Rock Glacier Inventory of the Southwestern Pamirs Supported by InSAR Kinematics
Abstract
:1. Introduction
2. Study area
2.1. Geomorphological Setting
2.2. Climate
3. Data and Methods
3.1. Rock Glacier Delineation
3.2. InSAR Kinematics
3.3. Quality Control of the Interferograms
4. Results
4.1. Geomorphic Characteristics of Rock Glaciers
4.2. Distribution of Rock Glacier Kinematics
4.3. Active Rock Glaciers and Transitional Rock Glaciers
5. Discussion
5.1. Comparison with the Permafrost Zonation Index
5.2. Environmental Controls on Rock Glaciers
5.3. Rock Glacier Kinematics
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Number | Direction | Path | Frame | Master Acquisition Date | Slave Acquisition Date | Time Span (Days) |
---|---|---|---|---|---|---|
1 | descending | 5 | 466 | 17 July 2018 | 29 July 2018 | 12 |
2 | descending | 5 | 466 | 24 July 2019 | 5 August 2019 | 12 |
3 | descending | 5 | 466 | 10 September 2019 | 22 September 2019 | 12 |
4 | descending | 5 | 466 | 16 September 2020 | 28 September 2020 | 12 |
5 | descending | 5 | 466 | 29 July 2018 | 22 August 2018 | 24 |
6 | descending | 5 | 466 | 10 August 2018 | 3 September 2018 | 24 |
7 | descending | 5 | 466 | 29 August 2019 | 22 September 2019 | 24 |
8 | descending | 5 | 466 | 23 August 2020 | 16 September 2020 | 24 |
9 | descending | 5 | 466 | 29 July 2018 | 3 September 2018 | 36 |
10 | descending | 5 | 466 | 5 August 2019 | 10 September 2019 | 36 |
11 | descending | 5 | 466 | 23 August 2020 | 28 September 2020 | 36 |
12 | descending | 5 | 466 | 10 August 2018 | 27 September 2018 | 48 |
13 | descending | 5 | 466 | 24 July 2019 | 10 September 2019 | 48 |
14 | descending | 5 | 466 | 17 August 2019 | 4 October 2019 | 48 |
15 | descending | 5 | 466 | 11 August 2020 | 28 September 2020 | 48 |
16 | descending | 5 | 466 | 27 September 2018 | 29 August 2019 | 336 |
17 | descending | 5 | 466 | 29 July 2018 | 5 August 2019 | 372 |
18 | descending | 5 | 466 | 10 September 2019 | 11 August 2020 | 336 |
19 | descending | 5 | 466 | 5 August 2019 | 11 August 2020 | 372 |
20 | descending | 5 | 471 | 17 July 2018 | 29 July 2018 | 12 |
21 | descending | 5 | 471 | 10 September 2019 | 22 September 2019 | 12 |
22 | descending | 5 | 471 | 16 September 2020 | 28 September 2020 | 12 |
23 | descending | 5 | 471 | 10 August 2018 | 3 September 2018 | 24 |
24 | descending | 5 | 471 | 29 August 2019 | 22 September 2019 | 24 |
25 | descending | 5 | 471 | 23 August 2020 | 16 September 2020 | 24 |
26 | descending | 5 | 471 | 29 July 2018 | 3 September 2018 | 36 |
27 | descending | 5 | 471 | 5 August 2019 | 10 September 2019 | 36 |
28 | descending | 5 | 471 | 23 August 2020 | 28 September 2020 | 36 |
29 | descending | 5 | 471 | 10 August 2018 | 29 August 2019 | 384 |
30 | descending | 5 | 471 | 3 September 2018 | 22 September 2019 | 384 |
31 | descending | 5 | 471 | 10 August 2018 | 22 September 2019 | 408 |
32 | descending | 5 | 471 | 22 September 2019 | 28 September 2020 | 372 |
33 | descending | 5 | 471 | 29 August 2019 | 28 September 2020 | 396 |
34 | ascending | 100 | 119 | 23 July 2018 | 4 August 2018 | 12 |
35 | ascending | 100 | 119 | 18 July 2019 | 30 July 2019 | 12 |
36 | ascending | 100 | 119 | 11 August 2019 | 23 August 2019 | 12 |
37 | ascending | 100 | 119 | 29 August 2020 | 10 September 2020 | 12 |
38 | ascending | 100 | 119 | 10 September 2020 | 22 September 2020 | 12 |
39 | ascending | 100 | 119 | 4 August 2018 | 28 August 2018 | 24 |
40 | ascending | 100 | 119 | 11 August 2019 | 4 September 2019 | 24 |
41 | ascending | 100 | 119 | 29 August 2020 | 22 September 2020 | 24 |
42 | ascending | 100 | 119 | 23 July 2018 | 28 August 2018 | 36 |
43 | ascending | 100 | 119 | 4 August 2018 | 9 September 2018 | 36 |
44 | ascending | 100 | 119 | 17 August 2020 | 22 September 2020 | 36 |
45 | ascending | 100 | 119 | 30 July 2019 | 16 September 2019 | 48 |
46 | ascending | 100 | 119 | 17 August 2020 | 4 October 2020 | 48 |
47 | ascending | 100 | 119 | 9 September 2018 | 30 July 2019 | 324 |
48 | ascending | 100 | 119 | 9 September 2018 | 16 September 2019 | 372 |
49 | ascending | 100 | 119 | 23 August 2019 | 10 September 2020 | 384 |
50 | ascending | 173 | 118 | 28 July 2018 | 9 August 2018 | 12 |
51 | ascending | 173 | 118 | 21 August 2018 | 2 September 2018 | 12 |
52 | ascending | 173 | 118 | 16 August 2019 | 28 August 2019 | 12 |
53 | ascending | 173 | 118 | 15 September 2020 | 27 September 2020 | 12 |
54 | ascending | 173 | 118 | 16 July 2018 | 9 August 2018 | 24 |
55 | ascending | 173 | 118 | 11 July 2019 | 4 August 2019 | 24 |
56 | ascending | 173 | 118 | 4 August 2019 | 28 August 2019 | 24 |
57 | ascending | 173 | 118 | 22 August 2020 | 15 September 2020 | 24 |
58 | ascending | 173 | 118 | 16 July 2018 | 21 August 2018 | 36 |
59 | ascending | 173 | 118 | 21 August 2018 | 26 September 2018 | 36 |
60 | ascending | 173 | 118 | 10 August 2020 | 15 September 2020 | 36 |
61 | ascending | 173 | 118 | 9 August 2018 | 26 September 2018 | 48 |
62 | ascending | 173 | 118 | 23 July 2019 | 9 September 2019 | 48 |
63 | ascending | 173 | 118 | 16 July 2018 | 16 August 2019 | 396 |
64 | ascending | 173 | 118 | 16 July 2018 | 28 August 2019 | 408 |
65 | ascending | 173 | 118 | 28 August 2019 | 22 August 2020 | 360 |
66 | ascending | 173 | 118 | 16 August 2019 | 22 August 2020 | 372 |
References
- Berthling, I. Beyond Confusion: Rock Glaciers as Cryo-Conditioned Landforms. Geomorphology 2011, 131, 98–106. [Google Scholar] [CrossRef]
- Haeberli, W.; Hallet, B.; Arenson, L.; Elconin, R.; Humlum, O.; Kääb, A.; Kaufmann, V.; Ladanyi, B.; Matsuoka, N.; Springman, S.; et al. Permafrost Creep and Rock Glacier Dynamics. Permafr. Periglac. Process. 2006, 17, 189–214. [Google Scholar] [CrossRef]
- Humlum, O. Rock Glacier Appearance Level and Rock Glacier Initiation Line Altitude: A Methodological Approach to the Study of Rock Glaciers. Arct. Alp. Res. 1988, 20, 160–178. [Google Scholar] [CrossRef]
- Barsch, D. Permafrost Creep and Rockglaciers. Permafr. Periglac. Process. 1992, 3, 175–188. [Google Scholar] [CrossRef]
- Hassan, J.; Chen, X.; Muhammad, S.; Bazai, N.A. Rock Glacier Inventory, Permafrost Probability Distribution Modeling and Associated Hazards in the Hunza River Basin, Western Karakoram, Pakistan. Sci. Total Environ. 2021, 782, 146833. [Google Scholar] [CrossRef]
- Komatsu, T.; Watanabe, T. Glacier-Related Hazards and Their Assessment in the Tajik Pamir: A Short Review. Geogr. Stud. 2014, 88, 117–131. [Google Scholar] [CrossRef]
- Schoeneich, P.; Bodin, X.; Echelard, T.; Kaufmann, V.; Kellerer-Pirklbauer, A.; Krysiecki, J.-M.; Lieb, G.K. Velocity Changes of Rock Glaciers and Induced Hazards. In Proceedings of the Engineering Geology for Society and Territory—Volume 1; Lollino, G., Manconi, A., Clague, J., Shan, W., Chiarle, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 223–227. [Google Scholar]
- Baral, P.; Haq, M.A.; Yaragal, S. Assessment of Rock Glaciers and Permafrost Distribution in Uttarakhand, India. Permafr. Periglac. Process. 2020, 31, 31–56. [Google Scholar] [CrossRef]
- Schmid, M.-O.; Baral, P.; Gruber, S.; Shahi, S.; Shrestha, T.; Stumm, D.; Wester, P. Assessment of Permafrost Distribution Maps in the Hindu Kush Himalayan Region Using Rock Glaciers Mapped in Google Earth. Cryosphere 2015, 9, 2089–2099. [Google Scholar] [CrossRef]
- Boeckli, L.; Brenning, A.; Gruber, S.; Noetzli, J. Permafrost Distribution in the European Alps: Calculation and Evaluation of an Index Map and Summary Statistics. Cryosphere 2012, 6, 807–820. [Google Scholar] [CrossRef]
- Buckel, J.; Reinosch, E.; Hördt, A.; Zhang, F.; Riedel, B.; Gerke, M.; Schwalb, A.; Mäusbacher, R. Insights into a Remote Cryosphere: A Multi-Method Approach to Assess Permafrost Occurrence at the Qugaqie Basin, Western Nyainqêntanglha Range, Tibetan Plateau. Cryosphere 2021, 15, 149–168. [Google Scholar] [CrossRef]
- Haq, M.A.; Baral, P. Study of Permafrost Distribution in Sikkim Himalayas Using Sentinel-2 Satellite Images and Logistic Regression Modelling. Geomorphology 2019, 333, 123–136. [Google Scholar] [CrossRef]
- Jones, D.B.; Harrison, S.; Anderson, K.; Whalley, W.B. Rock Glaciers and Mountain Hydrology: A Review. Earth Sci. Rev. 2019, 193, 66–90. [Google Scholar] [CrossRef]
- Jones, D.B.; Harrison, S.; Anderson, K.; Betts, R.A. Mountain Rock Glaciers Contain Globally Significant Water Stores. Sci. Rep. 2018, 8, 2834. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.B.; Harrison, S.; Anderson, K.; Shannon, S.; Betts, R.A. Rock Glaciers Represent Hidden Water Stores in the Himalaya. Sci. Total Environ. 2021, 793, 145368. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yang, Y.; Peng, Z.; Liu, G. Assessment of Rock Glaciers and Their Water Storage in Guokalariju, Tibetan Plateau. Cryosphere 2024, 18, 1–16. [Google Scholar] [CrossRef]
- Millar, C.I.; Westfall, R.D.; Delany, D.L. Thermal and Hydrologic Attributes of Rock Glaciers and Periglacial Talus Landforms: Sierra Nevada, California, USA. Quat. Int. 2013, 310, 169–180. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and Vulnerability of the World’s Water Towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, H.D. Asia’s Shrinking Glaciers Protect Large Populations from Drought Stress. Nature 2019, 569, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P. Inventory of Rock Glaciers in Himachal Himalaya, India Using High-Resolution Google Earth Imagery. Geomorphology 2019, 340, 103–115. [Google Scholar] [CrossRef]
- Jones, D.B.; Harrison, S.; Anderson, K.; Selley, H.L.; Wood, J.L.; Betts, R.A. The Distribution and Hydrological Significance of Rock Glaciers in the Nepalese Himalaya. Glob. Planet. Chang. 2018, 160, 123–142. [Google Scholar] [CrossRef]
- Bolch, T.; Yao, T.; Bhattacharya, A.; Hu, Y.; King, O.; Liu, L.; Pronk, J.B.; Rastner, P.; Zhang, G. Earth Observation to Investigate Occurrence, Characteristics and Changes of Glaciers, Glacial Lakes and Rock Glaciers in the Poiqu River Basin (Central Himalaya). Remote Sens. 2022, 14, 1927. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L.; Zhao, L.; Wu, T.; Li, Z.; Liu, G. Mapping and Inventorying Active Rock Glaciers in the Northern Tien Shan of China Using Satellite SAR Interferometry. Cryosphere 2017, 11, 997–1014. [Google Scholar] [CrossRef]
- Kääb, A.; Strozzi, T.; Bolch, T.; Caduff, R.; Trefall, H.; Stoffel, M.; Kokarev, A. Inventory and Changes of Rock Glacier Creep Speeds in Ile Alatau and Kungöy Ala-Too, Northern Tien Shan, since the 1950s. Cryosphere 2021, 15, 927–949. [Google Scholar] [CrossRef]
- Kaldybayev, A.; Sydyk, N.; Yelisseyeva, A.; Merekeyev, A.; Nurakynov, S.; Zulpykharov, K.; Issanova, G.; Chen, Y. The First Inventory of Rock Glaciers in the Zhetysu Alatau: The Aksu and Lepsy River Basins. Remote Sens. 2023, 15, 197. [Google Scholar] [CrossRef]
- Zhang, Q.; Jia, N.; Xu, H.; Yi, C.; Wang, N.; Zhang, L. Rock Glaciers in the Gangdise Mountains, Southern Tibetan Plateau: Morphology and Controlling Factors. Catena 2022, 218, 106561. [Google Scholar] [CrossRef]
- Ran, Z.; Liu, G. Rock Glaciers in Daxue Shan, South-Eastern Tibetan Plateau: An Inventory, Their Distribution, and Their Environmental Controls. Cryosphere 2018, 12, 2327–2340. [Google Scholar] [CrossRef]
- Reinosch, E.; Gerke, M.; Riedel, B.; Schwalb, A.; Ye, Q.; Buckel, J. Rock Glacier Inventory of the Western Nyainqêntanglha Range, Tibetan Plateau, Supported by InSAR Time Series and Automated Classification. Permafr. Periglac. Process. 2021, 32, 657–672. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, L.; Huang, L.; Zhao, L.; Wu, T.; Wang, X.; Cai, J. Mapping and Characterizing Rock Glaciers in the Arid Western Kunlun Mountains Supported by InSAR and Deep Learning. J. Geophys. Res. Earth Surf. 2023, 128, e2023JF007206. [Google Scholar] [CrossRef]
- Brardinoni, F.; Scotti, R.; Sailer, R.; Mair, V. Evaluating Sources of Uncertainty and Variability in Rock Glacier Inventories. Earth Surf. Process. Landf. 2019, 44, 2450–2466. [Google Scholar] [CrossRef]
- Buckel, J.; Reinosch, E.; Voigtländer, A.; Dietze, M.; Bücker, M.; Krebs, N.; Schroeckh, R.; Mäusbacher, R.; Hördt, A. Rock Glacier Characteristics Under Semiarid Climate Conditions in the Western Nyainqêntanglha Range, Tibetan Plateau. J. Geophys. Res. Earth Surf. 2022, 127, e2021JF006256. [Google Scholar] [CrossRef]
- Bertone, A.; Barboux, C.; Bodin, X.; Bolch, T.; Brardinoni, F.; Caduff, R.; Christiansen, H.H.; Darrow, M.M.; Delaloye, R.; Etzelmüller, B.; et al. Incorporating InSAR Kinematics into Rock Glacier Inventories: Insights from 11 Regions Worldwide. Cryosphere 2022, 16, 2769–2792. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, M.; Zhang, H.; Wang, C.; Tang, Y.; Xu, J.; Yan, D.; Wang, C. Detecting Rock Glacier Displacement in the Central Himalayas Using Multi-Temporal InSAR. Remote Sens. 2021, 13, 4738. [Google Scholar] [CrossRef]
- Cai, J.; Wang, X.; Liu, G.; Yu, B. A Comparative Study of Active Rock Glaciers Mapped from Geomorphic- and Kinematic-Based Approaches in Daxue Shan, Southeast Tibetan Plateau. Remote Sens. 2021, 13, 4931. [Google Scholar] [CrossRef]
- Mölg, N.; Bolch, T.; Rastner, P.; Strozzi, T.; Paul, F. A Consistent Glacier Inventory for Karakoram and Pamir Derived from Landsat Data: Distribution of Debris Cover and Mapping Challenges. Earth Syst. Sci. Data 2018, 10, 1807–1827. [Google Scholar] [CrossRef]
- Finaev, A.; Shiyin, L.; Weijia, B.; Li, J. Climate Change and Water Potential of the Pamir Mountains. Geogr. Environ. Sustain. 2016, 9, 88–105. [Google Scholar] [CrossRef] [PubMed]
- Maussion, F.; Scherer, D.; Mölg, T.; Collier, E.; Curio, J.; Finkelnburg, R. Precipitation Seasonality and Variability over the Tibetan Plateau as Resolved by the High Asia Reanalysis. J. Clim. 2014, 27, 1910–1927. [Google Scholar] [CrossRef]
- RGIK towards Standard Guidelines for Inventorying Rock Glaciers: Practical Concepts (Version.0). IPA Action Group Rock Glacier Inventories and Kinematics, 10p. Available online: https://bigweb.unifr.ch/Science/Geosciences/Geomorphology/Pub/Website/IPA/CurrentVersion/Current_Practical_Concepts_Inventorying_Rock_Glaciers.pdf (accessed on 20 October 2023).
- RGIK Towards Standard Guidelines for Inventorying Rock Glaciers: Baseline Concepts (Version 4.2.2). IPA Action Group Rock Glacier Inventories and Kinematics, 13p. Available online: https://bigweb.unifr.ch/Science/Geosciences/Geomorphology/Pub/Website/IPA/CurrentVersion/Current_Baseline_Concepts_Inventorying_Rock_Glaciers.pdf (accessed on 20 October 2023).
- RGIK Optional Kinematic Attribute in Standardized Rock Glacier Inventories (Version 3.0.1). IPA Action Group Rock Glacier Inventories and Kinematics, 8p. Available online: https://bigweb.unifr.ch/Science/Geosciences/Geomorphology/Pub/Website/IPA/CurrentVersion/Current_KinematicalAttribute.pdf (accessed on 20 October 2023).
- Benn, D.; Evans, D.J. Glaciers and Glaciation, 2nd ed.; Routledge: Abingdon, UK, 2010. [Google Scholar]
- Hedding, D.W. Pronival Ramparts. Prog. Phys. Geogr. Earth Environ. 2016, 40, 835–855. [Google Scholar] [CrossRef]
- Gruber, S. Derivation and Analysis of a High-Resolution Estimate of Global Permafrost Zonation. Cryosphere 2012, 6, 221–233. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic Aperture Radar Interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Strozzi, T.; Caduff, R.; Jones, N.; Barboux, C.; Delaloye, R.; Bodin, X.; Kääb, A.; Mätzler, E.; Schrott, L. Monitoring Rock Glacier Kinematics with Satellite Synthetic Aperture Radar. Remote Sens. 2020, 12, 559. [Google Scholar] [CrossRef]
- Yague-Martinez, N.; Prats-Iraola, P.; Rodriguez Gonzalez, F.; Brcic, R.; Shau, R.; Geudtner, D.; Eineder, M.; Bamler, R. Interferometric Processing of Sentinel-1 TOPS Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2220–2234. [Google Scholar] [CrossRef]
- Barboux, C.; Delaloye, R.; Lambiel, C. Inventorying Slope Movements in an Alpine Environment Using DInSAR. Earth Surf. Process. Landf. 2014, 39, 2087–2099. [Google Scholar] [CrossRef]
- Villarroel, C.; Tamburini Beliveau, G.; Forte, A.; Monserrat, O.; Morvillo, M. DInSAR for a Regional Inventory of Active Rock Glaciers in the Dry Andes Mountains of Argentina and Chile with Sentinel-1 Data. Remote Sens. 2018, 10, 1588. [Google Scholar] [CrossRef]
- Brencher, G.; Handwerger, A.L.; Munroe, J.S. InSAR-Based Characterization of Rock Glacier Movement in the Uinta Mountains, Utah, USA. Cryosphere 2021, 15, 4823–4844. [Google Scholar] [CrossRef]
- Strozzi, T.; Farina, P.; Corsini, A.; Ambrosi, C.; Thüring, M.; Zilger, J.; Wiesmann, A.; Wegmüller, U.; Werner, C. Survey and Monitoring of Landslide Displacements by Means of L-Band Satellite SAR Interferometry. Landslides 2005, 2, 193–201. [Google Scholar] [CrossRef]
- Liu, L.; Millar, C.I.; Westfall, R.D.; Zebker, H.A. Surface Motion of Active Rock Glaciers in the Sierra Nevada, California, USA: Inventory and a Case Study Using InSAR. Cryosphere 2013, 7, 1109–1119. [Google Scholar] [CrossRef]
- Sorg, A.; Kääb, A.; Roesch, A.; Bigler, C.; Stoffel, M. Contrasting Responses of Central Asian Rock Glaciers to Global Warming. Sci. Rep. 2015, 5, 8228. [Google Scholar] [CrossRef] [PubMed]
- Wirz, V.; Gruber, S.; Purves, R.S.; Beutel, J.; Gärtner-Roer, I.; Gubler, S.; Vieli, A. Short-Term Velocity Variations at Three Rock Glaciers and Their Relationship with Meteorological. Earth Surf. Dynam. 2016, 4, 103–123. [Google Scholar] [CrossRef]
- Arenson, L.; Hoelzle, M.; Springman, S. Borehole Deformation Measurements and Internal Structure of Some Rock Glaciers in Switzerland. Permafr. Periglac. Process. 2002, 13, 117–135. [Google Scholar] [CrossRef]
- Cicoira, A.; Beutel, J.; Faillettaz, J.; Vieli, A. Water Controls the Seasonal Rhythm of Rock Glacier Flow. Earth Planet. Sci. Lett. 2019, 528, 115844. [Google Scholar] [CrossRef]
- Fey, C.; Krainer, K. Analyses of UAV and GNSS Based Flow Velocity Variations of the Rock Glacier Lazaun (Ötztal Alps, South Tyrol, Italy). Geomorphology 2020, 365, 107261. [Google Scholar] [CrossRef]
- Kenner, R.; Pruessner, L.; Beutel, J.; Limpach, P.; Phillips, M. How Rock Glacier Hydrology, Deformation Velocities and Ground Temperatures Interact: Examples from the Swiss Alps. Permafr. Periglac. Process. 2020, 31, 3–14. [Google Scholar] [CrossRef]
- Krainer, K.; He, X. Flow Velocities of Active Rock Glaciers in the Austrian Alps. Geogr. Ann. Ser. A Phys. Geogr. 2006, 88, 267–280. [Google Scholar] [CrossRef]
- Grin, E.; Ehlers, T.A.; Schaller, M.; Sulaymonova, V.; Ratschbacher, L.; Gloaguen, R. 10Be Surface-Exposure Age Dating of the Last Glacial Maximum in the Northern Pamir (Tajikistan). Quat. Geochronol. 2016, 34, 47–57. [Google Scholar] [CrossRef]
- Stübner, K.; Grin, E.; Hidy, A.J.; Schaller, M.; Gold, R.D.; Ratschbacher, L.; Ehlers, T. Middle and Late Pleistocene Glaciations in the Southwestern Pamir and Their Effects on Topography. Earth Planet. Sci. Lett. 2017, 466, 181–194. [Google Scholar] [CrossRef]
- Zabirov, P.A. Glaciation of Pamir; Science Press: Beijing, China, 1960. [Google Scholar]
- Stübner, K.; Bookhagen, B.; Merchel, S.; Lachner, J.; Gadoev, M. Unravelling the Pleistocene Glacial History of the Pamir Mountains, Central Asia. Quat. Sci. Rev. 2021, 257, 106857. [Google Scholar] [CrossRef]
- Scapozza, C.; Lambiel, C.; Bozzini, C.; Mari, S.; Conedera, M. Assessing the Rock Glacier Kinematics on Three Different Timescales: A Case Study from the Southern Swiss Alps. Earth Surf. Process. Landf. 2014, 39, 2056–2069. [Google Scholar] [CrossRef]
Landforms | Geomorphic Indicators | References |
---|---|---|
Rock Glacier | Light-colored, steep frontal slope | [21,38] |
Swollen body | ||
Longitudinal or transversal ridges and furrows | ||
Debris-covered glacier | Crevasses with exposed ice | [21] |
Thermokarst or supraglacial lakes | ||
Ice cliffs | ||
Supraglacial streams/channels | ||
Moraine | Located in the margins of glaciers | [41] |
Broadly arcuate but often irregular and winding | ||
Single-crested ridge | ||
Pronival/Protalus rampart | Single or double ridges | [42] |
No glacial erosional forms or evidence of over-deepening of the associated backwall area | ||
Lobate and insufficient cross-section for snow-to-glacier ice transformation |
Upslope Connection | Count | Total Area (km2) | Area (km2) | Length (m) | MEF (m a.s.l.) | MaxE (m a.s.l.) | Slope (°) | MAAT (°C) |
---|---|---|---|---|---|---|---|---|
T-RGs | 213 | 42.38 | 0.20 (0.14) | 894 (468) | 4304 (248) | 4562 (246) | 16.7 (3.5) | −6.4 (1.4) |
DMS-RGs | 26 | 3.54 | 0.14 (0.07) | 782 (377) | 4234 (255) | 4493 (225) | 17.8 (3.8) | −5.8 (1.4) |
G-RGs | 14 | 4.06 | 0.29 (0.18) | 989 (454) | 4459 (261) | 4673 (246) | 14.5 (4.2) | −7.1 (1.4) |
GF-RGs | 22 | 5.54 | 0.25 (0.11) | 871 (320) | 4415 (237) | 4640 (220) | 15.0 (2.6) | −7.1 (1.3) |
All RGs | 275 | 55.52 | 0.20 (0.14) | 887 (449) | 4314 (252) | 4568 (244) | 16.5 (3.5) | −6.5 (1.4) |
Longitude | Latitude | Area | Length | MaxE | Slope | MAAT | |
---|---|---|---|---|---|---|---|
Longitude | 1.000 | ||||||
Latitude | 0.456 ** | 1.000 | |||||
Area | −0.090 | −0.131 * | 1.000 | ||||
Length | −0.065 | −0.239 ** | 0.761 ** | 1.000 | |||
MaxE | 0.204 ** | −0.248 ** | 0.218 ** | 0.303 ** | 1.000 | ||
Slope | 0.007 | −0.182 ** | −0.134 * | 0.00371 | −0.063 | 1.000 | |
MAAT | −0.231 ** | −0.050 | −0.027 | −0.036 | −0.877 ** | 0.235 ** | 1.000 |
Study Area | Observation Period | SAR Dataset | Deformation Rate (cm/yr) | Deformation Direction | Authors |
---|---|---|---|---|---|
Northern Tien Shan (China) | 2007–2009 | ALOS PALSAR | maximum: 114; mean: 37 | Downslope | [23] |
Northern Tien Shan (Ile Alatau and Kungöy Ala-Too) | 1998–2018 | ERS-1/2, ALOS-1 PALSAR, ALOS-2 PALSAR, and Sentinel-1 | maximum: >100 | Downslope | [24] |
Tien Shan (Zhetysu, Kazakhstan) | 2017–2021 | Sentinel-1 | maximum: 25 | Downslope | [25] |
Central Himalayas | 2018–2019 | Sentinel-1 | range: 0–7.5 | LOS | [33] |
Daxue Shan | 2015–2019 | Sentinel-1 | range: 1.0–3.5 | Downslope | [34] |
Western Nyainqêntanglha Range | 2016–2019 | Sentinel-1 | maximum: 87 | Downslope | [28] |
Western Kunlun Mountains | 2007–2008 | ALOS-1 PALSAR | maximum: 127; mean: 17 | Downslope | [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Q.; Oguchi, T. Rock Glacier Inventory of the Southwestern Pamirs Supported by InSAR Kinematics. Remote Sens. 2024, 16, 1185. https://doi.org/10.3390/rs16071185
Ma Q, Oguchi T. Rock Glacier Inventory of the Southwestern Pamirs Supported by InSAR Kinematics. Remote Sensing. 2024; 16(7):1185. https://doi.org/10.3390/rs16071185
Chicago/Turabian StyleMa, Qiqi, and Takashi Oguchi. 2024. "Rock Glacier Inventory of the Southwestern Pamirs Supported by InSAR Kinematics" Remote Sensing 16, no. 7: 1185. https://doi.org/10.3390/rs16071185
APA StyleMa, Q., & Oguchi, T. (2024). Rock Glacier Inventory of the Southwestern Pamirs Supported by InSAR Kinematics. Remote Sensing, 16(7), 1185. https://doi.org/10.3390/rs16071185