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Abstract: Speckle noise and the spatial resolution of the Sentinel−1 Synthetic Aperture Radar (SAR)
image can cause significant difficulties in the detection of small objects, such as small ships. Therefore,
in this study, the Polarimetric Combination-based Ship Detection (PCSD) approach is proposed
for enhancing small ship detection performance, which combines three different characteristics of
polarization: newVH, enhanced VH, and enhanced VV. Employing the Radar Cross Section (RCS)
value in three stages, the newVH was utilized to detect Automatic Identification System (AIS) -ships
and small ships. In the first step, the adaptive threshold (AT) method was applied to newVH with a
high RCS condition (>−10.36 (dB)) for detecting AIS-ships. Secondly, the first small ship target was
detected with the maximum suppression of false alarms by using the AT with a middle RCS condition
(>−16.98 (dB)). In the third step, a candidate group was identified by applying a condition to the
RCS values (>−23.01 (dB)), where both small ships and speckle noise were present simultaneously.
Subsequently, the enhanced VH and VV polarizations were employed, and an optimized threshold
value was selected for each polarization to detect the second small ship while eliminating noise pixels.
Finally, the results were evaluated using the AIS and small fishing vessel tracking system (V-Pass)
based on the detected ship positions and ship lengths. The average matching results from 26 scenes
in 2022 indicated a matching rate of over 86.67% for AIS-ships. Regarding small ships, the detection
performance of PCSD was 42.27%, which was over twice as accurate as the previous Constant False
Alarm Rate (CFAR) ship detection model. As a result, PCSD enhanced the detection rate of small
ships while maintaining the capacity for detecting AIS-equipped ships.

Keywords: small ship; sentinel−1; polarization; AIS; ship detection

1. Introduction

Synthetic Aperture Radar (SAR) satellites employ coherent microwave sensors to
capture the earth’s surface, and SAR data are widely utilized for ocean surveillance. The
key advantages of SAR satellites lie in their ability to capture images with high resolution
under various lighting conditions (day–night imaging capability) and their ability to
penetrate through clouds, which makes them exceptionally valuable for versatile marine
surveillance fields. The marine surveillance fields include the detection and tracking of
marine vessels and marine pollutants such as oil spills, macroalgal blooms, etc. In the
case of tracking maritime vessel activities, the Automatic Identification System (AIS) is
widely recognized as a major Vessel Monitoring System (VMS); nevertheless, its coverage is
limited, rendering it challenging to gather comprehensive ship surveillance data. Therefore,
SAR-based ship detection can aid in this traditional ship monitoring system. Despite
their many benefits, SAR data nevertheless have certain drawbacks, such as a significant
discontinuity in monitoring and speckle noise. While a target such as a ship with a high
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backscattering value might be promptly detected, a ship with a low backscatter value might
be challenging to distinguish from a speckle noise with a similar value [1]. Therefore, to
improve the performance of SAR-sensor-based ship detection, windowing-based target
detection techniques and artificial intelligence technologies like deep learning (DL) methods
are being widely used. In particular, Convolutional Neural Networks (CNNs) and CNN-
based object detection approaches are useful ways to analyze images and extract features,
making them suitable for studies related to the detection of marine vessels.

Several experimental studies have been conducted to detect ships from the SAR data
on the basis of the Region-based CNN (RCNN), Single Shot Multi Box Detector (SSDD),
and You Only Look Once (YOLO) algorithms, which are frequently used as part of object
detection [2–5]. In particular, Ref. [6] attempted to develop a DL algorithm for detecting
small targets as an experimental challenge. However, the results appeared to have limited
applicability due to the insufficient quantity and quality of the dataset. These deficiencies
were addressed by generating a ship detection dataset utilizing long-term data from a
variety of SAR platforms [7–9]. Although the models developed here strengthened the
dataset’s reliability, they needed to account for the polarimetric characteristics provided by
SAR microwaves since they analyzed SAR satellites using only basic input images, which
represents the simplest approach to managing the data for DL applications. The second
approach, which is the most widely used windowing-based ship detection method, employs
a Constant False Alarm Rate (CFAR) detector to detect targets with higher backscattering
values than their surroundings [10]. In particular, Ref. [11] proposed an optimal ship
detection approach to detect ships from Sentinel−1 images on the basis of various CFAR
methods and parameter adjustments. Furthermore, before implementing CFAR, several
techniques have been proposed to either eliminate noise or improve the input data so that
they can be used for ship detection, hence enabling the detection of a specific ship [1,12,13].
However, since this approach overlooks polarimetric characteristics as well, noise in the
image itself may result in false ship detection. To overcome this, a ship detection method
was proposed on the basis of CFAR that considers the specialized characteristics of various
SAR sensors. Specifically, since multiple polarizations are typically provided in SAR, it is
feasible to generate a new polarized image through a transformation that can be used to
detect ships or analyze the cross-correlation of polarizations by combining two or more
polarized images instead of just one [14–19]. Furthermore, Ref. [20] reduced the number of
false positives caused by azimuth ambiguity by employing the helix scattering approach.
However, since these studies deal with a limited number of sample ships in a particular
region, they are often considered unreliable. In addition, to enhance the ship detection
performance, Ref. [21] used the dual-polarized Sentinel−1 image and proposed a method
for reducing false alarms by combining the co- and cross-polarized images. Ref. [22]
provided a good ship detection performance for each dual-pol after comparing a significant
number of ship detection results with AIS. However, its detection capabilities for small
ships remain limited as it is solely studied for AIS.

As a result, a ship detection algorithm designed for a particular ship type was pro-
posed, which included selecting a specific small ship as a target along with employing
CFAR and different polarizations [23–25]. Furthermore, Refs. [26,27] prepared test vessels,
such as thin inflated rubber ships and refugee vessels, directly and proposed an optimal
vessel detection method for multiple satellite platforms. However, as the satellite platforms
and polarization images differ, an optimal coefficient setting was required for application
to this study. Thus, by combining multiple polarization images and using an adaptive
threshold approach, this study proposed a method to improve the detection performance
of small ships.

Our contributions include the following:
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• Both polarizations (VH and VV) of Seninel−1 SAR’s were used to generate three new
polarimetric images that were denoted as newVH, enhanced VH, and enhanced VV,
and a vessel detection approach was independently applied to these three images. We
proposed a method to separately detect the AIS-ships and the first SM-ships (small
ships) from the newVH image by selecting two distinct threshold conditions, and
then using the adaptive threshold method. Afterwards, a threshold condition was
employed in the newVH to detect the candidate small ships. To detect the remaining
small ships (second SM-ships) from the candidates, an optimal individual threshold
was applied to the enhanced VH and enhanced VV images independently which
eliminate the noise from the candidates. As a result, small ships with a low false
positive rate were detected individually, while a high detection performance for AIS-
ships was also maintained.

• The results of the ship detection were compared with ship information from the AIS/V-
pass (small fishing vessel tracking system) ground truth, and long-term data were
also employed to provide highly reliable assessment information. Additionally, by im-
proving the AIS/V-Pass ship location information and compensating for the azimuth
shifting phenomenon that occurs in satellites, the matching accuracy was improved.

The remaining sections of this article are organized as follows:
In Section 2, the spatial area of the study and the satellite images, AIS, V-Pass infor-

mation, and environmental data used in this study are presented. Additionally, satellite
image preprocessing, AIS/V-Pass vessel information correction, and small vessel detection
enhancement methods are explained in detail. Section 3 presents example results for one
test set and ship detection application and evaluation results for the entire period. Section 4
includes a discussion of the results along with the outcomes from the other methods. And
finally, Section 5 presents the conclusion of this work.

2. Materials and Methods
2.1. Study Area and Data

In this study, Sentinel−1 Ground Range Detected High Resolution (GRDH) images
and AIS and V-Pass data were used. Sentinel−1 images were utilized for ship detection
purposes, which are publicly available and obtained from the Copernicus website (https:
//scihub.copernicus.eu/, accessed on 3 March 2023), while AIS and V-pass were used to
evaluate the detection results. Sentinel−1 dual-polarized images are considered to be high-
resolution images with resolutions of 10 m and are widely used to detect various marine
phenomena, such as ship detection, and they are also used for observational research [28,29].
Until 2021, Sentinel−1A and Sentinel−1B operated simultaneously, collecting data once
a week in the research area. However, in 2022, only Sentinel−1A provided images due
to the ageing of Sentinel−1B and the scheduled replacement in 2024, resulting in image
acquisition every two weeks.

According to International Maritime Organization (IMO) standards, AIS, one of the
VMS, must be installed on ships weighing more than 300 tons. On the other hand, V-Pass,
developed by the Coast Guard of Korea, is installed on small fishing boats of 300 tons
or less to monitor the small vessels that are not covered by AIS [30]. The two collection
devices mentioned above were established and are being operated in real-time by the
Korea Institute of Ocean Science and Technology (KIOST) in Yeongdo, Busan [31,32]. The
receiving range of the vessel information is roughly 35 km [33], and it is collected every
1 to 3 min, depending on the sea conditions and the vessel gathering status. The vessel
information comprises position, speed, course, and length. The research area is depicted in
Figure 1. The transmitting range of the AIS that was used for evaluation was taken into
consideration, which is why the Busan region was selected as the research area.

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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15 4 August 2022 09:23:27 99 11 

16 16 August 2022 09:23:28 92 6 

Figure 1. Boundary of Sentinel−1 image (black rectangle) and study area (red rectangle) covering
the Busan port (left). Ship trajectories from AIS (Automatic Identification System) and V-Pass (Small
Fishing Vessel Tracking System) are displayed on the Sentinel−1 image obtained on 6 July 2022 (right).
The trajectory data represents routes before and after 30 min of the Sentinel−1 image’s acquisition
time (09:23:19 UTC).

All Sentinel−1 images of Busan from 1 January to 31 December 2022, were included
in the dataset for ship detection. The total number of ships reported by AIS/V-Pass at
each acquisition time is depicted in Table 1, and the total number of Sentinel−1 image was
confirmed to be 26.

Table 1. List of Sentinel−1 image used in this study with total number of ships observed by AIS/V-
Pass during each data acquisition.

Scene No.
Acquisition Time AIS (Total No.

of Ships)
V-Pass (Total No.

of Ships)Date UTC

1 12 January 2022 09:23:20 124 38

2 24 January 2022 09:23:20 108 3

3 17 February 2022 09:23:19 94 14

4 1 March 2022 09:23:19 102 12

5 13 March 2022 09:23:19 119 27

6 25 March 2022 09:23:19 90 5

7 6 April 2022 09:23:19 133 19

8 18 April 2022 09:23:20 124 15

9 30 April 2022 09:23:21 153 14

10 24 May 2022 09:23:22 2 -

11 5 June 2022 09:23:23 79 5
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Table 1. Cont.

Scene No.
Acquisition Time AIS (Total No.

of Ships)
V-Pass (Total No.

of Ships)Date UTC

12 29 June 2022 09:23:25 99 2

13 11 July 2022 09:23:25 96 14

14 23 July 2022 09:23:26 90 31

15 4 August 2022 09:23:27 99 11

16 16 August 2022 09:23:28 92 6

17 28 August 2022 09:23:28 83 3

18 21 September 2022 09:23:28 114 3

19 3 October 2022 09:23:29 103 7

20 15 October 2022 09:23:29 136 16

21 27 October 2022 09:23:29 114 38

22 8 November2022 09:23:29 111 17

23 20 November 2022 09:23:29 126 21

24 2 December 2022 09:23:28 116 38

25 14 December 2022 09:23:27 98 12

26 26 December 2022 09:23:27 146 22

Additionally, to depict the wave trend at the ship position, meteorological modeling
data for the study region were obtained from the Korea Operational Oceanographic System
(KOOS), which include wave height and wind information. The data are provided in near
real time at high resolution of up to 300 m at hourly intervals [34].

2.2. Methodology

Figure 2 depicts a schematic representation of the ship detection process from the
Sentinel−1 multi-polarized data, where the results of ship detection were validated against
the ship information obtained from the AIS/V-Pass data. Before applying the ship de-
tection algorithm, radiometric terrain correction of the Sentinel−1 image was performed.
Afterwards, according to the distinct characteristics of each image, a land masking map was
generated by integrating satellite images with the ENC data. To improve the ship detection
result, three new polarimetric images—newVH, enhanced VH, and enhanced VV—were
created. Employing a global threshold poses challenges to detecting both AIS-ships and
SM-ships. As a result, visual inspection was conducted for each image, and different thresh-
olds for each ship target (AIS, V-Pass) were selected based on trial-and-error analysis. In
the newVH image, multiple thresholding conditions were given for distinctly detecting the
AIS-ships, first SM-ships and candidate SM-ships. Afterwards, enhanced VH and enhanced
VV images were employed to detect the second SM-ships by conducting the filtering opera-
tion from the candidates, which contains both SM-ships and noise. Each detected ship chip
image was utilized to calculate the ship length, which was then used for matching. The
results of the ship detection were then evaluated. Based on the satellite acquisition time,
the AIS/V-Pass location’s Dead Reckoning (DR) was determined, and the course and speed
were interpolated. Furthermore, the azimuth shifting phenomenon—which results from
the ship’s course and speed differing from that of the Sentinel−1 satellite platform—was
taken into consideration when updating the position information of the ship. Finally, the
proposed method’s ability to detect ships from Sentinel−1 was evaluated by comparing
the results with AIS/V-Pass data, considering ship location and length.
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Figure 2. Overall workflow for the ship detection and validation. Here, AIS = Automatic Identification
System, V-Pass = Small Fishing Vessel Tracking System, DR = Dead Reckoning, RCS = Radar Cross
Section, and SM-ships = Small-ships.

2.2.1. Pre-Processing
Radiometric Terrain Correction

Gamma software (version updated in December 2021), offering faster and more diverse
SAR image optimizations than Sentinel Application Platform (SNAP) software (version
9.0.0) [35], was utilized for pre-processing, followed by obtaining a Digital Elevation Model
(DEM) which matched the satellite image’s dimensions using the orbit file, performing
calibration with the Look Up Table (LUT), and obtaining the final pre-processed image
through geocoding combined with terrain correction.

Land Masking

The land masking procedure was accomplished using the Korea Hydrographic and
Oceanographic Administration’s (KHOA) ENC-based land area map (LNDARE). By incor-
porating LNDARE-based coastline data and SAR satellite images, a dynamic land masking
map generation method was proposed [36]. In this study, the land masking method was
modified to correspond with Sentinel−1 SAR (Figure 3). Initially, image scaling based on
histograms was used to improve land area detection, followed by finding the representative
threshold value in the image corresponding to the LNDARE, and generating a potential
land map. Then, the noise-removed land map was regenerated using canny edge detection,
morphological functions, and median filtering, and converted into the polygon data format.
Finally, these labeled polygon land data were compared with LNDARE, and if there was
overlapping between the two datasets, the final land masking object was confirmed.

DR Position Interpolation

To compensate for the shortcomings of the AIS/V-Pass data caused by equipment fail-
ure [37], interpolation of the DR position was conducted [38]. The ship position, Speed Over
Ground (SOG), and Course Over Ground (COG) before and after 30 min from Sentinel−1
acquisition time (SARt) were first extracted from the ship information. Subsequently, the
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ship data for AISt−1 and AISt+1 were obtained, which were closest to SARt, and the differ-
ence between the two times was computed as ∆t = (SARt − AISt). However, if even one
ship’s data do not exist within 30 min, then the DR position was calculated based on three
cases. In the first case, the DR position was determined if only AISt−1 existed, and in the
second case, the reverse DR position was determined if only AISt+1 existed. In the third
case, the interpolated DR position was determined if both AISt−1 and AISt+1 were present.
And then, SOG and COG were interpolated using ∆t, respectively.
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Earth image; (b) Land area in Sentinel−1 VH image; (c) Traditional land masking results with false
detection (yellow circle); (d) Land masking results in this study after using the dynamic land masking
method [33].

Azimuth Compensation

To address the Doppler effect [11,39,40], azimuth compensation was performed by using
metadata from the Sentinel−1 image and ship information from AIS/V-Pass [41]. Sentinel−1
metadata were utilized to extract the azimuth direction (θsat), azimuth velocity (Vsat), and
slant range (Rslant), while in situ data (AIS/V-Pass) were used to obtain the ship heading (θship)
and ship velocity (Vship). Then, the direction of movement and the distance of movement
were obtained using two formulas, which were required for azimuth shifting: firstly, radial
velocity Rv = (Vship · cos (θsat – θship + 2/π)), and secondly, azimuth ship distance δ = ((Rv/Vsat)
· Rslant). Then, Rv and δ were used to compute new coordinates that were moved from the
original AIS and V-Pass coordinates, and azimuth compensation was completed.

2.2.2. Polarimetric Combination-Based Ship Detection (PCSD)

The ship detection technique proposed in this study has two distinctive features. First,
rather than simply using the VV and VH polarizations provided by Sentinel−1, three distinct
polarimetric images were generated and utilized. Among them, one polarized image was
the combination of co- and cross-polarization, denoted as newVH. Second, independent
polarimetric images were employed to reduce the false detection rate of SM-ships and AIS-
ships. Algorithm 1 depicts the entire pseudocode for Polarimetric Combination-based Ship
Detection (PCSD). In the first step, ship detection essentially involves comparing the target
cells and training cells of CFAR and identifying pixels that surpass a specific threshold as
targets. The mean and standard deviation were summed together to obtain the representative
value of the training cell (AT). In the second step, three distinct forms of polarization were
generated: newVH, enhanced VH, and enhanced VV. According to Ref. [21], newVH can
eliminate Radio Frequency Interference (RFI) noise produced by VV, and is thus effective for
detecting large ships. Furthermore, through real small-scale experiments, enhanced VH and
enhanced VV were recognized as polarizations that can minimize noise [26,27]. However, this
study adopted a modified threshold for small ship detection in Sentinel−1 image because
the tested satellite platform and polarization are different from Sentinel−1. Step 3 included
employing the newVH image to detect AIS-ships. To specifically detect AIS-ships, AT was
applied only when the pixel value exceeded−10.36 (dB). Afterwards, SM-ships were detected
by combining the results from newVH, enhanced VH, and enhanced VV polarization. The
challenge with SM-ship detection was that the false detection rate increased when the SM-ship
was identified as having a low RCS. SM-ship detection thus involved two different approaches.
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First, SM-ships were detected by adjusting the threshold to−16.98 (dB), which was the lowest
possible level of false positives even in cases where SM-ships were detected correctly, and the
results were denoted as first SM-ships. Secondly, distinct thresholds were utilized in enhanced
VH and enhanced VV to detect different SM-ship positions since newVH alone generated a
lot of noise when it was over −23.01 (dB). Afterwards, masking was performed, and the pixel
location where the SM-ship detection candidates from three polarizations intersected was
selected as the second SM-ships. Lastly, both the SM-ships detection results were combined to
obtain the final SM-ship detection location.

Algorithm 1: Ship detection method

1 Input: VHdB, VVdB
Parameters

µ[x,y] (Target); Average of [x × y] window size
σ[x,y] (Background); Standard deviation of [x × y] window size
Tnvh, Tat, Tevh, Tevv; Threshold value for NVH, AT, EVH, EVV

2 AT(Adaptive Threshold)
µ[21:33,21:33] + σ[21:33,21:33] × Tat < µ[3,3]

3 NVH(newVH)
VHdB; i f (VVdB −VHdB) < 6.53 dB, then NVH ← (VVdB − 6.53 dB)

4 EVH(Enhanced VH)[
(µ[3,3] of VHdB)

2−(µ[5:11,5:11] of VHdB)
2
]

(µ[5:11,5:11] of VVdB)
2 ×

(
µ[3,3] of VHdB

)2
< Tevh

5 EVV(Enhanced VV)[
(µ[3,3] of VVdB)

2−(µ[5:11,5:11] of VVdB)
2
]

(µ[5:11,5:11] of VHdB)
2 ×

(
µ[3,3] of VVdB

)2
< Tevv

6 Function AIS-ships detection
Obtain the data size of I: [Row, Col]← size (NVH)
p← NVH (Row, Col)
for pixel p← 1 to I do

if Tnvh1(−10.36 dB) < p then
NVHais ← Apply to AT(p, Tat)

Mask (NVHais, Land)
Labeled ship object polygons from NVHais
Derived centroid position from each polygon

Output AIS-ships position
7 Function SM-ships detection

Obtain the data size of I: [Row, Col]← size (NVH)
h← VHdB (Row, Col)
v← VVdB (Row, Col)
p← NVH (Row, Col)
for pixel h,v,p← 1 to I do

if Tnvh2(−16.98 dB) < p ≤ Tnvh1(−10.36 dB) then
NVHsmall1 ← Apply to AT(p, Tat)

else if Tnvh3(−23.01 dB) < p ≤ Tnvh2(−16.98 dB) then
NVHsmall2 ← Apply to AT(p, Tat)
EVHsmall2 ← Apply to EVH(h, v, Tevh)
EVVsmall2 ← Apply to EVH(h, v, Tevv)

NVHsmall ←merge (NVHsmall1, NVHsmall2)
Mask (NVHsmall , NVHais) then
Mask (NVHsmall , EVHsmall2) then
Mask (NVHsmall , EVVsmall2) then
Mask (NVHsmall , Land)
Labeled ship object polygons from NVHsmall
Derived centroid position from each polygon

Output AIS-ships and SM-ships position
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Two types of polarization images are provided by Sentinel−1: vertical waves trans-
mitted and vertical waves received (VV polarization) and vertical waves transmitted and
horizontal waves received (VH polarization). Depending on the polarization, different
information can be obtained with varied features. For instance, a VH polarized image is
considered to be better for detecting ships since wind-generated waves have less impact on
the polarization [42,43]. However, human activities such as radio, mobile communication,
television, and other satellites may result in RFI and azimuth smearing in SAR images
(Figure 4a,c). To address this issue, Ref. [21] developed a new polarization technique called
dual-pol, which was generated through the combination of VH and VV polarization and
employed for ship detection. Using the methodology from previous research, newVH
polarization was created in this study to suppress the azimuth smearing issue and RFI
which result in the false positive detection of ships. Considering VH polarization as a
base, which is effective for ship detection, this new polarization utilizes the adjusted VV
polarization intensity values if the difference between the two polarizations is more than
6.53 (dB) (Algorithm 1: NVH). Figure 4b,d shows newVH images generated by combining
the two polarizations that appear to successfully eliminate the azimuth smearing and RFI
observed in Figure 4a,c.
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Figure 4. Comparison between the Sentinel−1 VV and newVH pseudocolor images. (a,c) Display the
VV polarization image; (b,d) Represent the same area in newVH polarization. Red rectangles indicate
the noises caused by azimuth smearing and RFI (radio frequency interference) in VV polarization.
For better visualization, the (dB) value was stretched from 0 to 255.

An illustration of AIS-ships detection utilizing AT (Algorithm 1) and the threshold
value (Tat) with newVH as the input data is displayed in Figure 5. Among the two AIS-ships
depicted in Figure 5e, the bottom ship measured 188 m in length and 30 m in width. The
RCS (dB) in the Sentinel−1 image was measured to be as high as 28.27 (dB). The upper
vessel, a general cargo ship, had a maximum RCS of −7.75 (dB) and measured 87 m in
length and 30 m in width. These two ships masked the relevant pixel when a pixel with
the criteria of being greater than −10.36 (dB) in newVH and having a threshold (Tat) of
25 or higher for AT met the requirements at the same time. Thus, it is apparent that only
AIS-ships—aside from V-Pass—were detected (Figure 5e).
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ing SM-ships searches for vessels with comparatively high RCS, regardless of their size, 

to avoid false positives from occurring beyond the detection target. 

Figure 5. Visualization of the approach for AIS-ships detection. (a,b) Display the ships in the
Sentinel−1 VH and VV polarized image, respectively; (e) Shows the newVH image with the AIS-ship
detection results (red rectangle pointed out with red arrow) along with the AIS (blue triangle) and
V-Pass (green triangle) data; Histogram (c) represents the threshold value (Tnvh) applied in newVH;
Histogram (d) represent the threshold value (Tat) from the AT. When both threshold conditions
were satisfied the pixels were detected as AIS-ships (red rectangle) which also matched with the AIS
(blue triangle) data. For a better understanding, the (dB) value was stretched from 0 to 255. Here,
AIS = Automatic Identification System, and V-Pass = Small Fishing Vessel Tracking System.

Similar to the AIS-ships detection technique, the first step in the SM-ship detection
process was performed with AT and Tat and the outcome was denoted as the first SM-ship.
The threshold range for newVH and Tat was adjusted differently to detect the SM-ship, in
contrast to the specifications for AIS-ships. While Tat was adjusted to be greater than 21,
the threshold values for newVH ranged from greater than −16.98 (dB) to −10.36 (dB) or
less. When both conditions were satisfied simultaneously, it was detected as an SM-ship
using the identical approach. Figure 6 displays the threshold range of SM-ships and the
detection result. After conducting the first step of the SM-ship detection method, three
ships were detected (Figure 6b), and the ship on the upper side was concurrently identified
as both an AIS-ship and an SM-ship. Therefore, the masking process was carried out for
this ship to obtain only the SM-ships. As demonstrated in Figure 6c, the two ships that
were successfully detected as ships had maximum RCS values that were−12.59 (dB) for the
upper SM-ship and −12.37 (dB) for the bottom SM-ship. The first approach for detecting
SM-ships searches for vessels with comparatively high RCS, regardless of their size, to
avoid false positives from occurring beyond the detection target.

SM-ships with low RCS were the focus of the second stage of the SM-ship detection
approach. However, false detections may increase as the target’s RCS lowers because
speckle noise, which is simultaneously detected due to multiple factors like waves, can have
an RCS similar to that of an SM-ship. As a result, rather than using a single polarization and
method, we employed an approach that could reduce false positives by applying threshold
values with different characteristics. Similar to the first SM-ship detection process, initially
AT and Tat were employed, and the most suitable threshold parameters for the smallest ship
were used in order to detect the candidate SM-ships. The threshold for newVH ranged from
greater than −23.01 (dB) to −16.98 (dB) or less, while the Tat was greater than 7. However,
within the threshold range, a considerable amount of noise also remained along with the
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candidate SM-ship targets. Therefore, to reduce these interferences, enhanced VH and
enhanced VV—each with distinct characteristics—were applied for a second and third time.
The SM-ships with low RCS were detected in the enhanced VH image by adjusting the
threshold (Tevh) between −97.96 (dB) and −90.41 (dB). Similarly, the enhanced VV image’s
threshold (Tevv) was set between −57.96 (dB) and −49.59 (dB). Although the threshold
values of these two enhanced images were negative, the threshold values displayed here
are rescaled from negative to 0 and maximum to 255.
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At last, the last two noises were eliminated using enhanced VV, resulting in only a final 
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Figure 6. Illustration of the first SM-ships detection phase from newVH image after the detection of
AIS-ships (Figure 5). Histogram (a) represent the threshold range for the first SM-ships within the
overall distribution of newVH; (b) displays the detection result (red rectangle pointed out with red
arrow) after the thresholding operation; (c) represent the first SM-ships detection result (red rectangle)
that matched with the V-Pass (green triangle) after removing the AIS-ships with amber rectangle
in (b). For better understanding, the (dB) value was stretched from 0 to 255. Here, SM-ships = Small
ships, AIS = Automatic Identification System, and V-Pass = Small Fishing Vessel Tracking System.

Figure 7 illustrates the process of detecting a low RCS SM-ship, with an RCS as low as
−22.01 (dB), in a Region of Interest (ROI) covering approximately 300 m × 300 m, centered
on the SM-ship’s location. Furthermore, the range of each threshold was stretched to
visually depict the detection tendency of each polarization within an ROI characterized by
a short spatial distance. In newVH, five clustered pixels were initially assembled, and the
ship was detected (Figure 7k). Additionally, one noise was eliminated using Tat and AT.
Through the enhanced VH ship identification results, one more noise was eliminated. At
last, the last two noises were eliminated using enhanced VV, resulting in only a final few
little ship pixels in the center (Figure 7n).

Contrary to Figure 7, Figure 8 shows an example of applying narrower minimum and
maximum thresholds for each polarization in a larger ROI of 2 km × 2 km. The threshold
value that may detect the features of the SM-ship was biased more to one side in Figure 8c,d
due to the large range of the ROI, and the threshold’s range was limited in Figure 8e,f.
It can be observed that the four ship detection positions appeared differently when the
threshold value was selected to be as similar as possible for SM-ships in each polarization.
Since the characteristics of the images were diverse, it can be decided that false positives
could be efficiently eliminated, as shown by each distribution graph.
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Figure 7. Visualization of the second SM-ships (small ships) detection phase from the multiple
polarization images within a region of interest (300 m × 300 m). (a,b) Display the Sentinel−1 VH and
VV images, respectively; Histogram (c) represent the threshold (Tnvh) within the newVH distribution,
and (d) shows the threshold value (Tat) from the distribution of AT to detect the candidate SM-ships;
Histogram (e) shows the range of threshold (Tevh) from enhanced VH, and (f) displays the threshold
range (Tevv) of enhanced VV for detecting the SM-ships; (g–j) Represent the newVH, AT, enhanced
VH, and enhanced VV after scaling the (dB) value from 0 to 255. (k–n) Show the detected pixels (red
color) from each polarization images after the thresholding, respectively. The images display the step
by step procedure of eliminating noise by using masking (blue rectangle), from the first detection (k)
with 5 clustered pixels which form the newVH to the final clustered pixel detection (n). For a better
understanding, the (dB) value was stretched from 0 to 255.
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sess high RCS values, while the middle portion of the ship typically has low RCS values, 

resulting in it being detected as two small ships. To deal with this issue, this study pro-

posed a technique to eliminate the probable false alarms. The first step was to cluster areas 

within 300 m of the previous vessel detection location to identify candidates for possible 

false alarms. After that, a ship chip image was created with the locations of each chosen 
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noise was eliminated using morphology operations, and the ship detection positions were 

reproduced based on the number of vectorized polygons. The maximum RCS value of 

Figure 8. Illustration of the second SM-ships detection phase from the multiple polarization images
within a larger region of interest (2 km × 2 km). (a,b) Show the Sentinel−1 VH and VV images,
respectively; Histogram (c) represents the threshold (Tnvh) within the newVH distribution; Histogram
(d) shows the threshold value (Tat) from the distribution of AT to detect the candidate SM-ships;
Histogram (e) shows the range of threshold (Tevh) from enhanced VH; Histogram (f) displays the
threshold range (Tevv) of enhanced VV for detecting the SM-ships. (g–j) Show the detected ship
position (red circle) and detection area (blue rectangle) from the newVH, AT, enhanced VH, and
enhanced VV, respectively, and the position was generated by centroid function using geometry
coordinate of boundary from each clustered pixel, which was masked from polarization images after
thresholding. The tendency of the detected position from each polarization images was different
according to characteristic of polarization, and but one small ship at center point (green triangle)
from V-Pass could be detected from all polarization. For a better understanding, the (dB) value
was stretched from 0 to 255. Here, SM-ships = Small ships, and V-Pass = Small Fishing Vessel
Tracking System.

2.2.3. Matching

This study’s methodology may cause false positives in the case of some large ships’
detection. Considering the bulk carrier’s design from the ship type information obtained
by AIS, this ship structure has an elevated slope at only a specific location, such as bow
anchor storage and the stern bridge. However, the middle location for bulk cargo storage
has practically no inclination. Due to the ship’s structure, the bow and stern usually
possess high RCS values, while the middle portion of the ship typically has low RCS
values, resulting in it being detected as two small ships. To deal with this issue, this study
proposed a technique to eliminate the probable false alarms. The first step was to cluster
areas within 300 m of the previous vessel detection location to identify candidates for
possible false alarms. After that, a ship chip image was created with the locations of each
chosen candidate at its center. The ship chip image was binarized using an RCS threshold of
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0.02, noise was eliminated using morphology operations, and the ship detection positions
were reproduced based on the number of vectorized polygons. The maximum RCS value
of SM-ships—obtained with the aid of V-Pass information—was used to establish the
RCS standard.

The procedure for estimating a detected vessel’s length is referred to as ship discrim-
ination, and the ship length determined in the following way was utilized to improve
matching accuracy. The ship’s border for calculating ship length was established by apply-
ing sobel edge detection to the ship chip image. The detected ship’s position and length
were compared to the ship’s position and length observed in AIS and V-Pass (Figure 9a).
The ship was considered matched if the comparison results between the two observations
met all of the requirements. However, as AIS was the only source of ship length informa-
tion (Figure 9b), the discriminating procedure was limited to AIS, and V-Pass ships were
matched to 20 m SM-ships.
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Figure 9. Illustration of the ship discrimination approach for matching the detected ships with the
ground truth. (a) Displays the workflow to discriminate the detected ship and match with the ground
truth from AIS/V-Pass; (b) Shows a container ship detected from Sentinel−1 and discriminated based
on the length (326.3 m) which matched with the ground truth length (333 m) obtained from the AIS.
Here, AIS = Automatic Identification System, and V-Pass = Small Fishing Vessel Tracking System.

3. Results

In this section, the results of the detection of ships with the proposed method and their
evaluation are depicted, where AIS and V-Pass were used as the validation data to evaluate
the vessel detection results. The six evaluation items—AISmr, AISfr, SMmr, SMfr, AISMmr,
and AISMfr—were used to assess the detection performance. AISmr (the matching ratio) is
a coefficient that shows how successfully the AIS vessel was detected. The performance
increases as it approaches 100. Then, AISfr (the false alarm ratio) indicates the number
of false alarms that have happened, and the performance increases as it gets closer to 0.
Similarly, the evaluation items SMmr and SMfr were used to display the small ship detection
performance. Moreover, AISMmr and AISMfr are evaluation items that combine both AIS
and V-Pass.

AISmr(%) =
Number o f AIS ships matching

Total number o f AIS

AIS f r(%) = 1− Number o f AIS ships matching
Total number o f ships detection

Furthermore, a comparative evaluation of the performance was conducted using the
methodology of this study in conjunction with two representative previous ship detection
studies. The first one was the Image Contrast Enhancement (ICE) method, which followed
the approach proposed by Ref. [1] and considered the characteristics of the study area
to improve ship detection performance for AIS-ships and reduce false positives as much
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as possible (Figure 10: ICE). The second approach used CFAR, and Ref. [21] employed
an adaptive threshold for each detection target after dividing the detection target’s RCS
into four levels to detect AIS-ships in the research area (Figure 10: ATM-CFAR). Figure 10
compares the locations of SM-ships using two ship detection methods, ICE and ATM-
CFAR, applied to Sentinel−1 image captured on 6 April 2022. Examining the Busan Port
anchorage sea area on the left side of the image, where AIS vessels were primarily located,
it appears that vessel detection was successful using both methods. However, in the orange
square area on the right side of the image (Figure 10), located in the open sea near Busan
Port, it was observed that most SM-ships were not detected. In the research area, the
AISmr’s performance in ICE-based vessel detection was 84.96% (113 ships detected out of
133 AIS ships), while the SMmr’s performance was only 10.53% (two ships detected out
of nineteen V-Pass ships). Consequently, it can be concluded that detecting SM-ships was
nearly impossible. On the other hand, ATM-CFAR exhibited a high AISmr performance at
91.73% (122 ships detected out of 133 AIS), and SMmr’s performance was 31.58% (six ships
detected out nineteen 19 V-Pass ships), showing an improvement over ICE.
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Figure 10. Results of ship detection after applying the image contrast enhancement (ICE) and ATM-
Constant false alarm rate (ATM-CFAR) approaches to scene no. 7 (6 April 2022). The detected
positions of AIS-ships using ICE (purple rectangle) and ATM-CFAR (red circle) were highly matched
with the AIS (blue triangle) while the V-Pass (green triangle) indicates that the small ships were not
detected by these two methods. Here, AIS = Automatic Identification System, and V-Pass = Small
Fishing Vessel Tracking System.

3.1. Test Result

The results of AIS-ship detection for scene no. 7 are displayed in Figure 11. There
were 133 AIS ships total in that area, of which 152 AIS-ships were detected and 125 were
matched. Hence, the calculated AISmr was 93.99%, and the calculated AISfr was 17.76%.
The Busan Port ROI area’s detection results are displayed in Figure 11c. Reefer, tanker,
general cargo, and other types of vessels were among those detected; the length of the
vessels was determined to be between 57 and 126 m. Therefore, it can be verified that these
ships were successfully detected.

Figure 12 displays the results of the SM-ship detection using only newVH, and Figure 13
illustrates the findings of the SM-ship detection utilizing three polarization images con-
currently. A total of 19 SM-ships were observed (V-Pass), 61 SM-ships were detected, and
12 SM-ships were matched. In the first step of detection, 57 SM-ships were detected, with
nine matches and a detection rate of 15.79% (SM1mr). The RCS of the matched SM-ships
ranged from −10.36 (dB) (S7) to −16.77 (dB) (S4). While the detection rate of the first step
was low, visual confirmation revealed that other detected SM-ships that were not matched
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also corresponded to actual SM-ships. In the second step of detection, four SM-ships were
detected, with three matches, resulting in an SM2mr of 75%. This indicates the accurate
identification of low-RCS ships without false positives. The RCS of the matched SM-ships
ranged from −19.50 (dB) (S10) to −22.01 (dB) (S12). Combining the results from both the
first and second detections, the final SMmr was calculated to be 63.16%.
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Figure 11. Detection results for the AIS-ships (a) in scene no. 7 after applying the proposed method.
(b) Display binarized image with 0 (black pixel) and 1 (white pixel) for the detected AIS-ships within
the amber rectangle; (c) Shows the matching result of detected AIS-ships’ position (red circle) with
the AIS (blue triangle) data; In addition, (c) represent the detail information on the ship type and
length obtained from the AIS. Most of the V-Pass ships (green triangle) remain without matching (a).
Here, AIS = Automatic Identification System, and V-Pass = Small Fishing Vessel Tracking System.
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AISfr 28.48% 39.60% 17.76% 
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Figure 12. Detection results for first small ships (SM-ships) in the newVH image (scene no. 7). Red
circle indicates the detected position of first SM-ships, green triangle represents the V-Pass and amber
rectangle display the matching results. The ID and shape of each matched image are displayed in the
right. Here, V-Pass = Small Fishing Vessel Tracking System.
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Figure 13. Detection results for second small ships (SM-ships) in multiple polarization (scene no. 7).
Red circle indicates the detected position of second SM-ships, green triangle represents the V-Pass
and amber rectangle display the matching results. The ID and shape of each matched image are
displayed in the right. Here, V-Pass = Small Fishing Vessel Tracking System.

The PCSD results from this study were compared with the detection results of the
ICE and ATM-CFAR methods, which are recognized for their higher AIS-ship detection
capabilities (Table 2). The AISmr exhibited either a higher or equivalent performance
compared to ICE and ATM-CFAR. However, the AISfr of this method demonstrated a lower
false positive rate compared to the other two methods. The results obtained from PCSD’s
SMmr indicated a considerable improvement in SM-ship detection capability, exceeding
the results of the other two methods by more than two times. When considering AISMmr
and AISMfr, which represent the overall detection results combining AIS and V-Pass, they
exhibited better performances than the ATM-CFAR model.

Table 2. The performance of ship detection using three distinct vessel detection models in scene no. 7.

Evaluation Items ICE ATM-CFAR PCSD

AISmr 84.96% 91.73% 93.99%

AISfr 28.48% 39.60% 17.76%

SMmr 10.53% 31.58% 63.16%

SMfr 98.73% 97.03% 80.33%

AISMmr 75.66% 84.21% 90.13%

AISMfr 27.22% 36.63% 35.68%

3.2. Model Comparison for Entire Dataset

Figure 14 displays the results of using the three models on 26 scenes acquired in 2022.
However, scene number 10 was not included in the calculation of the detection rate and false
detection rate since it only contained information about two vessels that was retrieved from
AIS/V-Pass, causing uncertainties regarding the reliability of the information. Figure 14a
depicts that the PCSD’s average AISmr was 86.67%, around 2% higher than the ATM-CFAR
(84.92%). In addition, in the PCSD, the AISfr was 33.86%, and the false positive rate was
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over 10% lower than that of the ICE model (46.48%). Hence, PCSD was found to be more
accurate for AIS-ship detection than the other two methods, with a higher detection rate
and a lower false detection rate.

Remote Sens. 2024, 16, x FOR PEER REVIEW 18 of 24 
 

 

SMfr 98.73% 97.03% 80.33% 

AISMmr 75.66% 84.21% 90.13% 

AISMfr 27.22% 36.63% 35.68% 

3.2. Model Comparison for Entire Dataset 

Figure 14 displays the results of using the three models on 26 scenes acquired in 2022. 

However, scene number 10 was not included in the calculation of the detection rate and 

false detection rate since it only contained information about two vessels that was re-

trieved from AIS/V-Pass, causing uncertainties regarding the reliability of the information. 

Figure 14a depicts that the PCSD’s average AISmr was 86.67%, around 2% higher than the 

ATM-CFAR (84.92%). In addition, in the PCSD, the AISfr was 33.86%, and the false positive 

rate was over 10% lower than that of the ICE model (46.48%). Hence, PCSD was found to 

be more accurate for AIS-ship detection than the other two methods, with a higher detec-

tion rate and a lower false detection rate. 

Figure 14b showed that, with an SMmr of 42.72%, PCSD achieved a detection rate 

twice as high as ATM-CFAR (18.53%), indicating that small ships surpassed AIS-ships in 

terms of detection rate. Furthermore, in scene 19, a detection rate of 100% was achieved 

with seven out of seven V-Pass ship detections, while scene 16 attained a detection rate of 

83% with five out of six V-Pass vessel detections. These results revealed that a high per-

formance can be achieved even with a small number of ships. Moreover, in scene 5, a 

detection performance of 81% was achieved with 22 detected ships out of 27 V-Pass ships, 

demonstrating a high performance even in scenarios with numerous ships. Additionally, 

there were 10 scenes with a final detection rate exceeding 50%. In addition, it can be as-

sumed that the significant deviation observed in the overall detection rate might be at-

tributed to the presence of certain small ships constructed from materials challenging to 

detect in the Sentinel−1 image or error’s occurred during V-Pass transmission. 

 

Figure 14. Comparison graph illustrating the performance of three different ship detection models 

for the year 2022 (26 scenes). (a) Represents the matching ratio for AIS-ships; (b) Displays the match-

ing ratio for the small ships. Here, AIS = Automatic Identification System, SM = Small ships, ICE = 

Image Contrast Enhancement, ATM-CFAR = ATM-Constant False Alarm Rate. 

To visualize and compare the different model’s performances, the Receiver Operator 

Characteristics (ROC) classification scheme was used. Generally, the ROC curve plots the 

True Positive Rate (TPR) on the Y-axis against the False Positive Rate (FPR) on the X-axis 

Figure 14. Comparison graph illustrating the performance of three different ship detection models for
the year 2022 (26 scenes). (a) Represents the matching ratio for AIS-ships; (b) Displays the matching
ratio for the small ships. Here, AIS = Automatic Identification System, SM = Small ships, ICE = Image
Contrast Enhancement, ATM-CFAR = ATM-Constant False Alarm Rate.

Figure 14b showed that, with an SMmr of 42.72%, PCSD achieved a detection rate twice
as high as ATM-CFAR (18.53%), indicating that small ships surpassed AIS-ships in terms of
detection rate. Furthermore, in scene 19, a detection rate of 100% was achieved with seven
out of seven V-Pass ship detections, while scene 16 attained a detection rate of 83% with five
out of six V-Pass vessel detections. These results revealed that a high performance can be
achieved even with a small number of ships. Moreover, in scene 5, a detection performance
of 81% was achieved with 22 detected ships out of 27 V-Pass ships, demonstrating a high
performance even in scenarios with numerous ships. Additionally, there were 10 scenes
with a final detection rate exceeding 50%. In addition, it can be assumed that the significant
deviation observed in the overall detection rate might be attributed to the presence of
certain small ships constructed from materials challenging to detect in the Sentinel−1
image or error’s occurred during V-Pass transmission.

To visualize and compare the different model’s performances, the Receiver Operator
Characteristics (ROC) classification scheme was used. Generally, the ROC curve plots the
True Positive Rate (TPR) on the Y-axis against the False Positive Rate (FPR) on the X-axis
at various threshold settings. The Area Under the Curve (AUC) represents the size and
quantitatively estimates the model’s performance [26]. In this study, the matching rate
was used as a substitute for the TPR, while the false alarm rate was used as a substitute
for the FPR. The AUC values calculated for AIS-ships using ICE, ATM-CFAR, and PCSD
methods were 0.95, 0.96, and 0.95, respectively (Figure 15(a-1)–(a-3)). The results indicate
that there was not a significant difference in performance among the three models, and per-
formance was not dependent on the specific model used. In addition, a high performance
is demonstrated with an AUC of 90 or higher. Moreover, Figure 15b illustrates an ROC
graph calculated for SM-ships, demonstrating that the performance of PCSD (0.89) exceeds
that of other models (0.76).
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Figure 15. Comparison of ship detection models: Receiver Operator Characteristics (ROC)
curves for (a-1) ICE, (a-2) ATM-CFAR, (a-3) PCSD based on AIS-ships and (b) SM-ships. Here,
AIS = Automatic Identification System, SM = Small ships, ICE = Image Contrast Enhancement,
ATM-CFAR = ATM-Constant False Alarm Rate, PCSD = Polarimetric Combination-based Ship
Detection.

Moreover, statistical tests were utilized to compare the performance of the three
different models across the 26 scenes, using four performance indices (AISmr, AISfr, SMmr,
SMfr). Therefore, the Mann–Whitney U-test and the Kruskal–Wallis H-test were used with
the significant level of 0.05 [44,45]. In the Mann–Whitney U-test, the p-values for almost all
indices were calculated to be less than 0.001, with the exception of the index comparing
AISmr with ATM-CFAR and PCSD, which exceeded 0.05. In the Kruskal–Wallis H-test, all
indices yielded values less than 0.05 (p-value), indicating their passing. Thus, no significant
difference was found among the three models.

4. Discussion
4.1. Wave Height Distribution at Detected Ship Position

In SAR images, marine environmental factors such as eddies, internal waves, swells,
and strong waves result in high scattering characteristics. Furthermore, since the scattering
characteristics of SM-ships resemble those of waves, the performance of ship detection may
be diminished during bad weather conditions [11]. In this study, the trend of the occurrence
of waves within the study area was identified by analyzing speckle noise in the marine
environment, particularly in Sentinel−1 images. Figure 16a displays the wave height across
the study region along with the detected ship position. Moreover, Figure 16b–d illustrate
graphs for wave height distribution and the number of detected ships for one year (2022).
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Figure 16. Visualization of wave height across the study area. (a) Displays detected ships’ location (red
circle) and significant wave height (m) for scene no. 7 (6 April 2022). (b–d) Depict the distribution of
ship numbers corresponding to wave height, matched with AIS-ships, SM-ships, and false detection
in SM-ships, respectively, for the year 2022. Here, AIS = Automatic Identification System, and
SM = Small ships.

Firstly, it can be seen that AIS-ships were extensively distributed in areas of the sea
characterized by low wave heights (Figure 16b). This phenomenon is attributed to the
prevalence of large ships awaiting anchorage in regions where wave influence is minimal,
which is consistent with the nature of the study’s sea area. Additionally, a significant
number of SM-ships were detected at relatively low wave heights, with a decrease observed
in the number of detected ships as the wave height approached or exceeded approximately
1 m. However, when the wave height exceeded 2 m, there was an increase in the number of
detections for SM-ships (Figure 16c), although this phenomenon appears to be influenced
by each backscattering characteristic of individual small ship or regional factors. Figure 16d
depicts the distributions of SM-ships in areas where false detections occurred. Few false
detections were observed at the high wave heights (>1 m), while the number of false
detections was higher at low wave heights. Since the wave height data are modeled rather
than measured, their reliability is not absolute. Therefore, analyzing wave effects should
consider the scattering characteristics of individual ships and regional factors.

4.2. Comparison with DL Based Ship Detection

To identify dark fishing activity using SAR imagery, the Defense Innovation Unit
(DIU) and Global Fishing Watch (GFW) have initiated an international competition. This
competition employs modern machine learning (ML), deep learning (DL), and traditional
computer vision approaches with the xView3-SAR dataset, comprising nearly 1000 analysis-
ready SAR images from the Sentinel−1 satellite [46]. Among the proposed approaches,
two DL models with high accuracy, DL-1: Selim_sef and DL-2: BloodAxe, were applied to
the study region and then compared with PCSD (Figure 17). The DL models are accessible
to everyone as open-source code (https://github.com/DIUx-xView, accessed on 3 March
2023), and they were installed using a Docker file. Geometric correction was subsequently
applied to the results of the DL model to facilitate comparison. When a Sentinel−1 GRDH
image is input, DL models provide candidate vessel detection locations and vessel/fishing
status for each location. Then, these outputs could be compared with the AIS-ships and
SM-ships detection results of this study.

https://github.com/DIUx-xView


Remote Sens. 2024, 16, 1198 21 of 24

Remote Sens. 2024, 16, x FOR PEER REVIEW 21 of 24 
 

 

vessel/fishing status for each location. Then, these outputs could be compared with the 

AIS-ships and SM-ships detection results of this study. 

 

Figure 17. Ship detection results and comparison graph using multiple DL model approaches for 

Scene no. 7 (6 April 2022). (a–c) Display the detected ships’ position using DL-1 (yellow circle), DL-

2 (cyan circle) and PCSD (red circle) models, respectively, including AIS-ships and SM-ships. (d) 

Shows matching and false alarm ratio from AIS, and V-pass among the three different models. Here, 

DL = deep learning, AIS = Automatic Identification System, V-Pass = Small Fishing Vessel Tracking 

System, SM = Small ships, PCSD = Polarimetric Combination-based Ship Detection. 

Figure 17 depicts the detection performance of the DL models and PCSD applied to 

scene no. 7. Considering the results of AISmr, the DL-1 and DL-2 models achieved accura-

cies of 72.93% and 79.70%, respectively, which were both significantly lower than ICE (84. 

96%). Furthermore, the AISfrs of the DL-1 and DL-2 models were 25.38% and 34.90%, re-

spectively. As a result, the detection performance of AISmr for the DL models was lower 

than that of the PCSD (17.76%), with a high number of false positives indicating poor 

overall detection performance for AIS-ships. In the case of SMmr, the DL-2 model detected 

only four out of nineteen V-pass ships, while the DL-1 model failed to detect any ships. 

Specifically, although two SM-ships were detected in the DL-1 model, neither of them 

matched V-pass, resulting in an SMfr of 100%. Conversely, the DL-2 model achieved a de-

tection rate of 75% and performed relatively better in terms of SMfr compared to PCSD 

(80.33%). However, the detection performance itself is limited, as only four vessels out of 

nineteen were matched (sixteen detections). 

In general, deep learning models are significantly influenced by the trends observed 

in the training dataset. The training datasets utilized for the deep learning models in this 

study were predominantly derived from European waters and the west coast of Africa. 

Therefore, an assumption can be made that the AIS vessels and their distinct characteris-

tics observed in the study area will differ considerably. Additionally, V-Pass is a small-

Figure 17. Ship detection results and comparison graph using multiple DL model approaches for
Scene no. 7 (6 April 2022). (a–c) Display the detected ships’ position using DL-1 (yellow circle),
DL-2 (cyan circle) and PCSD (red circle) models, respectively, including AIS-ships and SM-ships.
(d) Shows matching and false alarm ratio from AIS, and V-pass among the three different models.
Here, DL = deep learning, AIS = Automatic Identification System, V-Pass = Small Fishing Vessel
Tracking System, SM = Small ships, PCSD = Polarimetric Combination-based Ship Detection.

Figure 17 depicts the detection performance of the DL models and PCSD applied
to scene no. 7. Considering the results of AISmr, the DL-1 and DL-2 models achieved
accuracies of 72.93% and 79.70%, respectively, which were both significantly lower than
ICE (84. 96%). Furthermore, the AISfrs of the DL-1 and DL-2 models were 25.38% and
34.90%, respectively. As a result, the detection performance of AISmr for the DL models
was lower than that of the PCSD (17.76%), with a high number of false positives indicating
poor overall detection performance for AIS-ships. In the case of SMmr, the DL-2 model
detected only four out of nineteen V-pass ships, while the DL-1 model failed to detect any
ships. Specifically, although two SM-ships were detected in the DL-1 model, neither of
them matched V-pass, resulting in an SMfr of 100%. Conversely, the DL-2 model achieved a
detection rate of 75% and performed relatively better in terms of SMfr compared to PCSD
(80.33%). However, the detection performance itself is limited, as only four vessels out of
nineteen were matched (sixteen detections).

In general, deep learning models are significantly influenced by the trends observed
in the training dataset. The training datasets utilized for the deep learning models in this
study were predominantly derived from European waters and the west coast of Africa.
Therefore, an assumption can be made that the AIS vessels and their distinct characteristics
observed in the study area will differ considerably. Additionally, V-Pass is a small-boat
tracking system exclusively used in Korea, and it is anticipated to differ fundamentally
from the fishing boat types identified in AIS. To ensure better performance using deep
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learning, it is believed that long-term data collection in the research area, the creation of a
customized dataset, and the development of a tailored model will be required.

5. Conclusions

Ship detection employing SAR imagery has been widely considered as a major research
topic in the field of maritime surveillance. However, speckle noise and other typical
interferences in SAR data result in false ship detections. In particular, the detection of
small vessels with low RCS exhibited a considerable potential for generating false-positive
detections. Thus, to reduce false positives, we suggested an SM-ship detection approach in
this study, and assessed the results after applying the method to 26 scenes. The conclusions
of the study are as follows:

Two distinct strategies for ship detection were implemented by separating the AIS-ship
threshold from the SM-ship threshold. Consequently, emphasis was given to enhancing
the SM-ship detection performance while maintaining the high detection accuracy of the
AIS-ships. For this purpose, three different polarizations—newVH, enhanced VH, and
enhanced VV—were generated, and the SM-ship detection results from these polarizations
were combined to remove the pixels that generate false positive alarms.

Utilizing ship data from AIS/V-Pass, the ship detection results were validated. To
improve the ground truth’s reliability, ship information was updated through the DR
interpolation and azimuth compensation approaches. By utilizing 26 scenes acquired in
2022, it was found that the average detection rate for AIS-ships was over 85%, and the
detection rate for SM-ships was over 42%. Furthermore, the highest detection performance
reached 100% in scene 19, with seven ships detected out of a total of seven V-Pass ships. In
addition, a detection rate exceeding 50% was achieved in 10 scenes. Finally, the detection
performance for AIS-ships remained consistent with that of other models designed for
AIS, while the detection performance for SM-ships was improved by more than double
compared to other models.
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