the contribution of each
parameter to the model. Sobel global sensitivity analysis is an application of the Monte
Carlo method of sampling. It can be used to effectively explore the effects of each parameter
on the model simulation results themselves [54]. Therefore, this study adopted variance-
based Sobel global sensitivity analysis to rank the sensitivity of the input parameters (Cm,
Cw, LAI, Cab, and N). Based on the idea of model decomposition, the sensitivity of the
parameters can be analysed once, twice, or more to prevent the impact of insufficient
samples and uneven distributions on the sensitivity analysis. Based on the PROSAIL
model, the five parameters were sampled 10,000 times and their global sensitivity was
calculated. We then analysed the sensitivity of each parameter in the range of the band.

Table 1. Input parameters required by the PROSAIL model.

Model Parameter Symbol Range Standard Source

PROSPECT_5B Chlorophyll content Cab 5~100 µg/cm2 40 Xu et al. [55]
Leaf structure

parameter N 1~2 1.25 Feilhauer et al. [56]

Carotenoid content Car 8 Model default
Leaf brown pigment Cbrown 0 Model default
Dry matter content Cm 0.001~0.01 g/cm2 0.005 Si et al. [34]
Leaf water content Cw 0.003~0.03 g/cm2 0.0125 Liang et al. [57]

4SAIL Leaf area index LAI 0.1~8 2 Si et al. [34]
Hot spot factor Hspot 0.05~1 0.075 He et al. [32]

Soil moisture ratio Psoil 0.5~1 0.1 Huang et al. [58]
Zenith angle θs 0~90◦ 20◦ He et al. [32]

observed azimuth angle θv 0~90◦ 0 Li et al. [59]
Leaf inclination

Leaf distribution
LIDFa
LIDFb

30
0

Model default
Model default

2.3.2. Grassland AGB Inversion Based on SVR Modelling

In this study, the SVR model was used to perform grassland AGB inversion, with
the MCD43A4 ground reflectance data as the feature variables. SVR is a generalisation
of SVM for regression applications. It is based on the construction of a hyperplane (or
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multiple hyperplanes). It minimises the error between all training samples and the optimal
hyperplane by searching for the optimal classification surface. It can handle linear and
nonlinear regression fitting problems [60]. It can be expressed as follows:

T = {(x1, y1), · · · (xi, yi)} ∈ (Rn × Y)i, (3)

where xi is the input variable, yi is the output variable and R is the set of real numbers.
Similar to the classification problem, the possible values of y are inferred from the training
set based on the value of x, where y can take any value.

Compared to other models, SVR models can achieve kernel-based regularisation
by controlling the penalty coefficients and the slack variables; thus, SVRs are relatively
robust to noise and outliers. This can help to balance the complexity and fit of the training
dataset. SVR models fit the data by minimising the data points in the intervals, which
makes them less susceptible to noise and outliers. When dealing with nonlinear problems,
kernel functions are required to map the input training samples to the higher dimensional
space, which helps in dealing with complex relationships [61,62]. In this research, the RBF
was used as the kernel function of the SVM. Considering the performance of the model,
three main parameters were selected during the training process: the kernel function
hyperparameter (gamma), penalty coefficient (C), and slack variable (epsilon), which were
set to 0.23, 4.7, and 0.15, respectively. Since the modelled output covariates of the SVR
model are not affected by multicollinearity, all seven reflectance bands of the simulation
were chosen to participate in the modelling.

2.3.3. Model Validation

To evaluate the performance of the research method in estimating the AGB in this
study, the trained and hyperparameter-optimized SVR model was applied to MCD43A4
images, and the reference AGB map and on-site measured values were used for evaluation.
The reference AGB map measured in the enlarged field was aggregated to the same spatial
resolution as the MCD43A4 surface reflectance product. The accuracy of estimating the
AGB was evaluated using the coefficient of determination (R2), root mean square error
(RMSE) and relative root mean square error (RRMSE). The evaluation indicators were
calculated as follows (Equations (4)–(6)).

R2 = 1 − ∑n
i=1

(
ymean − yest

)2

∑n
i=1

(
ymean − ymean

)2 , (4)

RMSE =

√
∑n

i=1
(
yest − ymean

)2

n
, (5)

RRMSE =

√
∑n

i=1
(
yest − ymean

)2

n
× 100

ymean
, (6)

where yest is the estimated AGB, ymean and ymean are the measured AGB and the aver-
age value of the measured AGB, respectively, and n represents the number of on-site
survey points.

Then, a temporal dynamic analysis was conducted on the estimation results. Based
on the time series of surface reflectance of MCD43A4, the AGB of the study area covering
days 1–365 in 2022 was estimated, and a time profile was generated to check whether the
estimated AGB can adapt to the dynamic changes in grassland phenology. Further, the
performance of this method was evaluated.
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3. Results
3.1. Recalibration of the PROSAIL_5B Model Parameters

By analysing the global sensitivity of each parameter using Sobel’s algorithm, the
global sensitivity curves of each parameter were obtained (Figure 3).

Figure 3. Sobel global sensitivity analysis results.

As can be seen, the global sensitivity of Cab exhibited a large amplitude of change,
varying between 0 and 0.6, with the main fluctuation within the 400–780 nm range and a
peak value of about 0.6. It then dropped sharply with a trough value of about 0.05. The
global sensitivity of Cw exhibited a small amplitude of change, with a high contribution
in the visible wavelengths; its contribution was 0 within the range of 760–2400 nm. When
the contribution was 0, the global sensitivity of Cm exhibited a larger variation, with
obvious changes between 0 and 0.23. There was also an obvious downward trend near the
1350 nm band, followed by a rise to a peak. The global sensitivity of LAI also exhibited a
larger variation between 0.1 and 0.95, with an obvious peak and trough near the 760 nm
wavelength. The N global sensitivity did not exhibit large variation; it was relatively stable
in the range of 400 nm to 2400 nm, with variations between 0 and 0.03; the greatest influence
was in the near-infrared wavelength band (Figure 3).

Based on the above analysis, it is found that the parameters, three parameters, LAI,
Cab, and Cm, had the greatest influence on the reflectance of the grass canopy. Thus, they
were input into the PROSAIL model at certain step changes and were ultimately set to a
smaller step to improve the accuracy of the data. The other two parameters, N and Cw,
which were less sensitive, were fixed to a set value that was determined based on several
model optimisation simulations and consultation with references. Other values, such as
the hotspot size, zenith angle, observation azimuth, and soil factor, were set to fixed values
based on experience and consultation with references (Table 1). Ultimately, 10 parameters
were calibrated (Table 2). Based on the above, the calibrated parameter values, which
were fixed or step values, were input into the PROSAIL model for inversion. A total of
96,000 simulated spectra and corresponding parameter combinations were generated for
subsequent SVR model training.
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Table 2. Recalibration of input parameters for the PROSAIL 5B model.

Parameter Symbol Range Step Size

Chlorophyll content Cab 5~100 µg/cm2 5
Leaf structure

parameter N 1.7 -

Azimuth angle θv 0◦ -
Solar zenith angle θs 20◦

Soil factor Psoil 0.5~1 0.1
Dry matter content Cm 0.001~0.01 g/cm2 0.001
Leaf water content Cw 0.015 g/cm2 -

Leaf area index LAI 0.1~8 0.1
Hot spot factor Hspot 0.075 -

Average leaf
inclination angle LIDFa 20.2◦ -

3.2. Verification of the AGB Estimation Accuracy

The recalibrated parameters in Table 2 were input into the PROSAIL model for in-
version. Then, the MODIS Popper response function and the input parameters LAI and
Cm were used to calculate the grassland AGB. Next, 96,000 simulated training sets were
constructed to train the SVR model, and the AGB was estimated by the optimal selection of
hyperparameters and was verified in terms of accuracy.

Based on the SVR model, the spatial distribution of the grassland AGB was generated
on day 225 of 2017 for the same study area as analysed by Yin et al. (Figure 4a). The
two spatial distributions were compared by extracting the same pixel points and plotting
a scatter plot (Figure 4b). The results showed that the points were distributed near the
1:1 contour line and were mainly concentrated between 100 and 500 g/m2, with an R2 of
0.64, an RMSE of 43.52 g/m2, and an RRMSE of 15.13%. At AGB values between 200 and
300 g/m2, there was slight underestimation, but no overestimation. There was also high
similarity and a clear trend in the spatial distribution maps of the two, specifically, there
were higher AGB values in areas close to the river, as compared to areas away from the
river. It is worth noting that the reference map per se is also uncertain.

Figure 4. Direct pixel-by-pixel comparison between the reference and estimated AGBs on day 225,
2017. (a) Grassland AGB map generated based on estimated (the white pixels in (a,b) are bad pixels
and non-grass pixels). (b) Density scatterplots between the estimated AGB and reference AGB.

In addition, the spatial distribution map of the average AGB of the grassland within
the study area from 18 to 23 August 2022 was drawn using the SVR model (Figure 5);
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the non-grassland parts (the white parts in Figure 5: forests, rivers, built-up land, etc.)
were excluded. The spatial distribution of the AGB of the Zoigê Plateau grassland can be
seen to be heterogeneous, with a gradual increasing trend from the north-western to the
southeastern direction. The sampling points were projected into the raster image and the
corresponding pixel values were extracted to establish a linear fitting relationship with the
measured grassland AGB (Figure 6). It was found that using the methodology developed
in this paper, there was a good fit between the estimated grassland AGB and the measured
AGB, with an R2 of 0.69, an RMSE of 44.07 g/m2, and an RRMSE of 14.21%. However,
the AGB values were partially underestimated in the range of 200–300 g/m2, which is
consistent with the results of the above comparison with the reference AGB. These findings
further validate the estimation accuracy of our method.

Figure 5. Spatial distribution of the grassland AGB in the Zoigê plateau on day 230 of 2022 estimated
from the SVR model.

Figure 6. Relationship between the field-measured and estimated AGB. The Blue dots indicate sampling
points, solid line represents the fitted regression line, and the dashed line represents the 1:1 line.
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3.3. Time-Dynamic Analysis

The trained SVR model was used to estimate the AGB time variation image covering
the study area from 1 to 365 days in 2022. The time distribution of the AGB values corre-
sponds to the time of downloading the MCD43A4 reflectance products, and its standard
deviation was calculated, as shown in Figure 7. From the graph, it can be seen that the
estimated AGB time series offered a satisfactory reproduction of the dynamic trend in
the grassland phenology. The grassland growth season occurred from 105 to 315 days
and reached its peak on the 203rd day, with an average value of 358.578 g/m2. When the
grassland was in a dormant state, the grassland AGB values still exhibited a downward
trend and were not zero, which may be related to winter and summer pastures. During
winter, the research area is still covered with a large amount of dry grass for livestock
breeding [63,64].

Figure 7. Temporal profile of the estimated AGB in our study area for days 1 to 365 days in 2022.
(the shaded area represents the standard deviation of the estimated AGB. The mean and standard
deviation of the reference map are displayed as a solid box and corresponding error bars).

4. Discussion
4.1. Advantages of Our Grassland AGB Estimation Scheme

The traditional AGB estimation method for grassland relies on the empirical relation-
ship between field-measured data and remotely sensed vegetation indices. This method
is relatively mature and is still widely used in research. For example, Yang et al. [55] con-
structed an artificial neural network model based on a large amount of field measurement
data and selected five optimally correlated variables out of 13 variables, with correlations
of 0.75–0.85. Zeng et al. [29] used a Random Forest algorithm to estimate grassland AGB by
experimentally comparing five variables selected with a corresponding R2 of 0.86. These
studies required a large amount of on-site measurement data, and the on-site measurement
data were not fully representative. These methods have certain temporal and regional
specificity and cannot describe the seasonal changes in vegetation; they also have low
repeatability and are difficult to apply widely. The current study proposed a physical
method of combining the PROSAIL model with the SVR model to estimate grassland AGB
using MCD43A4 surface reflectance images. This method was able to achieve continuous
spatiotemporal estimation of grassland AGB on the Zoigê Plateau in the absence of mea-
sured data, with good estimation accuracy. At the same time, our method has the obvious
advantage of producing continuous spatio-temporal grassland AGB values with better
repeatability and adaptability than traditional methods because it does not require ground



Remote Sens. 2024, 16, 1117 12 of 16

measurements. Its ability to provide low-cost and large-scale grassland monitoring is also
a strength of this method.

The existing methods for estimating grassland AGB based on RTM rely more on the
LUT method, which is relatively computationally intensive and inefficient and requires reg-
ularization strategies to alleviate the drawbacks of ill-posedness. For example, He et al. [32]
used the PROSAIL model and the LUT method to invert MCD43A4 images with limited
accuracy (RMSE and RRMSE of 60.06 g·m−2 and 18.1%, respectively); there was both
underestimation and overestimation of the AGB values when the reference value was less
than 200 g/m2 and between 300 and 350 g/m2. Quan et al. [20] estimated grassland AGB
based on the PROSAIL model and LUT and compared the results with those obtained
using exponential regression, partial least squares regression, and artificial neural networks.
The authors found that the former had better accuracy (R2 = 0.64, RMSE = 42.67 gm−2).
Compared with the LUT method, we estimated the grassland AGB by SVR, which reduced
the calculation complexity and improved the efficiency and accuracy of estimation (R2 of
0.69, RMSE of 44.07 g/m2, RRMSE of 14.21%). The PROSAIL model assumes that the dry
matter content is only present in the leaf structure when modeling the grass AGB, ignoring
the effect of the stem; this leads to a lower estimate than the reference value when the
reference value is between 200 and 300 g/m2, but not an overestimation. Thus, our results
are more interpretable.

Due to the complexity of the RTM, new methods that combine the RTM and regression
models have been proposed and are now more commonly used in the inversion of grassland
biophysical parameters. However, they have rarely been used in research estimating grassland
AGB maps [46,65]. Further, in the study by Durbha et al. [44], which used the PROSAIL model
and SVR model to estimate the LAI from a multi-angle imaging spectrometer, it was found
that when using the canopy reflectance model to invert biophysical variables, different input
parameter combinations and values in the RTM may lead to similar reflectance due to model
errors and deficiencies between the model and the actual situation. This may lead to instability
and uncertainty in the estimation results. Kernel-based regularisation using the SVR method
can address this problem. However, this method has not been validated for the estimation
of grassland AGB. Therefore, in this study, our proposed method using the PROSAIL model
combined with the SVR model performed RBF kernel-based regularisation by setting the
regularisation parameters, i.e., the penalty coefficient C and the relaxation variable epsilon,
as a way to reduce the error of the PROSAIL model itself as well as the error between the
canopy spectral dataset in which the model is inverted and the actual values. Since we
improved the rationality of the input parameters of the PROSAIL model reduced the noise
in the training dataset and optimally selected the hyperparameters of the SVR model, our
study is significantly more accurate than Zhang et al. [62]’s estimation of grassland AGB by
combining the PROSAIL model with the SVR model based on the LUT algorithm (R2 = 0.30,
RMSE = 32.88 g/m2, RRMSE = 41.94%). Therefore, the estimation of grassland AGB by
coupling the PROSAIL model and SVR method is more reproducible and robust, and this
method has significant prospects for future development.

4.2. Spatial and Temporal Dynamics of Grassland AGB in the Zoigê Plateau

In this study, the spatial distribution of the mean grassland AGB from 18–23 Au-
gust 2022 (Figure 5) and the time series of grassland AGB from day 1 to 365 (Figure 7) on
the Zoigê Plateau were plotted, respectively, using our methodology. In terms of space, the
grassland AGB map of the Zoigê Plateau in 2022 exhibited significant heterogeneity in its
spatial distribution, showing a gradual increasing trend from the northwest to southeast.
This may be related to the altitude and geographical environment of the Zoigê Plateau.
The eastern region has a lower altitude and abundant wetlands, which are relatively more
suitable for the growth of grasslands. From Figure 5, it can be seen that areas with abundant
water resources had higher grassland AGB values. In the time series, the growing season
appeared from day 105 to 315, peaked at day 203, and declined from day 315 until day 105
of the next year, which is the grass dormant period. From Figure 7, it can be seen that the
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AGB was not 0 in the grass dormant period, and there was a certain downward trend. This
is because, in winter, herders store a large amount of hay for livestock consumption; thus,
in the dormant period, the grass AGB is not zero [64]. The reason for the decreasing trend
may be because the grass consumed during grazing is greater than the average carrying
capacity of the plateau during the dormant period [66,67]. In summary, the grass AGB
estimation method developed in this paper provides a good reflection of the trends in
climatic change and the spatial characteristics of the grassland AGB in the Zoigê Plateau.
This method is not restricted to a specific time and region, offering a more robust and
universal estimation method than empirical methods.

4.3. Factors Affecting the Accuracy of Grassland AGB Estimates

There are still some uncertainties with our research methods. Findings, the grassland
AGB value estimated by coupling the PROSAIL model and SVR model was lower than
the reference value between 200 and 300 g/m2 (Figures 4b and 5). In addition to ignoring
the influence of roots and stems, it is also possible that the soil parameters we set may
not be consistent with the actual soil properties of the grassland in the Zoigê Plateau,
resulting in underestimation. Therefore, in future-forward inversions of the PROSAIL
model, the soil parameters should be revised to improve estimation accuracy. Further, the
research method in this paper is based on the MODIS sensor surface reflectance product
MCD43A4, which has a resolution of 500 m, while the real measurements were performed
at 100 m. This may have led to scale errors in the comparisons and may have affected
the accuracy of the estimation results. Nonetheless, with the remote sensing technology
and improved data quality, our method may obtain better estimation results than those
obtained with traditional methods, and our method has better portability and robustness.
Moreover, in this study, the grassland AGB was estimated by establishing biophysical
parameters for grassland, which makes the model only applicable to the inversion of
grassland AGB. The Zoigê Plateau has a diversity of species and vegetation types such
as forests and scrubs, which is also a reason for the underestimation of the AGB values.
In future research, the PROSAIL model should use a more representative spectral library
for grassland soil collection [68] to improve the setting of soil parameters. Moreover, the
use of high-resolution images, such as Landsat and Sentinel data, would help to keep the
image resolution as consistent as possible with the resolution of on-site measurements, to
improve the accuracy of grassland AGB estimation.

It Is worth noting that different machine learning models may yield better results, and
coupling as many machine learning models as possible with the PROSAIL model and exploring
their AGB estimation results would provide a meaningful extension to this study. In addition to
this, human activities such as fencing and grazing may also have impacts on the estimation of
grassland AGB. Quantifying the spatial and temporal impacts of human activities and incor-
porating them into the model for regionalised AGB estimation and comparison in subsequent
studies is worth pursuing, especially for different grassland types on a global scale.

5. Conclusions

This study demonstrates the potential of coupled PROSAIL and SVR models for
grassland AGB physical inversion. The developed method combines the advantages of
both models, greatly reducing the computational complexity of the estimation process
and providing reliable estimation accuracy. The method relies on the characteristics of
herbaceous plants and reduces the AGB to the product of LAI and Cm, both of which are
used as inputs to the PROSAIL model. The parameters are inverted by redetermining the
range and step values of the input parameters of the PROSAIL model based on Sobel global
sensitivity analysis. The resulting simulated training dataset is inverted, and regularisation
based on RBF kernels is performed using the SVR model in order to estimate the grassland
AGB. This method performs well against both measured AGB values and reference AGB
values. The utility of the method was highlighted in the assessment of the spatial and
seasonal variation in the grassland AGB. Satisfactory trends in phenology were reproduced
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by estimating the grassland AGB time series for 2022. Ultimately, these findings contribute
to effective continuous spatiotemporal monitoring of the regional grassland AGB and
provide alternative methods for research in other regions worldwide.
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