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Abstract: The complexity of surface characteristics in rural areas poses challenges for accurate
extraction of built-up areas from remote sensing images. The Artificial Surface Index (ASI) emerged as
a novel and accurate built-up land index. However, the absence of short-wave infrared (SWIR) bands
in most high-resolution (HR) images restricts the application of index-based methods in rural built-up
land extraction. This paper presents a rapid extraction method for high-resolution built-up land in
rural areas based on ASI. Through the downscaling techniques of random forest (RF) regression,
high-resolution SWIR bands were generated. They were then combined with visible and near-infrared
(VNIR) bands to compute ASI on GaoFen-2 (GF-2) images (called ASIGF). Furthermore, a red roof
index (RRI) was designed to reduce the probability of misclassifying built-up land with bare soil. The
results demonstrated that SWIR downscaling effectively compensates for multispectral information
absence in HR imagery and expands the applicability of index-based methods to HR remote sensing
data. Compared with five other indices (UI, BFLEI, NDBI, BCI, and PISI), the combination of ASI
and RRI achieved the optimal performance in built-up land enhancement and bare land suppression,
particularly showcasing superior performance in rural built-up land extraction.

Keywords: rural built-up land extraction; Artificial Surface Index; SWIR downscaling; high-resolution
remote sensing image

1. Introduction

With rapid economic development and the acceleration of urbanization [1], built-up
land has undergone the most drastic changes both in urban and rural regions among all
types of land use/land cover (LULC). Research on the structural features of built-up areas
and expansion patterns is of great significance to sustainable development [2,3], urban
construction [4], urban environmental monitoring [5,6], and other scientific topics. The
precise identification and monitoring of built-up areas provide a basis for urban and rural
planning [7] and contribute to the optimal allocation of land resources [8].

Remote sensing technology, with its unique advantages of long time-series, multi-
angle observations, and fine spatial resolution, has become an important tool to acquire
distribution and dynamical changes of built-up areas [9,10]. Especially, high-resolution
(HR) remote sensing imagery could capture the details and the internal structure of built-up
land [11–13]. In China, with the release and implementation of policies related to new
urbanization and rural revitalization, the potential of HR remote sensing imagery has been
further demonstrated in serving land regulation and promoting high-quality development.

Most built-up land mapping methods have been applied directly to both urban and
rural areas, without extracting them separately. These methods for built-up land mapping
based on remote sensing images can be categorized into object level and pixel level by the
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minimum unit of extraction. The key to the object-level method lies in image segmentation.
Challenges still existed in determining the optimal parameters during the segmentation pro-
cess and the generalization of segmentation methods across different study areas and data
sources [14]. Machine learning algorithms have been widely used to acquire distribution
and dynamical changes of built-up areas using medium- to high-resolution images [15–17].
In recent years, deep learning techniques have received much attention for building extrac-
tion from high-resolution or very-high-resolution (VHR) images [4,18,19]. Deep learning
models achieve high accuracy, but due to the requirement of abundant high-quality train-
ing data, the demand for computational resources is large and data processing work is
heavy [20,21]. These make it difficult to extract built-up land effectively on large scales with
low amounts of training data. Index-based methods use a combination of multi-spectral
bands to construct and enhance spectral characteristics. The obtained results depend on
the mathematical relationship between band values. Index-based methods, characterized
by simplicity and flexibility, have been widely used in practical applications with less effort
required in selecting training samples [22,23]. With their ability to quickly, objectively, and
efficiently obtain the built-up status, they are convenient for visualization, spatiotemporal
analysis, and modeling [24,25].

To date, many remote sensing indices have been developed to extract built-up areas
based on satellite imagery. These indices can be divided into two groups depending on
whether the short-wave infrared (SWIR) band is used. Built-up areas typically exhibit
stronger reflectivity in SWIR compared to other types of land use/land cover. Indices
using the SWIR band have worked well [26–28]. For example, the early proposed and
widely used NDBI (Normalized Difference Built-up Index) [29] distinguishes built-up
areas by enhancing the contrast between SWIR and near-infrared (NIR). It has been widely
applied [30] and used to formulate new models like the Normalized Difference Bare Land
Index (NDBLI) [31], Impervious Surface Percentage (ISP) [32], and modified linear spectral
mixture analysis (MLSMA) method [33]. The BLFEI (Built-up Land Features Extraction
Index) [34] and ASI (Artificial Surface Index) [35] were similarly designed using the SWIR
band. Deng et al. [36] proposed BCI (Biophysical Composition Index) by employing
the tasseled cap (TC) transformation. As a recently proposed built-up land index, ASI,
significantly improves the separation of built-up/non-built-up land on eight types of
landscapes (including desert, coastal, inland urban, and mountainous areas, etc.) around
the globe [35]. Compared with other commonly used indices such as NDBI, IBI, and PISI,
ASI generally performs the best [35] at present. However, due to the demand of SWIR
bands being involved in the calculation of ASI, it is hard to apply ASI directly to most
HR images.

Built-up indices that do not use SWIR have also been devised [36,37]. For instance,
PISI (Perpendicular Impervious Surface Index) is a linear combination of the blue band
and NIR [37] exhibiting a robust statistical correlation with the proportion of impervious
surface area (ISA). Several indices have been proposed specifically for HR imagery, with
only visible bands and NIR (VNIR) bands used [38–40]. However, these indices may not
fully exploit the reflectance characteristics of built-up land due to the restricted set of
feature bands incorporated.

The indices for built-up land extraction were originally designed on multi-spectral images
with low or medium resolution typically involving several bands like SWIR and TIR. However,
most HR images (e.g., GF-2) contain only VNIR bands. The lack of SWIR and TIR hinders the
effective application of these indices on HR images. The downscaling method has been applied
to generate high-resolution TIR and can also be extended to SWIR. TIR band downscaling
methods can be specifically categorized as statistically based, modulation based, and spectral
mixture model based [41,42], with statistically-based methods being the most commonly
utilized. Machine learning has demonstrated its capability to establish complex non-linear
statistical relationships [43], including neural network, support vector machine, random forest,
etc. RF has been widely used because of its high accuracy and robustness [44–46]. It is efficient
at processing large datasets, such as high-resolution images.
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There have been many studies on urban built-up area extraction, while literature on
the extraction for built-up land or buildings in rural areas is still relatively scarce. For
example, the spectral residual (SR) method was applied to GF-1 satellite images to extract
rural residential [47]. Li et al. [18] improved the performance of SR on large-scale rural
areas by applying the faster R-CNN framework. Wang et al. [48] designed a two-layer
clustering deep learning network to extract rural buildings. However, the results of these
algorithms may not be satisfactory on large scales without a large amount of training data.
The complexity and heterogeneity of rural surfaces are the main reasons for the lower
accuracy of existing algorithms [49]. Furthermore, compared to built-up areas in urban
regions, rural built-up land is smaller and more fragmented, often surrounded by farmland,
vegetation, water bodies, or bare soil. Traditional rural buildings are usually made of earth,
stones, and bricks, which contributes to their spectral characteristics being more similar to
those of bare soil than urban buildings. It has been proven that the confusion with bare soil
is one of the main problems that reduces the accuracy of built-up land extraction in rural
areas. However, the methods mentioned above do little to address this problem. Therefore,
developing a new effective index or improving an existing one becomes imperative to
address the aforementioned challenges.

The objective of this study is to develop a method for extracting rural built-up land
from HR images based on ASI. Firstly, to address the challenge that many built-up area
indices relying on the SWIR band, which is usually absent in HR imagery, our approach
involves generating two high-resolution SWIR bands through the downscaling method.
This enables a more widespread application of built-up land extraction with index-based
methods in HR remote sensing imagery. Secondly, we apply the SWIR bands obtained to
the computation of ASI, which significantly enhances the information on built-up land.
Finally, a new index called RRI (red roof index) is proposed to reduce the probability of
misclassifying built-up land as bare soil.

2. Materials and Methods
2.1. Study Area

Fan County, part of Puyang City, is situated in the northeastern part of Henan Province,
China with an average elevation of 49.3 m (Figure 1). The economy of this county relies
primarily on agriculture, with arable land encompassing more than half of its entire geo-
graphical expanse. In the Henan Yellow River Floodplain within Fan County, residents
have long been plagued by flood and have experienced a series of migration projects
from 2015 to 2021. During these, most rural residences within the production bank un-
derwent demolition and reclamation. Concurrently, allocation communities equipped
with essential facilities were developed in townships or cities to accommodate the relo-
cated residents. Consequently, the urban/rural built-up land in Fan County underwent
substantial transformations.

2.2. Data Sources and Pre-Processing

In this study, Landsat 8 OLI multi-spectral images were used for SWIR downscaling.
We downloaded Landsat 8 cloud-free images of Fan County in 2023 from Google Earth
Engine (GEE) and synthesized them into a single image with the median method, which
reduced the influence of extreme values. GEE is a cloud-based geospatial data storage and
processing platform that provides pre-processed Landsat series images with atmospheric
and radiometric calibrations [50].

The GF-2 multi-spectral images were used for ASI calculation and built-up land
extraction, which were acquired from the China Resource Satellite Application Center
(https://data.cresda.cn) (accessed on 3 August 2023). Launched on 19 August 2014, the GF-
2 satellite is a Chinese civilian high-resolution optical satellite in China and is equipped with
both a panchromatic sensor and a multispectral sensor. These images were pre-processed
(radiometric calibration, atmospheric correction, geometric correction), mosaicked, and

https://data.cresda.cn
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clipped with ENVI 5.3 and ERDAS 2015. The detailed information on the images is listed
in Table 1.
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Figure 1. Overview of the study area. (a) Locations of Puyang city in Henan province, China; (b) 
land cover of Puyang city (data from ESA (v200)); (c) Fan County with a false-color image of GF-2. 
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Figure 1. Overview of the study area. (a) Locations of Puyang city in Henan province, China; (b) land
cover of Puyang city (data from ESA (v200)); (c) Fan County with a false-color image of GF-2.

Table 1. The wavelengths, spatial resolutions, and acquisition time of the GF-2 and Landsat-8 images.

Sensor Band Spectral Range (µm) Spatial
Resolution (m)

Acquisition
Time

GF-2 MSS

B1-Blue 0.450–0.520

4 April–May 2023B2-Green 0.520–0.590
B3-Red 0.630–0.690
B4-NIR 0.770–0.890

Landsat-8
OLI

B2-Blue 0.450–0.512

30 April 2023

B3-Green 0.533–0.590
B4-Red 0.636–0.673
B5-NIR 0.851–0.879

B6-SWIR1 1.560–1.651
B7-SWIR2 2.107–2.294

In built-up land extraction research [35–37], water bodies are often seen as noise or
background information that is usually removed. Fan County is located in the downstream
beach area of the Yellow River, which contains part of the Yellow River, fishponds, ditches,
etc. In this study, we masked the water bodies of more than 100 m2 using the remote
sensing index and visual interpretation.

2.3. Methodology

The methodology for this research is shown in the flowchart (Figure 2). Firstly, NDVI
and NDWI for downscaling model buildings were calculated on Landsat-8 (30 m) and
GF-2 (4 m), respectively. Secondly, a high resolution of 4 m SWIR bands were obtained
by downscaling skills through the random forest (RF) method. Thirdly, the SWIR bands
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(4 m) and the original visible and NIR bands of GF-2 were applied to the calculation of ASI
(referred to as ASIGF to distinguish it from the original index). Additionally, we designed a
new index named red roof index (RRI) for rural house extraction, which is explained in
detail in Section 2.3.3. Finally, the optimal thresholds were selected for ASIGF and RRI to
extract both urban and rural built-up land. Overall built-up areas were obtained as the
union of the two results followed by accuracy validation.
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2.3.1. Downscaling of SWIR Based on RF Regression

We used well-established downscaling methods for TIR bands and land surface tem-
perature (LST) to generate the SWIR bands on the GF-2 image. The foundation of down-
scaling lies in the correlations between coarse-resolution LST and ancillary biophysical
parameters that can be applied at a finer spatial resolution [51]. Original band reflectance,
remote sensing indices, topographic factors, and land cover data are commonly employed
as predictors in the regression process [52]. Here, we used RF regression to downscale
SWIR. Random forest regression is a commonly used machine learning algorithm using
bagging techniques, which combines the outputs of multiple decision trees to obtain a
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single result. The technique helps reduce variance and improve accuracy by combining the
predictions from several decision trees.

Medium-resolution satellites equipped with SWIR include the Landsat and Sentinel.
Since the spatial resolution of SWIR of Sentinel-2 (20 m) is inconsistent with visible and
NIR bands (10 m), the Landsat-8 OLI imagery was chosen as the training data for the RF
regression. Subsequently, VNIR bands (B2–B4), NDVI (Normalized Difference Vegetation
Index, Equation (2)) and NDWI (Normalized Difference Water Index, Equation (3)) with
a resolution of 30 m were designated as independent variables. Simultaneously, SWIR1
(B6) and SWIR2 (B7) were set as dependent variables to establish RF models M1 and M2.
Finally, high-resolution NDVI, NDWI, and original bands (B1–B4) from GF-2 were fed into
M1 and M2 to derive two SWIR bands (GF-2 SWIR1*, GF-2 SWIR2*) with a resolution of
4 m. The two downscaled SWIR bands can be represented as follows:

SWIR* = f (Blue, Green, Red, NIR, NDVI, NDWI) (1)

where Blue, Green, Red, and NIR are VNIR bands of GF-2 images; NDVI and NDWI are
indices derived from GF-2; and f is a non-linear linking model. Regression models were
built independently for the two SWIR bands.

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(2)

NDWI =
ρGreen − ρNIR
ρGreen + ρNIR

(3)

where ρRed, ρGreen, and ρNIR are the surface reflectance of the red, green, and NIR
bands, respectively.

2.3.2. Artificial Surface Index (ASI)

ASI is a second-level index (Equation (4)), which is composed of the Artificial Sur-
face Factor (AF, Equation (5)), Vegetation Suppressing Factor (VSF, Equation (6)), Soil
Suppressing Factor (SSF, Equation (8)), and Modulation Factor (MF, Equation (12)).

ASIGF = AF × SSF × VSF × MF (4)

The values of ASIGF were normalized to the range of [0, 1] with the min-max normal-
ization function based on the entire image.

AF =
ρNIR − ρBlue
ρNIR + ρBlue

(5)

where AF is the Artificial Surface Factor, highlighting the spectral characteristics of built-
up land, and ρNIR and ρBlue are the surface reflectance of the NIR and blue bands. AF
highlights the spectral characteristics of built-up land.

VSF = 1 − NDVI × MSAVI (6)

MSAVI =
2 × ρNIR + 1 −

√
(2 × ρNIR + 1)2 − 8 × (ρNIR − ρRed)

2
(7)

where VSF is the Vegetation Suppressing Factor, calculated by two vegetation indices, NDVI
(Equation (2)) and MSAVI (Equation (7)), and ρNIR and ρRed are the surface reflectance of
the NIR and red bands.

SSF = 1 − EMBI (8)

EMBI =
MBI − MNDWI − 0.5
MBI + MNDWI + 1.5

(9)
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MBI =
ρSWIR1∗ − ρSWIR2∗ − ρNIR
ρSWIR1∗ + ρSWIR2∗ + ρNIR

+ 0.5 (10)

MNDWI =
ρGreen − ρSWIR1∗
ρGreen + ρSWIR1∗

(11)

where SSF is the Soil Suppressing Factor, calculated by two bare soil indices (EMBI,
Equation (9); MBI, Equation (10)) and the water index (MNDWI, Equation (11)). ρSWIR1*,
ρSWIR2*, ρNIR, and ρGreen are the surface reflectance of the SWIR1, SWIR2, NIR, and green
bands, respectively.

MF =
(ρBlue + ρGreen)− (ρNIR + ρSWIR1∗)

(ρBlue + ρGreen) + (ρNIR + ρSWIR1∗)
(12)

where MF is the Modulation Factor, which is designed to enhance built-up land and sup-
press bare soil/vegetation, and ρBlue, ρGreen, ρNIR, and ρSWIR1* are the surface reflectance
of the blue, green, NIR, and SWIR bands, respectively.

2.3.3. Red Roof Index (RRI)

In this study, we designed RRI to identify rural buildings precisely. In our study
area, most of the rural buildings are made of brick or stone, the roofs of which appear as
red colors on the images. Through analysis of the spectral reflectance curve of red roof
buildings and in GF-2 (Figure 3), we observed that the reflectance curves of the red roof
buildings and the bare soil are similar. However, the spectral curve of red roof buildings
from the blue band to red band obviously exhibited a concave shape, while that of bare
soil was nearly convex or flat. This phenomenon could be described as the relationship
between ρBlue + ρRed and twice of ρGreen, which inspired the design of RRI. In theory, the
value of RRI for red roof buildings was positive, while that for bare soil was negative.

RRI = ρBlue + ρRed − 2 × ρGreen (13)
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The threshold segmentation method was used to extract the built-up land. The
optimal thresholds were determined by representative samples and visual interpretation.
We sampled five land cover types, including forest, farmland, urban built-up land, rural
built-up land, and bare land, to determine the threshold for ASIGF. Bare soil with different
humidity and vegetation covers as well as rural built-up land points were selected to
determine the threshold for RRI.
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2.3.4. Other Indices for Built-Up Area Extraction

Other five commonly used built-up land indices were calculated to compare with the
method we proposed, including NDBI (Equation (14)), BCI (Equation (15)), PISI (Equation (16)),
BLFEI (Equation (17)), and UI (Equation (18)).

NDBI =
ρSWIR1* − ρNIR
ρSWIR1* + ρNIR

(14)

BCI =
(H + L)/2 − V
(H + L)/2 + V

(15)

PISI = 0.8192 ∗ ρBlue − 0.5735 ∗ ρNIR + 0.075 (16)

BLFEI =
(ρGreen + ρRed + ρSWIR2∗)/3 − ρSWIR1∗
(ρGreen + ρRed + ρSWIR2∗)/3 + ρSWIR1∗

(17)

UI =
ρSWIR2∗ − ρNIR
ρSWIR2∗ + ρNIR

(18)

where H, V, and L are the normalized result of the first three components (brightness,
greenness, and humidity) of the tasseled cap (TC) transformation of the GF-2 image. The
TC parameters of the IKONOS satellite are commonly used on GF-2 [46] due to the absence
of TC parameters for GF-2 and the similarity in wavebands between the two satellites.

2.3.5. Evaluation of SWIR Downscaling

In this study, two image quality metrics were employed to evaluate downscaled SWIR
bands, namely contrast (CON) and information entropy (H):

CON =
255

∑
i=0

i2p(i) (19)

H =
255

∑
i=0

p(i)log2
1

p(i)
(20)

where i is the gray level and p(i) is the probability of the gray level of i on the image. Prior
to computing these two metrics, it is necessary to stretch the image to the range of [0, 255].

Additionally, the Pearson correlation coefficient (R) was utilized to quantify the informa-
tion similarity between the low- and high-resolution SWIR images. The range of R is [−1, 1].
Two variables are positively correlated when R > 0 and vice versa. The larger the absolute
value, the stronger the correlation. Furthermore, before calculating the Pearson correlation
coefficient, the downscaled SWIR (4 m) bands were aggregated to 30 m by taking the spatial
average of neighbor pixels to align with SWIR bands of Landsat-8 in resolution.

2.3.6. Accuracy Assessment of the Built-Up Area Extraction

Separability tests and histogram comparisons were performed for indices to determine
the separability between built-up and non-built-up pixels [35,36]. The separability metrics
include the Jeffries–Matusita distance (JMD) [53], the Transformed Divergence (TD) [54],
and the Spectral Discrimination Index (SDI) [55]. The ranges of JMD and TD are (0,

√
2]

and (0, 2], respectively, with no limit for SDI. Larger values indicate a higher degree
of separability.

The confusion matrix is the most commonly used method for accuracy testing in
remote sensing research. It is a standard method that includes the indicators overall
accuracy (OA), Kappa coefficient (Kappa), commission error (CE), omission error (OE),
mapper accuracy (MA), and user accuracy (UA).

To ensure that most of the validation points are from real built-up areas, we randomly
chose 3/4 of the validation points from the built-up area we extracted, and the remaining
1/4 points were randomly chosen from a non-built-up area.
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3. Results
3.1. Analysis of SWIR Downscaling

A total of 50,000 random points were generated for the entirety of Fan County, which
were divided into the training set and testing set at a ratio of 4:1. The two main parameters
for the random forest (RF) were the max number of trees (N) and max depth of trees (D).
The 10-fold cross-validation technique was used to determine the optimal parameters. This
process was conducted in ArcGIS Pro 3.1 automatically. In our study, N was 50 and D
was 27. The coefficient of determination (R-squared) was also computed as an estimate
of the goodness of fit. As Table 2 shows, the R-squared of two SWIR bands on both the
training set and testing set were better than 85%, which indicates the good performance of
our regression models.

Table 2. R-squared of random forest regression model.

Training Set Testing Set

SWIR-1 0.927 0.872
SWIR-2 0.937 0.877

Six typical regions of three land cover types, towns, allocation communities, and
villages, were selected to demonstrate and evaluate the SWIR downscaling from Landsat-8
to GF-2 in detail. It is evident that the spatial details are more distinctly visible in the
downscaled SWIR band (Figure 4).

In the urban area (Figure 4a) and the factories (Figure 4b) in Fan County, the down-
scaled SWIR band images distinctly outline individual buildings. Additionally, the bare soil
shows relatively high reflectance in SWIR bands on both Landsat-8 and GF-2, particularly
in areas with sparse vegetation cover and high soil water content.

In the allocation communities (Figure 4c,d), the buildings exhibit regular shapes and
roofs in dark colors. This characteristic is manifested in the SWIR band as lower reflectance,
in contrast to the common blue or white roofs in other regions.

In the rural areas (Figure 4e,f), the internal structure and layout framework of the
traditional rural settlements are better presented in the high-resolution SWIR images. However,
the reflectance difference of built-up/non-built-up land in the rural area is lower than that in
the urban area, posing potential challenges in the extraction of rural built-up areas.

To quantitatively evaluate the SWIR downscaling, the contrast and information en-
tropy were computed for both low- and high-resolution images in the regions mentioned
above. As shown in Table 3, the contrast of the downscaled SWIR bands is significantly
improved, with nearly no difference in terms of information in comparison to the SWIR
bands of the Landsat-8 images. This confirms that the downscaling method effectively
enriches the spatial details of images while preserving the information the bands contain.

Table 3. The contrast and information entropy of downscaled and original SWIR images sampled
from the six typical regions.

Region Band
Original Image Downscaled Image

Contrast Information Entropy Contrast Information Entropy

a SWIR1 3352.29 5.55 3994.62 5.45
SWIR2 2576.83 5.82 2707.75 5.45

b SWIR1 3003.79 5.55 2965.65 4.76
SWIR2 1856.49 5.72 1684.56 4.19

c SWIR1 3986.58 5.34 4318.59 5.51
SWIR2 3100.9 5.48 2898.08 5.60

d SWIR1 3803.31 5.58 4008.46 5.43
SWIR2 2797.91 5.72 2622.73 5.26

e SWIR1 3057.67 5.56 2841.74 4.53
SWIR2 1875.97 5.65 1602.34 3.92
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Table 3. Cont.

Region Band
Original Image Downscaled Image

Contrast Information Entropy Contrast Information Entropy

f SWIR1 3945.07 5.23 3924.88 5.16
SWIR2 2900.08 5.44 2503.84 5.03
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Additionally, to verify the information similarity between the original and downscaled
bands, the Pearson correlation analysis was performed on the values of 15,000 random
points on the SWIR bands. Figure 5 shows that there is a strong correlation (R = 0.75)
between coarse and aggregated fine resolution SWIR1 and SWIR2 images under the 95%
confidence level.
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By adopting the generally used and highly efficient RF regression method, our results
not only excelled in preserving image information of the original bands but also yielded
remarkable improvements in terms of spatial resolution. Consequently, the SWIR bands
generated through the downscaling technique were highly reliable for calculating remote
sensing indices in high-resolution images.

3.2. Built-Up Land Extraction by Threshold Segmentation

The built-up land extraction was conducted by indices calculation and threshold
segmentation. In this section, we discuss the optical threshold settings for ASI and RRI first.
Then, the two indices are combined together to map the built-up area in Fan County. The
accuracy assessment is conducted for the whole study area based on the extraction results
from our approach.

3.2.1. Optical Thresholds for ASI and RRI

To determine the optical threshold for ASIGF, we selected three categories of samples—urban
built-up land, rural built-up land, and non-built-up land, with 2000 points for each type. The
histogram of these samples is shown in Figure 6a. During the process of threshold setting for
ASIGF, we observed a more effective distinction between urban built-up areas and non-built-up
areas compared to rural built-up land on ASIGF, as the latter is more prone to confusion with
bare land. As shown in Figure 6, the threshold of ASIGF being under 0.8 (Figure 6c) led to
serious confusion between rural buildings and bare soil. When the threshold for ASIGF was set to
greater than 0.8 (Figure 6e), large quantities of buildings with high-reflectance roofs were omitted.
Therefore, the optical segmentation threshold was 0.8 to both suppress bare soil and maintain
urban buildings. Furthermore, the gradual increase in the threshold led to a notable increase in
the omission of rural buildings with red roofs.

To further validate the performance of ASIGF to separate built-up land from non-built-
up land, a comparison and analysis were conducted on five commonly used indices related
to built-up area extraction: UI, BLFEI, NDBI, BCI, and PISI. As the histogram (Figure 7) and
separability indices (Table 4) show, ASIGF exhibited the best performance in distinguishing
urban built-up land from non-built-up land. In terms of distinguishing rural built-up land
from non-built-up land, ASIGF outperformed UI and BLFEI, while it was slightly inferior
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compared to NDBI, BCI, and PISI. Consequently, ASIGF performed well for urban built-up
land extraction and had a strong suppression of bare soil, but its ability to distinguish rural
buildings from bare ground was inadequate.
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Table 4. Separability between non-built-up areas and built-up areas for ASIGF and five other indices.

Urban Built-Up/Non-Built-Up Rural Built-Up/Non-Built-Up

ASIGF UI BLFEI NDBI BCI PISI ASIGF UI BLFEI NDBI BCI PISI

JMD 1.40 0.86 0.48 0.86 1.03 1.25 0.88 0.77 0.48 0.97 1.30 0.91
TD 1.46 0.87 0.56 0.88 1.05 1.27 1.20 0.77 0.54 1.12 1.88 1.31
SDI 1.55 1.06 0.69 1.05 1.20 1.40 1.01 0.98 0.71 1.13 1.39 1.02

The value range of RRI was not fixed according to its principle. For Fan County, the
minimum and maximum values of RRI were −0.28 and 0.43. The threshold for RRI was
visually judged to 0.01 to extract rural buildings omitted by ASIGF.

To further illustrate the important complementary role of RRI, we selected 200 random
points to conduct an accuracy test, among which 150 points were rural buildings while the
remaining 50 points belonged to non-built-up land. As shown in Table 5, RRI acquired high
accuracy when extracting rural built-up land. The complementary nature of RRI increased
the overall accuracy and reduced the omission of rural buildings. The result of ASIGF
was not satisfactory, especially the high omission errors. This is because most of the rural
built-up land was classified as background information given the threshold of 0.8.

Table 5. Confusion matrix and accuracy assessment of rural built-up area extraction results using
ASIGF and RRI.

OA Kappa CE OE PA UA

ASIGF 28.00% −2.86% 35.00% 76.11% 8.67% 65.00%
RRI 85.50% 66.47% 2.36% 35.62% 82.67% 97.64%

ASIGF + RRI 86.00% 65.85% 5.15% 32.81% 86.00% 94.85%

3.2.2. Built-Up Land Extraction Results

The final result for the built-up area in Fan County was the union of the extraction
results of ASIGF and RRI (Figure 8). This process not only eliminated the bare land but also
extracted the red roof rural buildings omitted by ASIGF. Most of the houses in the rural
settlements have red roofs, which could be extracted by the RRI we designed. The rest
of the buildings (such as factories) have blue or white roofs, which have high reflectance
and can be extracted by ASIGF. Therefore, the best extraction results can be achieved by
combining the two indices.

In the urban area (Figure 9a) and clustered factories regions (Figure 9b) in Fan County,
the prominent features include asphalt roads and high-albedo buildings with white or blue
roofs. On the other hand, the allocation communities (Figure 9c,d) are new rural communi-
ties situated within the township area. Rural settlements (Figure 9e,f) are characterized by
fine country roads and dense rural houses built with a mixture of brick and earth, featuring
red or orange roofs, along with scattered concrete factories or stores.

3.2.3. Accuracy Assessment

To validate the accuracy of the extraction results, 600 sample points were randomly
selected from the entirety of Fan County, and the real land use types of these samples
were obtained by visual interpretation on images with higher resolution. The confusion
matrix and accuracy metrics (Table 6) revealed that the extraction of built-up land by the
combination of ASIGF and RRI is effective, with an overall accuracy of more than 90% and
a Kappa coefficient of 0.83. The misclassified pixels were mainly from fallow land with
high humidity and surfaces covered with sparse vegetation.



Remote Sens. 2024, 16, 1126 14 of 21

Remote Sens. 2024, 16, 1126 14 of 22 
 

 

Table 5. Confusion matrix and accuracy assessment of rural built-up area extraction results using ASIୋ and RRI. 

 OA Kappa CE OE PA UA ASIୋ 28.00% −2.86% 35.00% 76.11% 8.67% 65.00% 
RRI 85.50% 66.47% 2.36% 35.62% 82.67% 97.64% ASIୋ + RRI 86.00% 65.85% 5.15% 32.81% 86.00% 94.85% 

3.2.2. Built-Up Land Extraction Results 
The final result for the built-up area in Fan County was the union of the extraction 

results of ASIୋ and RRI (Figure 8). This process not only eliminated the bare land but 
also extracted the red roof rural buildings omitted by ASIୋ. Most of the houses in the 
rural settlements have red roofs, which could be extracted by the RRI we designed. The 
rest of the buildings (such as factories) have blue or white roofs, which have high reflec-
tance and can be extracted by ASIୋ. Therefore, the best extraction results can be achieved 
by combining the two indices. 

 
Figure 8. Built-up area extraction results in Fan County (red color indicates the built-up land, blue 
indicates the water body). 

In the urban area (Figure 9a) and clustered factories regions (Figure 9b) in Fan 
County, the prominent features include asphalt roads and high-albedo buildings with 
white or blue roofs. On the other hand, the allocation communities (Figure 9c,d) are new 
rural communities situated within the township area. Rural settlements (Figure 9e,f) are 
characterized by fine country roads and dense rural houses built with a mixture of brick 
and earth, featuring red or orange roofs, along with scattered concrete factories or stores. 

Figure 8. Built-up area extraction results in Fan County (red color indicates the built-up land, blue
indicates the water body).

Table 6. Confusion matrix and accuracy assessment of built-up area extraction results using the
combination of ASIGF and RRI.

Classification
Ground Truth

OA Kappa
Built-Up Area Non-Built-Up Area Total

Built-Up Area 418 32 450
93.33% 0.83Other Land Use

Types 8 142 150

Total 426 174 600

In addition, by analyzing the histogram of ASIGF (Figure 6), it can be found that
to effectively distinguish built-up land from non-built-up land, the optimal threshold
falls in the range of rural built-up land, which is an important reason for the inevitable
misclassification of rural construction land.
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3.3. Comparison with Five Other Index-Based Methods

To verify the effectiveness of RRI in addressing the confusion between rural built-up
land and bare soil, we selected 2000 sample points from bare soil in the images. Histograms
(Figure 10) and a separability test (Table 7) demonstrated that, compared with other in-
dices, RRI excels in distinguishing rural built-up land from bare land. It exhibits the best
performance with a JMD close to the maximum value (

√
2) and the TD value close to 2,

indicating a strong ability to distinguish the two land use types.
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Figure 10. The histograms of rural built-up areas and bare land for RRI (a), UI (b), BLFEI (c), NDBI
(d), BCI (e), and PISI (f).

Table 7. Separability between rural built-up areas and bare land for five other indices and RRI.

Rural Built-Up Area/Bare Land

RRI UI BFLEI NDBI BCI PISI

JMD 1.38 0.18 0.12 0.14 0.85 0.22
TD 1.92 0.21 0.12 0.15 0.92 0.27
SDI 12.47 0.31 0.35 0.27 1.04 0.23

Based on the comprehensive analysis above, a further comparison of ASIGF + RRI
with the other three indices (NDBI, BCI, and PISI) that excel in distinguishing built-up land
from non-built-up land was conducted. The extraction result comparisons (Figure 11) and
accuracy validation (Table 8) demonstrated that the combination of ASIGF and RRI works
most effectively in the extraction of built-up land.

Table 8. Accuracy assessment of three other methodologies and the combination of ASIGF and RRI.

Methodology OA (%) PA (%) UA (%) Kappa CE (%) OE (%)

ASIGF +
RRI 93.33 98.12 92.89 83.12 7.11 5.33

BCI 76.33 55.98 83.82 49.76 16.18 26.70
PISI 80.00 79.15 75.65 59.46 24.35 16.41

NDBI 66.67 28.96 82.42 26.32 17.58 36.15

In the extraction of urban built-up land (Figure 11a,b), ASIGF + RRI, NDBI, and BCI
exhibited superior performance, with no significant difference among the three methods.
In the extraction of rural settlements (Figure 11c,d), ASIGF + RRI demonstrated distinct ad-
vantages over PISI and NDBI. ASIGF + RRI accurately extracts rural houses and effectively
suppresses bare land in rural settlements. NDBI, on the other hand, suppresses both rural
houses and bare soil, resulting in relatively low extraction accuracy. Regarding the bare
soil shown in Figure 11e,f (i.e., leveled bare soil after a house demolition with low water
content), ASIGF + RRI effectively removes it, further confirming its superiority in built-up
land extraction.

In conclusion, the combination of ASIGF and RRI proved to be effective for extracting
built-up land, particularly in rural areas, and suppressing bare land. This finding presents
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innovative ideas and methods for rural built-up land extraction, which are expected to
benefit future research.
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4.1. The Application of the SWIR Downscaling Technique in High-Resolution Built-Up Land
Extraction

In the field of remote sensing, many studies have adopted downscaling methods for
TIR bands, but not in SWIR. This study successfully generated two SWIR bands of 4 m
resolution using the RF regression method. Our method enables the effective application
of built-up area indices (e.g., ASI, NDBI, etc.) that rely on SWIR information from high-
resolution images that lack these two bands originally. This allows for finer extraction of
built-up land.

From a technical perspective, the downscaling method preserves the information of
the original band while significantly enhancing its spatial resolution. This technique is
an image fusion method [56] that relies on the correlation between the reflectance of the
target band and predictors, like other bands or remote sensing indices within the same
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region and at the same time. However, this method has limitations. It requires that the
high- and low-resolution images used for modeling are temporally similar; otherwise,
the temporal variations in the spectral characteristics of features may introduce errors.
Additionally, the method is limited to improving the spatial resolution of the bands and
adding missing bands to the high-resolution image rather than enhancing its temporal
resolution. The enhancement of the temporal resolution by integrating satellite data with
different revisiting periods contributes to continuous monitoring of land use change. There
are still some challenges during the process of image fusion, including image registering,
noise removal, and increased computational demands [57–59]. The SWIR downscaling
method we proposed is able to enhance the spatial resolution of SWIR bands, providing
additional bands for high-resolution images. The temporal resolution enhancement has
been little emphasized in our study.

The application of spectral indices on high-resolution built-up land extraction has
been limited due to the incapability of most high-resolution sensors to detect SWIR band
information, which is crucial for distinguishing built-up land from other land use types.
Indices designed for high-resolution images primarily rely on visible and NIR bands,
posing limitations in fully leveraging the spectral characteristics of built-up land. In this
study, the SWIR bands were successfully integrated into the high-resolution image through
downscaling techniques. This expands the application of various built-up land indices on
high-resolution images.

4.2. RRI Improves the Separability between Rural Buildings and Bare Land

Significant progress has been made in the research on built-up areas or building
extraction in large and medium-sized cities. However, in economically underdeveloped
and agriculture-oriented counties, especially in floodplain regions like Fan County, there is
still insufficient research. These counties exhibit a low urbanization rate, limited urban built-
up land area, and scattered distribution of rural construction land as the main characteristics
of land use. The majority of rural houses in these areas are brick structures with red roofs,
sharing certain spectral characteristics with bare soil. This similarity poses challenges to
the extraction of rural built-up land.

Indices related to built-up area currently in use are primarily designed to differentiate
between urban built-up areas and other land types, including bare land. However, the con-
sideration of rural housing characteristics is not yet sufficient, leading to a weak distinction
between rural construction land and bare land. We designed RRI to address this issue and
validated its effectiveness through three separability indices. RRI alone may not be ideal
for urban built-up land extraction, but its combination with other indices can significantly
enhance the accuracy of built-up land extraction in rural areas.

This paper demonstrates the effectiveness of the ASIGF + RRI method in extracting
built-up land in rural areas of the central China plain. The findings offer a novel ap-
proach for rural construction land extraction with potential significance for future research
and application. Given the complexity of rural built-up land, along with potential errors
caused by elevation, subsequent research should involve built-up land extraction experi-
ments in diverse rural settings (e.g., mountainous areas) to test the generalizability of the
proposed index.

5. Conclusions

This paper introduced a rapid extraction method for built-up land in rural areas
on high-resolution remote sensing images lacking SWIR bands. The methodology was
applied and examined in Fan County, Henan Province. Two 4 m resolution SWIR bands
were generated through the downscaling method by RF regression with predictors like
NDVI and NDWI. The high-resolution SWIR bands, along with the original bands of the
GF-2 images, were then applied to calculate ASIGF, which exhibited superior accuracy in
urban built-up land extraction. In rural areas, five other indices (NDBI, BCI, etc.) did not
performed well when discriminating rural built-up areas and non-built-up areas. This
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challenge was effectively addressed by the RRI we proposed in this study. The accuracy
assessment demonstrated that, compared with three other commonly used indices, the
combination of ASIGF and RRI achieved the highest performance, with an overall accuracy
of 93.33% and Kappa of 83.12%. In summary, our methodology has the potential and
advantage of efficient extraction of built-up land in rural areas on HR images without
SWIR bands.

There are still some limitations to our approach. Firstly, the determination of thresholds
for ASI and RRI requires experiments according to different areas. In this study, the
threshold of ASI was set to 0.8 with the aim of excluding bare soil. The threshold setting for
RRI was intended to extract red roof buildings omitted by ASI. Secondly, further validation
will be needed by using the method on other regions. RRI performs well in the extraction
of specifically red roof buildings, and further validation will be needed for other types
of buildings.
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