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Abstract: In contemporary warfare, radar countermeasures have become multifunctional and
intelligent, rendering the conventional jamming method and platform unsuitable for the modern
radar countermeasures battlefield due to their limited efficiency. Reinforcement learning has been
proven to be a practical solution for cognitive jamming decision-making in the cognitive electronic
warfare. In this paper, we proposed a radar-jamming decision-making algorithm based on an
improved Q-Learning algorithm. This improved Q-Learning algorithm ameliorated the problem
of overestimating the Q-value that exists in the Q-Learning algorithm by introducing a second Q-
table. At the same time, we performed a comprehensive design and implementation based on the
classical Q-Learning algorithm, deploying it to a Field Programmable Gate Array (FPGA) hardware.
We decomposed the implementation of the reinforcement learning algorithm into individual steps
and described each step using a hardware description language. Then, the reinforcement learning
algorithm can be computed on FPGA by linking the logic modules with valid signals. Experiments
show that the proposed Q-Learning algorithm obtains considerable improvement in performance over
the classical Q-Learning algorithm. Additionally, they confirm that the FPGA hardware can achieve
great efficiency improvement on the radar-jamming decision-making algorithm implementation.

Keywords: radar-jamming decision-making; reinforcement learning; Field Programmable Gate Array

1. Introduction

In contemporary warfare, electronic warfare has been integrated into the multidi-
mensional theatre of combat that encompasses sea, land, air, and other domains [1,2]. It
has become a crucial factor for military operations. Radar jamming, an integral part of
electronic warfare, is the attack on enemy radar through the use of radar intelligence [3].
The goal of radar-jamming research is to achieve jamming or destruction of the enemy
radar for identification of target information through the method of active jamming, which
involves generating different methods of jamming signals to influence the enemy radar
receiver. Selecting the most suitable radar-jamming method is a critical aspect of radar-
jamming decision-making. Modern warfare’s radar confrontation capabilities have become
multifunctional and intelligent, and this puts traditional jamming algorithms at a disad-
vantage [4].

With the increasing popularity of artificial intelligence, reinforcement learning [5] was
developed to enable intelligent systems to make choices. It aims to address the challenge
of sequential decision-making and has been applied in robot control, game theory, smart
urban planning, recommendation systems, and so on. An intelligent agent learns from its
environment and interacts with it to achieve a given goal. During the interaction process,
the intelligent agent will decide upon a course of action in response to environmental
cues, implement that action within the environment, and subsequently receive feedback
from the environment in the form of rewards, as well as the state of the next round. This
feedback is then used as a learning sample, and the intelligent entity strives to maximize the
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cumulative rewards obtained over multiple rounds of continuous learning. The workflow
of reinforcement learning is illustrated as shown in Figure 1. In the process of interaction
of reinforcement learning, the agent will decide the action At to be taken by the agent
according to the current state St of the environment and execute it. The environment
interacts with the agent after the agent executes an action. Then the environment jumps to a
new state St+1, giving the agent the reward Rt+1. After many episodes, the agent can learn
about the environment through reinforcement learning and finally find the optimal solution.

Figure 1. Workflow for reinforcement learning.

To apply the reinforcement learning technique, the radar jammer can be modeled
as an intelligent agent in the electromagnetic environment [6–9]. Through this, the radar
jammer can learn intelligently the essential information contained within the environment.
When deciding on the jamming method, the radar jammer itself can then make optimal
decisions [10–12]. This paper focuses on the environment of constrained radar states
and limited radar-jamming methods. Among many reinforcement learning algorithms,
Q-Learning is believed to be able to work well in this kind of environment using the
establishment of a Q-table for query decision-making [13]. However, the traditional Q-
Learning algorithm also has shortcomings [14], such as the action-value overestimation
and the unstable and non-ideal training results. In this paper, we proposed an improved Q-
Learning algorithm, which greatly reduced the possibility of action-value overestimation.

Aside from the above issue, how to efficiently implement the intelligent radar jammer
is also full of challenges. The FPGA combines the advantages of an Application Specific
Integrated Circuit and a Central Processing Unit. It can be repeatedly programmed and
has a large number of parallel distributed storage resources, resulting in high computa-
tional performance. Therefore, implementing reinforcement learning algorithms on FPGA
platforms can significantly improve the model speed.

When deploying reinforcement learning algorithms onto FPGA platforms, several chal-
lenges often arise. For instance, fixed-point computation accuracy on hardware platforms
is significantly reduced, and timing design becomes complicated. This paper proposed
scaling up the value of fixed points involved in action-value functions, rewards, and so on
in an equal ratio to minimize data loss caused by the shift operation. And the intelligent
radar-jamming decision-making was split into individual modules. The modules work
in conjunction with each other to accomplish the calculations required for the jamming
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decision-making process. Then, we could solve the difficulties encountered in the FPGA
deployment we described above. The main contributions of this paper are as follows:

(1) An improved Q-Learning algorithm for radar-jamming decision-making is proposed,
implemented, and evaluated on a software platform. The performance of the im-
proved algorithm is compared with the original Q-Learning algorithm to demonstrate
its effectiveness.

(2) The reinforcement learning algorithm is designed with hardware language timing
logic on the FPGA platform, and the hardware platform is deployed for the radar-
jamming decision-making algorithm based on reinforcement learning for the first time.

(3) A comparison is made between the computation speed and performance of the
algorithm in both the FPGA hardware platform and the software platform environ-
ments, indicating a considerable speed advantage brought by implementing the FPGA
hardware platform.

The rest of this paper is organized as follows. Section 2 describes the background of
radar-jamming decision-making, which is also the research context of this paper, including
the historical research as well as the current state of development. Section 3 unfolds the
description of Q-Learning-based reinforcement learning algorithms and introduces the
improved Q-Learning algorithm proposed in this paper. Section 4 describes how the
mentioned reinforcement learning algorithms are deployed on an FPGA platform. The
results and analyses of the specific experiments are then shown in Section 5. Finally, the
conclusion of this paper is given in Section 6.

2. Radar-Jamming Decision-Making

Radar-jamming decision-making methods could be categorized into traditional and
reinforcement learning-based methods based on their self-adaptation and self-learning
capabilities. Traditional methods lack these abilities, relying instead on a priori knowl-
edge, whereas reinforcement learning-based methods exhibit greater adaptability and
knowledge acquisition.

Traditional radar-jamming decision-making algorithms consist of three primary cate-
gories [15]: template matching-based jamming decision-making algorithms, game theory-
based jamming decision-making algorithms, and inference-based jamming decision-making
algorithms. The template matching-based jamming decision-making method is one of the
fundamental pattern recognition algorithms, which compares the similarity between the
samples to be recognized and those in the template library. Nonetheless, it is excessively
reliant on a priori knowledge and is time-consuming.

The process of radar confrontation is constructed as a zero-sum game model using
a jamming decision-making method based on game theory. Nonetheless, the success of
this method is overly reliant on the establishment of the profit matrix. In the event that a
suitable profit matrix cannot be established, the game theory method may not be able to
make the optimal decision.

The method of jamming decision-making, which is based on inference, breaks down
the radar confrontation process into a distinct set of events. These events are then ana-
lyzed for correlation or causation from historical events, using the D-S evidence theory
or Bayesian networks to deduce the likelihood of a particular event occurring in the fu-
ture under specific circumstances. Ultimately, a decision is made. However, in a real-life
combat situation, the jammer’s understanding of the enemy’s signals is severely restricted,
and obtaining valuable a priori information before the confrontation commences proves
challenging. Thus, the research carries some limitations.

The reinforcement learning-based jamming decision-making method has emerged
as an area of research with unique “cognitive” abilities [16–18] that go beyond those of
traditional methods. This method is capable of adapting its decision-making model by
repeatedly trying and learning from errors when prior data are unavailable. As a result, the
most effective interference strategy can be achieved through continuous “trial and error”
modification of the decision model.
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Q-Learning serves as an algorithm for decision-making in jamming, according to
literature [19]. It is a table-based reinforcement learning algorithm that can discover the
optimal jamming strategy by learning, particularly when the quantity of radar states is
relatively small. Reference [20] utilized DQN to address the issue of decreased decision-
making efficiency as the number of radar states increases in radar-jamming decision-making.
DQN combines Q-Learning with deep learning, training the neural network to output
Q-values. This approach saves time by eliminating the need to find the Q-table in the
decision-making process and conserves space by not storing the Q-values. By reducing the
decision-making time in situations where the number of radar states increases, DQN can
effectively enhance decision-making efficiency. However, deep learning in DQN results in
more over-parameterization, making it more challenging to adjust parameters compared to
Q-Learning.

Moreover, research into applying reinforcement learning algorithms to hardware
platforms is still in its initial stages, with literature [21–23] showcasing examples of Q-
Learning algorithms applied to FPGA hardware platforms in other fields. As can be seen
from the above, the main application of radar-jamming decision-making algorithms is
still at the level of software platforms, while FPGAs are gradually becoming an important
means of implementation of many algorithms by virtue of their programmable, high-
performance, low-latency, and other advantages, and the use of FPGAs for the deployment
of reinforcement learning algorithms to achieve will bring more obvious speed advantages.
In this paper, we aimed to examine the timing design and necessary steps for transferring
the radar-jamming decision-making algorithm based on reinforcement learning to FPGA.
Additionally, we accomplished the deployment of the algorithm on the hardware platform.

3. Reinforcement Learning Based on Q-Learning
3.1. Reinforcement Learning

Reinforcement learning, also known as augmented learning or evaluation learning,
was developed from theories such as animal learning as well as behavioral psychology.
It is essentially an algorithm for solving sequential decision-making problems. Its most
important feature is that it does not need to prepare a large number of samples in the
learning process but can autonomously and continuously interact with the environment so
as to learn. In this process, it is only necessary to set reasonable rewards for each state of
the environment so that the intelligent body can make the best decision by trial and error
according to the existing strategy in the case of an unknown environment. The environment
of radar-jamming decision-making is exactly an environment full of unknown information
about the enemy, and reinforcement learning can be fully utilized in this field.

The framework of reinforcement learning has been demonstrated in Figure 1 as a
method for studying sequential decision problems, which is mathematically normalized
to a Markov decision process. The Markov decision process is a simplification of the
reinforcement learning process with respect to the environmental transformation model,
action strategies, and the reward function. The schematic diagram of its decision process is
shown in Figure 2, where the next state St+1 of the system is only related to the current state
St of the system, independent of previous states, a property also known as Markovianity.
Under the combined action of state St+1 and action at, the environmental state jumps to
St+1 and gives the corresponding reward rt+1.
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Figure 2. Procedure of MDP.

There are three important elements in the Markov decision process: state, action, and
reward. The state is usually the input part of the reinforcement learning algorithm, which
contains all the information needed for the agent to make an action judgment. The action
is usually the output of the reinforcement learning algorithm, and for the reinforcement
learning agent, its goal is to give the action that the agent should take in the current
state. Actions are the means by which intelligence interacts with the environment, and the
ultimate goal is to learn to obtain the highest possible benefit from this constant interaction.
Rewards play a guiding role in reinforcement learning algorithms. This is because the goal
of reinforcement learning is to maximize the rewards of interaction. The setting of rewards
directly affects the intelligence’s evaluation of each action, so setting appropriate rewards is
also an important issue in reinforcement learning. The reinforcement learning process can
be viewed as a process in which an agent searches for an optimal strategy given a Markov
decision process.

In the Markov decision process, there are two important concepts named state-value
function Vπ(s) and action-value function Qπ(s, a). They mean the expected reward the
agent receives on the current state s using strategy π and the expected reward the agent
receives for performing an action a on the current state s using strategy π. Here, we use Gt
to denote the expected reward.

Vπ(s) = Eπ [Gt|St = s] (1)

Qπ(s, a) = Eπ [Gt|St = s, At = a] (2)

We express the expected reward as the sum of the reward in the current state and
the reward in the future state multiplied by the discount factor γ. Then, we could ob-
tain the Bellman expectation equation. Here, we use P to denote the state transition
probability matrix.

Vπ(s) = Eπ [Rt + γVπ(s′)|St = s]

= ∑
a∈A

π(a|s)(r(s, a) + γ ∑
s′∈S

P(s′|s, a)Vπ(s′)) (3)

Qπ(s, a) = Eπ [Rt + γQπ(s′, a′)|St = s, At = a]

= r(s, a) + γ ∑
s′∈S

P(s′|s, a) ∑
a′∈A

π(a′|s′)Qπ
(
s′, a′

) (4)

When the strategy is optimized, we can further obtain the Bellman optimality equation.
It means that the state-value function Vπ(s) and action-value function Qπ(s, a) now are
the best. These two equations will help us learn about the following algorithm.

V∗(s) = max
a∈A

{
r(s, a) + γ ∑

s′∈S
P(s′|s, a)V∗

(
s′
)}

(5)

Q∗(s, a) = r(s, a) + γ ∑
s′∈S

P(s′|s, a)max
a′∈A

Q∗
(
s′, a′

)
(6)
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From the perspective of methods, reinforcement learning is mainly divided into model-
based reinforcement learning methods and model-free reinforcement learning methods,
and the general classification is shown in Figure 3. In the model-based reinforcement
learning method, the environment model is known, i.e., the parameters involved, such
as action set, state set, value set, etc. are known. Common model-based reinforcement
learning algorithms are policy iteration, value iteration, and policy search, among others.
However, such cases are rare, and in many cases, the environment to be faced with is a
model-free reinforcement learning environment. In this case, the agent has to interact with
the environment and try to obtain various information from the environment. Common
model-less reinforcement learning methods include temporal difference methods and
Monte Carlo methods.

Figure 3. Classification of reinforcement learning methods.

3.2. Q-Learning Algorithm

The Q-Learning algorithm is a conventional reinforcement learning method grounded
on the temporal difference method [24]. The sequential difference algorithm is utilized
to assess a policy’s value function. It merges the principles of Monte Carlo and dynamic
programming algorithms. The algorithm can learn from sample data similar to Monte Carlo
algorithms and does not necessitate prior knowledge of the environment. Additionally,
it can update the value estimation of the present state using Bellman’s equation, which
is similar to dynamic programming algorithm value assessments of the ensuing state’s
value estimation.

Unlike Monte Carlo algorithms, which require learning after a full episode, Q-Learning
algorithms can update the Q function after each state update. This incremental dynamic
planning calculates the reward obtained from the current state, which is the current reward
plus the value estimate of the next state. As it is a value-based algorithm, it is less reliant
on the outcome of the round. In the equations, the parts in parentheses are called temporal
difference errors (TD errors). In addition, we only need to use temporal difference error to
update the policy after every action of the agent.

V(s)← V(s) + α[r + γV
(
s′
)
−V(s)] (7)

Q(s, a)← Q(s, a) + α[r + γQ
(
s′, a′

)
−Q(s, a)] (8)

The pseudo-code for the implementation of the Q-Learning algorithm is as Algorithm 1.
In the algorithm, Q(s, a) was called Q-table. It lists the value of each action in each state.
The agent will constantly update it to find the best action in each state. In addition, the
algorithm combines the Bellman optimality equation with the temporal difference error.
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It updates the Q-table with the optimal action-value function each time. It is radical
and effective.

Algorithm 1: Implementation of the Q-Learning algorithm.

Initialise the Q(s, a) table;
foreach cycle do

Initialise state s;
foreach update step in the cycle do

Select action a in the current state s according to a strategy (e.g., an
ϵ-greedy strategy);

Observe the new state s’ and the obtained reward r according to the chosen
action;

Update the Q(s, a) table:
Q(s, a)← Q(s, a) + α[r + γ max

a′
Q(s′, a′)−Q(s, a)]

3.3. Improved Q-Learning Algorithm

While Q-Learning is a classic algorithm, it does have limitations. In the case of using a
single estimator, the conventional approach is prone to significant overestimation of the
action value, as well as poor and unstable training outcomes. One of the primary reasons for
the overestimation of the action value is the update process of the action-value function Q.
At each step, the maximum value of Q(s′, a′) is used for updating. However, this approach
can result in a significant overestimation of the action taken by the intelligent agent. Such
overestimation can adversely affect the performance of Q-Learning after multiple updates
and accumulations.

To address the above problems, this paper proposes an improved algorithm for the
Q-Learning algorithm. The algorithm will initialize two Q(s, a) tables, referred to as the
QA and QB tables, and improve the updating approach based on the original Q-Learning
algorithm’s updating of Q-values:

QA(s, a)← QA(s, a) + α[r + γ max
a′

QB
(
s′, a′

)
−QA(s, a)] (9)

In Equation (9), α is the step size of the value estimate. γ is the discount factor for
future estimation in the temporal difference process. r is the reward for the state jump. It
also means that in this update process, we will use the value of QB to update QA. At the
same time, after every certain number of updates, the QA table is synchronized to the QB
table. Such an operation can solve the problem of overestimation of action values, i.e., the
workflow of the improved Q-Learning algorithm is as Algorithm 2.

Algorithm 2: Implementation of the improved Q-Learning algorithm.

Initialise the QA(s, a) and QB(s, a) tables;
foreach cycle do

Initialise state s;
foreach update step in the cycle do

Select action a in the current state s according to a policy (e.g., ϵ-greedy
policy);

Observe the new state s’ and the obtained reward r according to the chosen
action;

Update the QA(s, a) table:
QA(s, a)← QA(s, a) + α[r + γ max

a′
QB(s′, a′)−QA(s, a)]

Update state s;
Synchronise QA(s, a) to QB(s, a) after updating N steps.
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4. Implementation on FPGA
4.1. Hardware Platform

The system architecture of the hardware platform involved in this paper is shown
in Figure 4. The system comprises a personal computer (PC) host computer, an FPGA
board, and an ADRV9009 RF agile transceiver. The FPGA board is categorized into a
programmable logic unit (PL) and a processing unit (PS). The PC can directly connect with
the PS of the FPGA board to transmit the necessary hardware configuration parameters to
the PS of the FPGA board. PS then sends it down to PL. The ADRV9009 is responsible for
interacting with the environment to obtain the necessary information. JESD refers to the
JESD204B transport protocol, which allows high-speed communication between ADRV9009
and PL.

The system will be initialized, and initial parameters will be configured by the PC host
computer through serial port communication. Subsequently, the ADRV9009 will transmit
received signals to the PL of the FPGA board via the JESD interface. During this process,
the received signals will be demodulated into IQ signals. The PL’s pulse measurement
module will scrutinize the parameters of received IQ signals and deduce the current radar’s
operational condition.

The radar-jamming decision module will receive this input. Subsequently, relying
on the reinforcement learning algorithm to make decisions about radar jamming, the
radar-jamming decision-making module will direct the necessary jamming action to the
jamming module after collecting radar work data. The module for jamming converts the
actions taken by the module for radar-jamming decisions into a waveform signal for the
corresponding jamming method. This signal is then transmitted through the JESD bus to
the ADRV9009 RF agile transceiver, which transmits the jamming signal to complete the
jamming work once.

Figure 4. The system architecture of the hardware platform.

4.2. Migration and Deployment

For the FPGA hardware platform, numerous logic gate circuits are present. The
principal task is to design the timing logic of the algorithm. This entails pulling up the
corresponding timing control signals at the moment of every signal input and output and
passing it to the respective module. For each module, the specific workflow is illustrated as
shown in Figures 5 and 6.

We can see that in Figure 5, the agent first compares the Q-values and updates the Q-
table using the state changes in the past step after obtaining the environmental information.
The agent then outputs the highest Q-value to the action-selected module. The action-
selected module will use the ϵ-greedy strategy to make decisions and execute actions.
Finally, the environment will interact with the agent performing the action and make a
change in state. And in Figure 6, different from Figure 5, Q-table goes from one to two.
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After each state jump, the QA table is updated with the maximum Q-value obtained from
the QB table comparison. The QA table will be synchronized to the QB table after updating
several steps.

Figure 5. Q-Learning algorithm implementation.

Figure 6. Improved Q-Learning algorithm implementation.

After system initialization, the state will reset to its initial state, and the system will
commence reinforcement learning training.

(1) Compare the value functions of each available action in the current state and output
the highest Q-value and the index of the action with the highest Q-value after conducting
the comparison. Also, pull up the valid signal by one pulse while indicating the end of the
comparison. Furthermore, provide an explanation of any technical terms when introduced.

(2) After detecting the completion signal, the action selection module implements the
ϵ-greedy strategy to choose an action for the intelligent agent. The selected action is then
outputted, and a valid signal for a one-pulse action change is raised simultaneously.

(3) Once the action change valid signal is pulled high, the state transfer module jumps
to the next state based on the state transfer probability matrix and increments the state
change valid signal by one pulse.

(4) Upon completion of the state transfer, the Q-table update module updates the
Q-table by utilizing the highest Q-value in the new state along with the completed state
jump. The system generates the Q-value update valid signal.

(5) Upon receiving the Q-value update valid signal, the system will iterate steps (1) to
(4) until one cycle is complete and the state transitions to the endpoint or failure state.
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(6) The procedure will be repeated numerous times until convergence is reached after
running steps (1) to (5).

5. Experiments
5.1. Environment Modeling

To achieve the goal of reinforcement learning, it is essential to create a training model
of the radar-jamming environment. The current “AN/SPY” radar series represents the
latest radar technology, which encompasses a range of functions, including search, tracking,
ranging, imaging, guidance, and so on. Additionally, the efficiency of different jamming
methods on the radar varies depending on the state of the radar. Therefore, the use of
reinforcement learning to intelligently select the appropriate jamming method in different
target radar states becomes crucial. It is essential to apply reinforcement learning techniques
to enable the jammer to intelligently choose the appropriate jamming type according to
various states of the target radar.

In this paper, the characteristics of a particular radar were analyzed. We assumed that
the radar follows the Markov decision-making process in its application environment and
considered the state of the target radar as the environment state in the Markov decision-
making process. We also looked at different radar-jamming methods as potential actions
in the Markov decision-making process. Using the process of interaction between the
intelligent system and its environment to obtain information on the next step and its
rewards, followed by the application of reinforcement learning to develop an intelligent
radar jammer that can selectively jam the target radar in different states, with the ultimate
aim of maximizing revenue.

In this paper’s established model species within this radar environment, there were
10 radar states, ranging from the search state with the lowest danger level to the guidance
state with the highest danger level. This is to quantitatively describe changes in the
radar threat level. Radar jamming is mainly composed of suppressive jamming and
deceptive jamming. In this experiment, we selected the following four representative
methods of suppressive jamming: comb spectrum jamming, noise amplitude modulation
jamming, noise phase modulation jamming, and noise frequency modulation jamming
in suppressive jamming. We also selected the following four representative methods of
deceptive jamming: smart noise jamming, full pulse forwarding jamming, slice forwarding
jamming, and intermittent sampling jamming. After modeling states and actions, we
established the state transfer matrix P. This matrix contained the probability of transitioning
from the current state to each state that corresponds to a jamming action in all states.
Additionally, the reward value of the endpoint was set at 100, while the values of the
remaining states decreased as the distance from the endpoint increased. It was defined that
the radar jammer performed one jamming method decision as one interaction process of
reinforcement learning.

In this process, the action strategy adopted for intelligent jamming decision-making
was designed as an ϵ-greedy strategy.

The block diagram of radar-jamming is shown in Figure 7. First, our radar jammer
will enter the range of the enemy radar and then start working. The radar jammer will
then start making decisions about radar-jamming methods based on the state of the enemy
radar. Once the jammer implements jamming, the enemy radar will be affected, and the
radar state will change. After the radar jammer obtains information about the change in
the enemy’s radar state, it will make the next judgment according to the current state of the
enemy’s radar. If the enemy radar is jammed to a safe state, the radar jammer will judge the
success of the jamming and then end the jamming work. Otherwise, the jammer will adjust
its own strategy based on the feedback information and make the next jamming decision,
which is a learning process. Jamming decisions will take place until the enemy’s radar is
successfully jammed into a safe state.
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Figure 7. The block diagram of radar-jamming process.

5.2. Experiments on Software Platform

Unlike some simple environments, the radar-jamming decision environment is much
more complex. In the radar-jamming decision-making environment, due to the existence
of the probability transfer matrix, even if we clearly know the states and actions of the
environment, we cannot be sure how the state will be jumped by selecting a certain action
in a certain state, so it is more necessary for the agent to help make decisions.

First, the Q-Learning simulation was recorded using the PyTorch framework, where
the number of steps required for the agent to reach the endpoint and the rewards obtained
in each episode and the results were visualized in Figures 8 and 9. To make the data more
intuitive, the moving average algorithm was used here to process the data results, as shown
in Figures 10 and 11. It can be seen that the number of steps to be used in each episode
showed a decreasing trend with the advancement of the episode, while at the same time,
the rewards obtained in each episode showed an increasing trend with the advancement of
the episode. After about 6600 episodes, the model stabilizes.
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Figure 8. Changes in the number of steps per episode.

Figure 9. Changes in the reward values per episode.

Figure 10. Changesin the number of steps per episode (MA).
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Figure 11. Changes in the reward values per episode (MA).

Then, the improved Q-Learning simulation was carried out using the PyTorch frame-
work as well, recording the number of steps required for the agent to reach the endpoint
and the rewards obtained in each episode, and the results were visualized as shown in
Figures 12 and 13. Again, in order to make the data more intuitive, the moving average
algorithm was used here to process the data results, as shown in Figures 14 and 15.

Comparing the results of the improved Q-Learning algorithm with the Q-Learning
algorithm, it can be seen that the improved Q-Learning algorithm and the Q-Learning
algorithm share a similar convergence trend, and the improved Q-Learning algorithm
model tended to stabilize after about 5800 episodes, which was a considerable improvement
in the convergence speed compared to the 6600 episodes of the Q-Learning algorithm.

Figure 12. Changes of Improved Q-L in the number of steps per episode.
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Figure 13. Changes of Improved Q-L in the reward values per episode.

Figure 14. Changes of Improved Q-L in the number of steps per episode (MA).

Figure 15. Changes of Improved Q-L in the reward values per episode (MA).
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5.3. The Impact of Hyperparameters

In this section, we will analyze the impact of various hyperparameters in the improved
Q-Learning algorithm. We would analyze their results in terms of the speed at which the
model converged. First, we would focus on the impact of learning rate α. We traversed the
α and performed a centralized value analysis around the optimal value. We set the α to
0.0625, 0.125, and so on, respectively. The simulation calculation was carried out several
times, respectively, and the average value was taken after the unreasonable result was
discarded. And here we were just going to pick the hundreds of digits for convenience.
Then we obtained the results shown in Table 1.

Table 1. Convergence speed of different α settings.

α Speed (Episodes)
0.0625 6400
0.125 5800
0.25 6300
0.375 6400

0.5 6400

We could see that as the α moved away from the optimal value, the convergence rate
became slower and slower. This was because when the learning rate was too small, there
was a possibility that the model would not fit. However, a learning rate that is too large
could also lead to the risk of overfitting.

In the same way, we analyzed the impact of discount factor γ. We also traversed the γ
and performed a centralized value analysis around the optimal value. Then, the results
were given in Table 2. We could also see that as the γ moved away from the optimal value,
the convergence rate became slower and slower. That was because the model was prone to
local high-yield decisions, and there was a risk of failing to learn to the end when the γ
was setting small. When the discount factor is too large, focusing too much on the future
may cause the current reward to become blurred.

Table 2. Convergence speed of different γ settings.

γ Speed (Episodes)
0.6875 6300

0.75 6200
0.8125 5800
0.875 6100

0.9375 6400

Finally, we looked at the impact of reward r settings. We set the r at the end as 100.
The r of other states were all set as negative numbers. Then, we changed the r given by the
environment when the state dropped. For example, when the penalty was set as 1, the r
of the state closest to the end was −1. Then, the results were given in Table 3. We could
see that when the r was set as 2, the convergence speed was the fastest. It was because a
reward gap that is too small may lead to an ambiguous direction of state jumps. However,
a reward gap that is too large would cause the agent to be conservative.
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Table 3. Convergence speed of different r settings.

r Speed (Episodes)
The penalty is 1 for each state away from the end 6100
The penalty is 2 for each state away from the end 5800
The penalty is 3 for each state away from the end 5900
The penalty is 4 for each state away from the end 6400

5.4. Experiments on Hardware Platform

After implementation on the software platform, the next step was to migrate to the
FPGA hardware platform, which required the use of a hardware language to describe
Q-Learning, so some timing adjustments were needed here. Because the number of actions
was 8 when selecting actions in this environment, if we used combinational logic to compare
the 8 actions at once, the complexity of the combinational logic would be greatly increased,
which would lead to difficulties in layout and wiring. Therefore, we utilized an additive
tree for two-by-two comparisons and stored and passed them. The Q-values of each action
were divided into four groups for two-by-two comparison, and each group selected the
larger value and gave the valid signals for output (i.e., the first four VALID signals in
Figure 16). Based on this, the four larger Q-values obtained in the first step were again
divided into two groups for comparison; two larger Q-values were obtained, and valid
signals were output (i.e., the fifth and sixth valid signals in the figure). From this, a final
comparison was made to obtain the action with the largest Q-value.

Figure 16. Q-Learning algorithm implementation.

After obtaining the action with the largest Q-value, Q-Learning used the ϵ-greedy
strategy for action selection. Here, the probability transfer matrix for each action was
involved, but it was difficult to implement the fractions in hardware circuits. Linear
Feedback Shift Register (LFSR) was introduced to obtain a pseudo-random sequence. We
chose a 16-bit Linear Feedback Shift Register to generate a set of pseudo-random sequences
of length 65,535. The probability shift matrix was multiplied with 65,535 to obtain the value
domain corresponding to each action, and the size of the LFSR value at that point was used
to decide the selection of the action at the moment of action selection. The state transfer
and the updating of the Q-values were kept the same as the original timing design.

After completing the timing design, we proceeded with the deployment implemen-
tation of the Q-Learning algorithm in the FPGA to allow the agent to start training and
learning for 12,000 episodes. Here, the results were analyzed using the cumulative rewards
obtained by the agent and the number of steps required to reach the endpoint in each
episode. The learning data were exported and visualized using Matlab tools, and the
results are shown in Figures 17 and 18. Similarly, the resultant data were processed using
Matlab’s moving average function to make them more intuitive in Figures 19 and 20.
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Figure 17. Changes in the number of steps per episode on FPGA.

Figure 18. Changes in the reward values per episode on FPGA.

Figure 19. Changes in the number of steps per episode on FPGA(MA).
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Figure 20. Changes in the reward values per episode on FPGA(MA).

It could be seen that, as with the software platform, the number of steps used per
episode showed a downward trend, while the rewards gained per episode showed an
upward trend as the episode progressed. And the Q-Learning algorithm would tend to
finish learning after about 7000 episodes. At this point, the agent would move steadily
towards the end, there would be almost no state jumps in the opposite direction, and a
judgment could be made that the experiment is successful. On this basis, the algorithm
was updated to the improved Q-Learning algorithm, and the experimental results were as
follows (Figures 21–24).

Figure 21. Changes of Improved Q-L in the number of steps per episode on FPGA.
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Figure 22. Changes of Improved Q-L in the reward values per episode on FPGA.

Figure 23. Changes of Improved Q-L in the number of steps per episode on FPGA (MA).

Figure 24. Changes of Improved Q-L in the reward values per episode on FPGA (MA).
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Comparing the results of the improved Q-Learning algorithm and the Q-Learning
algorithm implemented on the hardware platform, it could be seen that the improved Q-
Learning algorithm and the Q-Learning algorithm also shared a similar convergence trend
on the hardware platform. After about 6100 episodes, the improved Q-Learning algorithm
model tended to stabilize, which was a considerable improvement in the computation
speed compared to the Q-Learning algorithm’s 7000 cycles. In line with the conclusions of
the software platform, the experiment could be considered successful.

5.5. Analysis and Discussion

Comparing the results of implementing the Q-Learning algorithm and the improved
Q-Learning algorithm on a software platform as well as on a hardware platform, it could be
seen that both algorithms took only about 2.82 ms to train for 12,000 cycles at the operating
frequency of the hardware platform using a clock with a frequency of 250 MHz. Even if
the clock frequency is reduced to 100 MHz, it only takes about 7.05 ms. In contrast, timing
the software platform environment reveals that 12,000 episodes of model computation for
both algorithms on an i9-10900K CPU took about 9.36 s. Even with the hardware platform
operating at a 100 MHz clock, the computation speedup compared to the software platform
is nearly 1200 times faster. For the convergence-specific speed, we could see Tables 4 and 5.

Table 4. Convergence speed (ms) of different algorithms on different platforms.

Item Speed (ms)
CPU with Q-L 5336.90

CPU with improved Q-L 4798.28
FPGA with Q-L at 100 MHz clock frequency 4.43

FPGA with improved Q-L at 100 MHz clock frequency 3.95

Table 5. Convergence speed (episodes) of different algorithms on different platforms.

Item Speed (Episodes)
CPU with Q-L 6600

CPU with improved Q-L 5800
FPGA with Q-L at 100 MHz clock frequency 7000

FPGA with improved Q-L at 100 MHz clock frequency 6100

On the other hand, the number of episodes required for convergence of reinforcement
learning computation performed on the hardware platform would be slightly more than the
number of episodes required on the software platform. This was because fixed-point com-
putation is used for computation on the hardware platform. Compared to the floating-point
computation method used on the software platform, fixed-point computation would have
lower accuracy than floating-point computation while achieving higher speed. It meant that
errors would be generated, which was a drawback of computation on hardware platforms.

Compared to the extension of the computation cycle, the advantage of the magnitude
of the speed increase was more obvious, which showed the superiority of implementing
reinforcement learning algorithms on FPGA hardware platforms.

6. Conclusions

This paper presented an improved Q-Learning algorithm for making decisions re-
garding radar jamming and covered the timing and specifics of its successful migration
onto a hardware platform. The feasibility of our method has been thoroughly investigated
through experimentation, including a thorough comparison of the performance differences
between the improved Q-Learning algorithm and the standard Q-Learning algorithm. Ad-
ditionally, the speed differences between the different algorithms in software and hardware
platforms were compared. The experimental results proved that the improved Q-Learning
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algorithm had considerable improvement in the speed of model convergence compared
with the original algorithm. Meanwhile, it could be seen that the computation speed of the
Q-Learning algorithm and the improved Q-Learning algorithm on the hardware platform
have an obvious advantage over the software platform.

Following the successful use of reinforcement learning algorithms on FPGA hardware
platforms, a crucial area for future research lies in implementing neural networks and
deploying deep reinforcement learning algorithms on FPGA hardware platforms. This will
benefit radar-jamming decision-making, improving both efficiency and accuracy.
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