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Abstract: Identifying farmland use has long been an important topic in large-scale agricultural
production management. This study used multi-temporal visible RGB images taken from agricultural
areas in Taiwan by UAV to build a model for classifying field types. We combined color and texture
features to extract more information from RGB images. The vectorized gray-level co-occurrence
matrix (GLCMv), instead of the common Haralick feature, was used as texture to improve the
classification accuracy. To understand whether changes in the appearance of crops at different times
affect image features and classification, this study designed a labeling method that combines image
acquisition times and land use type to observe it. The Extreme Gradient Boosting (XGBoost) algorithm
was chosen to build the classifier, and two classical algorithms, the Support Vector Machine and
Classification and Regression Tree algorithms, were used for comparison. In the testing results, the
highest overall accuracy reached 82%, and the best balance accuracy across categories reached 97%.
In our comparison, the color feature provides the most information about the classification model and
builds the most accurate classifier. If the color feature were used with the GLCMv, the accuracy would
improve by about 3%. In contrast, the Haralick feature does not improve the accuracy, indicating
that the GLCM itself contains more information that can be used to improve the prediction. It also
shows that with combined image acquisition times in the label, the within-group sum of squares can
be reduced by 2–31%, and the accuracy can be increased by 1–2% for some categories, showing that
the change of crops over time was also an important factor of image features.

Keywords: unmanned aerial vehicle; RGB image; field type classification; gray-level co-occurrence
matrix; Extreme Gradient Boosting

1. Introduction

Using information about the types of crops cultivated in a region and the specific
growing conditions to generate “crop maps” has long been a crucial tool for policy-making
in agricultural organizations and governmental agencies. In Taiwan, like many other
Southeast Asian countries, agricultural land typically comprises small fields, each less
than 1 hectare in size, where various crops are grown simultaneously. At the same time,
since each field may belong to a different farmer, even if the same crop type is grown,
there may be differences in growth stages and appearance due to differences in planting
time, cultivar, or management. Conducting detailed crop surveys in such a landscape
poses significant challenges for agricultural agencies. Currently, Taiwan’s agricultural
authorities rely heavily on manual surveys conducted by trained personnel, including local
farmers and local agricultural officers [1]. However, this approach has notable drawbacks,
including high training costs, a high turnover rate, prolonged survey durations, and the
potential for inaccurate record-keeping. Recognizing the limitations of conventional crop
surveys, researchers are increasingly turning to remote sensing technology, specifically
drone imagery, to generate crop maps. Previous research shows that this alternative method
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offers advantages such as reduced costs, higher resolution, and faster survey speeds [2–4].
In addition to the traditional single-time image, time-series image collection and analysis
are also important due to the change in appearance of crops as they grow over time [5].

Following the capture of drone imagery, a systematic image analysis protocol is
essential to extract information for policy-making purposes. Typically, the initial steps
involve filtering, orthorectifying, and stitching together the images. Subsequently, key data,
such as specific vegetative indices (e.g., normalized difference vegetative index, NDVI), are
extracted and modeled alongside ground truth data collected in the field. In the context
of image analysis, the conversion of images into representative “features” is a common
practice. This not only simplifies the complexity of image data but also eliminates noise
and enhances the information. Predominantly, color and texture features are utilized in
agricultural image analyses [3,6]. Color features describe the light intensity collected by
sensors, often represented by band statistics or combinations, such as vegetation indices
(VIs), commonly used in agricultural tasks [7,8]. For instance, a previous study applied
various RGB-based VIs to high-throughput phenotyping of forage grasses, achieving an R2

of 0.73 for predicting the breeder score [9]. Another research effort utilized the percentile
of infrared images to detect tea diseases and count lesions on tea leaves, achieving an
impressive R2 of 0.97 compared to lesion counting through human observation [10].

Texture features act as descriptors for pixel positions and spatial relationships within
an image, offering insights into the surface texture of the subject. Among all of the texture
features, the Haralick texture feature stands out, relying on the gray-level co-occurrence
matrix (GLCM) [11]. Specifically, GLCM is a K × K matrix that records the combinations
of neighboring pixels with different brightness levels, also called gray levels, at a given
distance and angle in the grayscale image with K level of brightness [12,13]. Typically, one
or a few summary statistics, also called the Haralick feature, summarize the GLCM for
ease of interpretation [11]. The Haralick features would then be combined with machine
learning algorithms to build classifiers or prediction models.

In a previous study, the Haralick feature, combined with color features, was utilized
to classify land use in multispectral images, resulting in improved accuracy of the support
vector machine (SVM) classifier by up to 7.72%. Notably, the Haralick feature demonstrated
increased relevance when spectral information was limited [3]. Similarly, in another
previous study about crop classification by high-resolution drone RGB images, the authors
compared the use of the Haralick feature or grayscale image with four different machine
learning algorithms, namely, Random Forest (RF), Naive Bayes (NB), Neural Network
(NN), and Support Vector Machine (SVM), to build a classification model. The results
showed that the RF-based classifier with a GLCM image can achieve an overall accuracy
of 90.9% [14]. Furthermore, a study focusing on wheat Fusarium head blight detection
achieved an impressive 90% accuracy using the Haralick texture feature, underscoring
the importance of an appropriate GLCM kernel size [15]. These investigations collectively
underscore the unique information offered by texture features, showing their potential to
enhance classification and prediction tasks related to plant images.

Even though most studies utilized the summary statistics of GLCMs (usually referred
to as Haralick features) for subsequent classification applications, we argue that GLCMs
with identical summary statistics may possibly possess distinct structures upon revisiting
the structure of the GLCM. This implies that selecting representative summary statistics for
the GLCM could be pivotal for successful classification. While it is possible to address this
by selecting multiple summary statistics simultaneously by incorporating the standard devi-
ation of the GLCM, a broader perspective suggests the direct utilization of the GLCM itself.
Considering the inherent risk of information loss associated with any summary statistics,
relying solely on the complete probability distribution might best represent all facets of data
characteristics. Several methods exist for calculating the empirical probability distribution.

On the other hand, the selection of machine learning models was also a critical issue,
which may greatly affect the accuracy of the final prediction result. Previous work includes
a comprehensive review about the machine learning or deep learning techniques applied
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to predict field images obtained from satellites or UAVs. Deep learning models based on
Convolution Neural Network (CNN) technology have achieved good accuracy and become
the most widely used algorithms [16]. However, other algorithms might be utilized with
different considerations. For example, SVM might have higher performance on some occa-
sions [3,16,17]. Classification and regression tree (CART) and other conventional decision
tree-based models were easy to interpret with tree-diagram structures [16]. The models
based on ensemble learning, such as Extreme Gradient Boosting (XGBoost), have started to
attract more attention due to their exceptional performance in complex systems [16,18].

Continuing the above argument, this study proposes to use the entire GLCM empirical
distribution as the characteristics of the field to classify the fields. Our study used multitem-
poral visible-light RGB images taken in agricultural areas of Taiwan and captured by UAV.
Since the spectral information that RGB images can provide is less than that of multispectral
images, we wish to combine the texture and spectral features to extract more information
from the images. A GLCM-based feature extraction process is developed in this study, and
the effects of using a GLCM versus Haralick features as additional features were examined
for the task of feature recognition. This study also evaluates the performance of three
algorithms, CART, SVM, and XGBoost, in field classification with the selected features.

2. Materials and Methods
2.1. Image and Label Data Acquisition

All aerial orthoimages in this study were provided by GEOSAT Aerospace & Tech-
nology Inc., Tainan, Taiwan. in Tagged Image File (.tif) Format with GPS coordinates
information. Figure 1 shows the study area in this research; the images were obtained
in Tainan City and Chiayi County in Taiwan, which covers a major agricultural area of
Taiwan. These images were taken at specific dates in December 2019 (2019/12), March
2020 (2020/03), and June 2020 (2020/06); the cover area of the three images was 14,537 ha,
2850 ha, and 5933 ha, respectively. The UAV was equipped with Sony A7R2 (for 2019/12)
and A7R3 (for 2020/03 and 2020/06) RGB cameras with a Zeiss Loxia F2.8/21 mm lens
and flew at 125–150 m in height. These raw aerial images were processed into orthoimages
by the GEOSAT GeoCCP platform [19]. The orthoimages used a ground sample distance
(GSD) of 5.18, 4.32, and 3.78 cm, respectively. A total of 10 orthoimages were used in this
study, and the file size of all orthoimages was about 980 GB. Well-trained agricultural
investigators recorded the location and the category of land use or crop of each field in the
study area and created the ground truth shapefile (.shp format) in QGIS [20].

In this study, we selected seven categories of field types, which were Rice, Bean, Fruit,
Facility, Maize, Sugarcane, and Aqua, as the research targets (Table 1). The number of fields
in each category was not balanced. Aqua and Fruit were the categories with the most (3513)
and the fewest (194) fields, respectively. Figure 2 and Table 2 show the mean and standard
deviation of the area per field of each category. Fruit and Sugarcane were the categories
with the smallest (0.47 ha) and the largest average area (14.88 ha), respectively.

Table 1. Number of fields for each category on 2019/12, 2020/03, and 2020/06.

Category
Date

Total
2019/12 2020/03 2020/06

Rice 30 533 194 757
Bean 167 214 74 455
Fruit 65 57 72 194

Facility 168 93 118 379
Maize 1980 423 431 2834

Sugarcane 148 41 50 239
Aqua 2512 280 721 3513
Total 5070 1641 1660 8371
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Table 2. Mean and standard deviation (Sd) for the area of fields for each category (units: ha).

Category Rice Maize Aqua Bean Fruit Facility Sugarcane

Mean 1.15 2.39 0.70 0.99 0.47 0.91 14.88
Sd 1.29 3.96 1.92 0.62 1.31 3.39 11.68

Figure 3 shows the workflow of this study. It is divided into three parts: data pre-
processing, feature extraction, and modeling. All processes were performed in an R
environment [21].
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2.2. Data Preprocessing

Data preprocessing encompassed various tasks, including data cleaning, image crop-
ping, labeling, resampling, and the segmentation of training and testing sets, among other
necessary procedures.

2.2.1. Data Cleaning and Image Cropping

In this study, the fundamental unit of analysis was set at the field level. Each orthoim-
age covering a large area contained numerous fields. The initial step involved cropping
field images from the orthoimages and obtaining individual images for each field. The
R environment was utilized to load shapefiles and orthoimages, and fields falling within
the specified target categories were selected. Geographic information was extracted from
shapefiles and used to crop the corresponding field images. To optimize memory usage and
expedite the process, the cropped field images were directly sent to the resampling stage
without intermediate storage. The coordination of fields and the processing of orthoimages
were executed by the R packages sf and raster [22,23].

2.2.2. Image Labeling

As the orthoimages were acquired on three distinct dates, the crops exhibited varying
growth stages, and the appearance at each stage may vary significantly. To account for the
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temporal effect, two labeling methods were used. The workflow for these two labeling
methods is illustrated in Figure 4.
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Figure 4. Workflow of the two different labeling methods.

Label 1 combined the images acquired on three different dates. For instance, images
of rice fields taken in December 2019, March 2020, and June 2020 were labeled “Rice”; a
similar approach was applied to fields belonging to another category. This resulted in a
total of seven distinct label categories.

Label 2 represents a labeling approach that combines the temporal effect into the label.
Using the same example above, those rice field images were labeled as Rice_1, Rice_2, and
Rice_3 to indicate the category and the image acquisition dates at the same time. This
method resulted in a total of 21 label categories. To compare the two labeling methods,
the detailed labels from label 2 were only employed in model training and prediction.
Predicted labels for the same field types but different dates were combined in the final
output and the predictions were presented under the original seven categories, the same as
the approach in label 1.

2.2.3. Resampling

The UAV orthoimages captured in the field exhibited repetitive patterns, primarily
stemming from the planting arrangements employed during crop cultivation and the
inherent variations in crop appearances. In the context of rice cultivation in Taiwan,
farmers adhere to specific row and column spacings, resulting in a repetitive visual pattern
at consistent distances, forming the overall image of a rice field. To address this, an
innovative resampling method was introduced, replacing the conventional sliding window
approach for generating feature selection inputs. The amplification factor was computed
using Equation (1). First, we set the factor Xc = 1000/Nc, where Nc was the total field
number for category c. The value of Xc was then rounded to the nearest integer, with
predefined minimum and maximum values set at 1 and 10, respectively.

Xc = round[ max(1, min(10, Xc = 1000/Nc))] (1)

Within the area of the ith field image cropped in Section 2.2.1, a set of Xc ‘seed pixels’
was randomly selected. These ‘seed pixels’ were then expanded by 5 m on all four sides
to form a square with an area of 100 square meters. Subsequently, all pixels within these
determined squares were cropped to generate sample images. The resampling method
aimed to capture smaller portions of fields, serving as representative samples for the entire
field. This not only saved computing time but also equalized the number of fields in
each category through the amplifying factor. To enhance efficiency, the resampled square
images were directly sent to the feature extraction stage without storage, aligning with the
previously stated rationale.
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2.3. Feature Extraction

The resampling images from Section 2.2.3 were used to extract image features, includ-
ing the 0–100% percentiles and GLCM vectors of the R, G, and B bands. To determine the
difference between using GLCM vectors and the Haralick features, which are statistics
derived from a GLCM, the Haralick features were also extracted for further comparison.

2.3.1. GLCM Calculated

The (i, j)th element of the K× K GLCM, denoted as Gθ
dist, was calculated as follows

under the predetermined parameters of distance, dist, and angle, θ (Table 3).

Table 3. Combinations of angle (θ) and distance used in this study.

Angle, θ (◦) cos(θ) −sin(θ) Distance, dist

0 1 0 1
45 1/

√
2 −1/

√
2

√
2

90 0 −1 1
135 −1/

√
2 −1/

√
2

√
2

First, one finds the specific neighboring pixel (m, n) according to dist and θ by letting

m = x + dist× cos(θ), and n = y + dist× (−sin(θ)). (2)

Then the (i, j)th element of the GLCM, denoted as Gθ
dist(i, j), can be determined by

Gθ
dist(i, j) = #[L(x, y) = i, L(m, n) = j] for all (x, y), or

Gθ
dist(i, j) = ∑

(x,y)
I(L(x, y) = i, L(m, n) = j), (3)

where # indicates the number of pixel pairs that satisfy the matched gray levels. Let
L(x, y) = i (i = 1, . . ., K) be the gray levels of the pixel at position (x, y); I(E) = 1, if event E
is satisfied; 0, otherwise. Figure 5 shows an example of turning a gray-level image into a
GLCM. There are three occurrences of the number 4 to the right (dist = 1, and angle = 0) of
the 1 in the gray-level image matrix. Consequently, the (1,4)th element of the GLCM has
been recorded as 3. Figure 6 illustrates an example of the pixel in the image corresponding
to different angles and distances in the GLCM. Similar transformations were applied to all
combinations of (angle, distance) as listed in Table 3.
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GLCMs with identical summary statistics may possibly possess distinct structures
upon revisiting the structure of the GLCM. Figure 7 illustrates an example where two
different GLCMs have the same mean value, even though the two matrices are distinct. To
simplify calculations and facilitate field information analysis for prompt decision-making,
we flattened the GLCM matrix into a vector (GLCMv) for presentation of the difference in
GLCM distribution. When presenting a GLCM by its row vectors, Gθ

dist = (v1, v2, · · · , vK)
T .

Then the K2 × 1 GLCMv is defined as
(
vT

1 , vT
2 , · · · , vT

K
)T .
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2.3.2. Extraction of Image Features: Percentiles, GLCMv, and Haralick Features

The original brightness levels of each band in the images ranged from 1 to 256. For
each band, percentiles from 0% to 100%, with a 1% increment of the original brightness
ranging from 1 to 256, were computed. When computing GLCMv, the brightness levels of
each band were reduced from 256 to 8, equally spaced to reduce the number of potential
combinations. The resulting eight-level grayscale underwent GLCMv calculation at 0◦,
45◦, 90◦, and 135◦ angles. The feature sets of the three bands from the same resampling
image were combined with the complete image feature sets. As a result, each resam-
pling image generated 1071 features (color: 101 percentiles × 3 bands = 303; GLCMv:
64 combinations × 4 angles × 3 bands = 768).

For additional comparison, the GLCM of each angle was utilized to calculate the mean
and variance, which are commonly used Haralick features, by Equations (4) and (5) [3,11].
Consequently, each resampling image obtained a total of 24 Haralick features
(2 statistics × 3 bands × 4 angles). In this study, the R package agrifeature was employed
to compute the GLCM [24].

Mean (µ) = ∑K−1
i=0 ∑K−1

j=0 ip(i, j) (4)

Variance = ∑K−1
i=0 ∑K−1

j=0 (i− µ)2 p(i, j) (5)

where p(i, j) = Gθ
dist(i, j)/[K(K − 1)]; the proportion of the (i, j)-pair occurrence.

2.4. Modeling Algorithms and Testing Metrics

This study employed three common supervised classification algorithms—CART,
SVM, and XGBoost—to construct classifiers. To ensure a fair comparison, default param-
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eters were utilized for all three methods, and the data was divided into 70% for training
and 30% for testing. In the CART algorithm, the default values of the two parameters,
minsplit and complexity (cp), were set as 20 and 0.01, respectively. For the SVM algorithm,
we used a radial kernel, and the two parameters, gamma and cost, were given the values
1/(number of features) and 1, respectively. In the XGBoost algorithm, since the prediction
objective was multiclass, the parameter objective was set to multi:softmax, and the parame-
ters nround, max_depth, and eta were set to 500, 0.1, and 15, respectively, with reference to
the number of data points and the number of features. The R packages rpart, e1071, and
XGBoost were employed to develop the CART, SVM, and XGBoost multiclass classification
models [25–27].

Throughout the model training phase, the elapsed time for training was systematically
recorded and treated as a performance metric. Evaluation of fully trained models involved
predicting the test set and computing the overall accuracy (OA) and testing time, using
the formula provided in Equation (8). Given the uneven distribution of testing samples
across categories, a multicategory confusion matrix and balanced accuracy were employed
to assess performance in each category, as outlined in Equations (6)–(9). The training and
testing were conducted on a personal computer featuring an i7-10700 CPU running at
2.90 GHz, 32 GB RAM, and Windows 10 Enterprise Edition. The confusion matrices and
evaluation metrics were computed using the R package caret [28].

Overall accuracy (OA) =
True positive + True negative

All
(6)

recall =
True positive

True positive + False negative
(7)

speci f icity =
True negative

True negative + False positive
(8)

Balance accuracy =
recall + speci f icity

2
(9)

3. Results
3.1. Feature Extraction

Table 4 shows the percentiles of the R, G, and B bands for each category, and Table 5
shows the time cost of extracting features in each image date and category. Due to the many
percentiles and combinations of bands and angles, only the 0%, 50%, and 100% percentiles
for each category and band are shown. Figure 8 shows the GLCM for Facility, Rice, and
Aqua on 2019/12, 2020/03, and 2020/06. Due to the vast number of possible combinations
of angles, dates, bands, and categories, the plot only displays the average GLCM for all
four angles and three bands. Additionally, only three categories deemed significant for
discussion have been selected for display.

Table 4. Mean values of the 0%, 50%, and 100% percentiles of the R, G, and B bands.

Category
R G B

0% 50% 100% 0% 50% 100% 0% 50% 100%

Overall 33.29 83.88 126.03 35.76 86.06 125.98 25.29 69.78 110.71
Aqua 23.20 38.93 56.92 27.58 43.77 60.96 25.01 39.95 57.39
Bean 49.95 107.17 146.84 49.26 103.83 140.86 26.37 75.71 115.96

Facility 37.22 107.56 167.64 38.37 110.22 169.58 40.79 112.27 170.42
Fruit 18.77 90.12 154.88 22.13 93.96 152.80 18.00 76.94 137.63

Maize 27.59 78.75 126.06 32.38 84.93 129.27 21.42 64.00 108.42
Rice 38.68 85.92 117.50 42.41 86.56 117.80 22.58 64.54 102.67

Sugarcane 35.59 102.72 153.18 35.03 100.58 149.45 24.23 81.63 127.20
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Table 5. The time cost of extracting features in each image date and category (Unit: seconds).

Category
Date

Total
2019/12 2020/03 2020/06

Rice 156.59 3930.27 7498.01 11,584.87
Bean 610.2 2854.04 1617.89 5082.13
Fruit 379.72 970.42 5042.93 6393.07

Facility 617.16 1325 6169.03 8111.19
Maize 2169.63 1219.09 2823.33 6212.05

Sugarcane 345.37 1047.59 3289.62 4682.58
Aqua 2694.87 1771.32 7427.65 11,893.84
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The values of the R and G bands shown in Table 4 were similar, with the differences
at the three percentiles being 2.47, 2.18, and 0.05. However, the values of the B band were
relatively lower, and the maximum differences to the other two bands at each percentile
were 8, 14.1, and 15.32. Nevertheless, such a relationship does not necessarily exist when
observing each category. For example, the 0% percentile values of Aqua were 23.2, 27.58,



Remote Sens. 2024, 16, 1221 11 of 19

and 25.01, where the G band had the highest value. However, the 100% percentile values
of Facility were 167.64, 110.22, and 170.42, where the R band had the highest value. In
addition, certain relationships existed among the percentile values of each category. For
example, the 100% percentile values of Aqua were 56.92, 60.96, and 57.39, which were
all lower than the 100% percentile values of the other categories, which were all higher
than 100. Another example was the 100% percentile values of Facility, which were 167.64,
169.58, and 170.42, which were the highest. The percentile value of different categories
shows different patterns, and these patterns can be used for classification in a machine
learning model.

The GLCM shown in Figure 8 was concentrated on the diagonal line of the matrix
irrespective of the category. The main difference among the categories was the concentration
trend and the location of the maximum probability obtained. For example, on 2019/12,
the GLCM of Rice showed a high concentration at (2, 2), while the other two categories
displayed a more scattered pattern. In addition, the GLCM of the same category may vary
considerably at different times. Again, in the case of Rice, for example, there is an obvious
difference in the GLCMs for the three dates. In contrast, there is not much difference in the
GLCMs for Facility on the three dates.

3.2. Overall Classification Results

Table 6 shows the OA and the time spent on model training and testing of six classifiers
constructed by the combination of three algorithms and two labeling methods. Because
the XGBoost algorithm allows training of the models by parallel computing, the CPU time
spent on training, which means the sum of computing resources consumed by each CPU
core, was also recorded.

Table 6. Overall classification results of each classifier, including the OA, training time spent, training
CPU time spent, and testing time spent.

Label 1 Label 2

CART SVM XGBoost CART SVM XGBoost

OA 0.527 0.731 0.808 0.562 0.756 0.820
Training
time (s) 19.22 590.67 140.65 28.81 402.47 259.13

Training CPU
time (s) 19.22 590.67 1962.22 28.81 402.47 3109.56

Testing time (s) 0.07 37.28 0.08 0.09 36.77 0.11

The relation among the overall classification accuracies of the six classifiers was
XGBoost with label 2 > XGBoost with label 1 > SVM with label 2 > SVM with label
1 > CART with label 2 > CART with label 1. The classifier with the XGBoost algorithm and
label 2 had the highest OA of 0.82, followed by the classifier with the XGBoost algorithm
and label 1. The worst-performing classifier used CART and label 1 and had an OA of
only 0.527.

In terms of time spent on model training, the classifier with the CART algorithm and
using label 1 took 19.22 s, which was the shortest time. In comparison, the classifier with
the SVM algorithm and using label 1 took 590.67 s, which was the longest time. For the two
tree-based algorithms CART and XGBoost, when label 2 was used, because the number of
categories increased, the training time also increased by about 50–80%. However, for the
SVM classifier, when using label 2, the training time was reduced by 30%, which showed
a different trend from the other two classifiers. In terms of CPU time spent on training,
the classifier with XGBoost and label 2 consumed the most computing resources, taking
3109.56 s.

In terms of time spent on model testing, the difference between the classifiers with the
same algorithm but using different labels was relatively minor. The SVM classifiers took
37.28 and 36.77 s for the two labels. For the CART and XGBoost classifiers, the testing time
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consumed was relatively lower and was about 0.1 s, which was about 0.2% of what the
SVM classifiers took.

3.3. Classification Results for Each Category

Figure 9 and Table 7 show the testing results of the six classifiers by confusion matrix
and accuracy, respectively. Due to mismatch in the size of testing data across categories,
balance accuracy was used in Table 7 for more accurate evaluation.
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Table 7. Testing balance accuracy of each classifier for each category.

Label Model Aqua Bean Facility Fruit Maize Rice Sugarcane

1
CART 0.86 0.71 0.70 0.66 0.71 0.50 0.50
SVM 0.95 0.80 0.88 0.81 0.83 0.71 0.71

XGBoost 0.96 0.85 0.90 0.87 0.88 0.81 0.83

2
CART 0.89 0.74 0.77 0.57 0.76 0.54 0.53
SVM 0.95 0.82 0.88 0.82 0.85 0.73 0.76

XGBoost 0.97 0.86 0.90 0.89 0.88 0.82 0.84

The confusion matrixes show that none of the data were predicted in the categories
Rice and Sugarcane of the classifier with CART and label 1, which means that the classifier
ignores these two categories during model training and misclassifies those data into other
categories. Although those two categories were predicted by the classifier with CART and
label 2, it does not achieve comparable accuracy to the other categories. In the classification
results of the classifiers with SVM and XGBoost, the problem that some categories were
ignored was not observed. The confusion matrixes of XGBoost were highly concentrated on
the diagonal line, which indicates that the classification was performed well. The results of
each category for the same classifier were different in the confusion matrixes. For example,
Aqua showed high accuracies for all classifiers while Rice and Maize performed poorly.

Table 7 also shows that the balance accuracy of Aqua for the classifier with XGBoost
and label 2 reaches the highest value of 0.97, and the classifier with XGBoost and label 1
reaches the second-highest value of 0.96. The categories Rice and Sugarcane with CART
and label 1 both had the lowest balance accuracy of 0.5, which means that all of the data
belonging to Rice or Sugarcane are predicted as other categories, as in the confusion matrix.
When observing results within a category, the classifiers with the XGBoost algorithm
obtained the most accurate prediction results, followed by those with SVM and CART. For
each classifier, model building using the XGBoost algorithm obtained the closest balance
accuracy among the categories, where the maximum difference between the best and the
worst performance was only 0.15. In contrast, the classifier with the CART algorithm had
the largest accuracy difference among the categories, which reached 0.36.

Irrespective of the algorithm applied, the OA of the classifiers trained with label 2
was better than that of classifiers trained with label 1, and the testing OA was improved
by 1–5%. For the classifiers with the XGBoost and SVM algorithms, label 2 improved the
balance accuracy by 1–5% for each category. However, for the classifiers with the CART
algorithm, label 2 reduced the accuracy of Fruit by 9% but improved the accuracies of the
other categories by 3–7%.

3.4. Classification Results for GLCMv, Haralick Feature, and Percentile

The left part of Figure 10 shows the testing accuracy when different feature combi-
nations were used. As discussed in Section 2.3.2, the percentiles, GLCMv, and Haralick
features (mean and standard deviation of the GLCM) of each band were extracted and
combined differently. Five feature sets, namely Haralick feature, GLCMv, percentiles, per-
centiles + Haralick feature, and percentiles + GLCMv, were used to test their contribution
to the classification problem. The algorithm and label used in the test were XGBoost and
label 2, respectively, to ensure the best performance. The highest accuracy was obtained
using percentiles + GLCMv, the same as the result in Section 3.2, with a total accuracy of
0.82. The classifiers using only percentiles and percentiles + Haralick feature showed the
second-highest accuracy (0.79), while the accuracies of using only GLCMv and Haralick
feature were 0.71 and 0.43, respectively. The result shows an improvement of about 3.6%
on overall accuracy when adding GLCMv to the classifier. We used McNemar’s test [29] to
compare the prediction results of percentiles, and percentiles + GLCMv. The p-value was
less than 10−15, indicating a significant difference between the two results.
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To understand the effect of features on the classification of different crops, the cat-
egories Aqua and Facility, which did not belong to crops, were removed to observe the
classification accuracy of different crop types only. The results are shown in the right part
of Figure 10. The accuracy trend among the feature sets was the same as in the left part
of the figure, which means that the classification results were not highly affected by Aqua
and Facility, and this system can perform well on different types of crops. The OA of using
the feature set percentiles + GLCMv dropped slightly to 0.81, while the accuracies of using
only the GLCMv and Haralick feature increased a little to 0.73 and 0.47, respectively. The
percentage of improvement and the result of McNemar’s test were the same as above.

4. Discussion
4.1. Resampling

Resampling is crucial for data preprocessing. It balances the sample size and allows
direct GLCM vector extraction. Two key parameters were the maximum amplification
factor (Xc) and the size of the resampled square image.

We selected a larger resampled image size to account for the variation in field types.
This ensures that the image can cover multiple objects on the ground, even if there is a
significant difference in size. Based on the field area listed in Table 2, even the most minor
field type, Fruit, has an average area of 0.47 ha, so a size of 100 square meters does not
occupy a significant portion of the field image. This allows us to create multiple resampled
images in the same field. According to Table 1, the number of fields in each category
varied greatly, and the smallest categories were Rice in 2019/12, Sugarcane in 2020/03, and
Sugarcane in 2020/06, with only 30, 41, and 50 fields, respectively. This limited number
of fields may make it challenging to train the machine learning models, and there is also
a risk of encountering an unbalanced size among categories. To minimize overlap and
increase the data size for the minor categories, we set the maximum amplification factor to
10. Based on the GSD of the images, it can be inferred that a 100-square-meter area would
contain tens of thousands to hundreds of thousands of pixels on different orthoimages. This
quantity of pixels was seen as a small size for image analysis, especially for the relatively
simple feature extraction methods. Therefore, it is not a computationally intensive event
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even though several resampled images were computed. However, it is important to note
that the parameters used for this process should be adjusted based on the GSD of the image,
field size, different field types, computational resources, and other relevant factors.

Table 8 presents the number of resampled images for each field type on three different
dates after resampling. It shows that this method expands the data size of the minor
category, resulting in a minimum image size of 300, which provides more images for the
training and testing of the machine learning algorithm. At the same time, by calculating the
amplification factor of different categories, the difference in the number of images between
categories was also reduced. The difference in the total number of images between the
categories with the smallest and the largest number of images was only 2.24 times.

Table 8. The size of resampled images for each category on 2019/12, 2020/03, and 2020/06.

Category
Date

Total
2019/12 2020/03 2020/06

Rice 300 1066 970 2336
Bean 1002 1070 740 2812
Fruit 650 570 720 1940

Facility 1008 930 944 2882
Maize 1980 846 862 3688

Sugarcane 1036 410 500 1946
Aqua 2512 1120 721 4353

4.2. Percentile and GLCM

The data presented in Table 4 reveal distinct differences between percentiles across
categories. For instance, Aqua’s percentiles were comparable to other categories at lower
percentiles but became lower than others at the 50th and 100th percentiles, irrespective of
the bands. In contrast, Facilities exhibit superiority over other categories only at the 100th
percentile. This underscores the importance of employing diverse percentiles as features,
as their combination may yield more effective categorization than relying solely on mean
or median values. Therefore, variations in percentiles across different categories suggest
the suitability of percentiles as color indices.

As indicated in the results, the concentration and trend of GLCMs varied not only
among different categories but also over time. For instance, in the case of Rice, the three
dates span from seedling planting to ripening, leading to significant differences in the rice
field images. We attribute the variation in GLCMs during these dates to this temporal
progression. While Facilities, being non-plant entities, exhibited minimal changes over
the three dates, Aqua, also non-plant, displayed substantial variations. We attribute this
difference to discrepancies in the locations of the three images and the inherent diversity
in Aqua images at those locations. Consequently, the variations in GLCM may arise from
changes within the category over time or regional disparities.

4.3. Comparison among the Algorithms

In terms of overall accuracy, both XGBoost and SVM produced classification results
with overall accuracies as high as 75.6% and 82%, while CART only achieved 52.6% accuracy.
Previous studies have shown that the use of SVM combined with GLCM can achieve good
classification results, and the results of this study show the same trend, indicating that SVM
can effectively capture important information from complex image features [3,14]. As can
be seen in a previous review, when the number of features is larger or the features become
more complex, CART may not be able to capture the critical information in the data, and
thus, the classification performance would be lower than that of other algorithms [16]. In
this study, due to the complexity of color and texture features, CART was disadvantaged in
handling such a problem compared to more complex algorithms such as SVM and XGBoost.

Comparing all three algorithms, the XGBoost algorithm outperformed others in all
three metrics: overall accuracy, training time, and testing time. XGBoost demonstrated
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efficient prediction capabilities for new data within a short timeframe. In previous studies,
RF was used as an example to show that the tree-based ensemble learning algorithm can
effectively use the structure of multiple trees to capture important features when combined
with the GLCM, and can utilize the voting mechanism to get better results [3,14]. The
same reason may also explain why XGBoost, which is also a tree-based ensemble learning
algorithm but more powerful, demonstrates such good accuracy. The observed testing time
trends align with findings in previous studies across various fields, suggesting XGBoost’s
suitability for agricultural image recognition [16,30,31]. Another notable advantage of
XGBoost is its capacity for accelerated training through parallel computing on platforms
with multiple CPU cores. While XGBoost consumes the most CPU time, indicative of
substantial computing resources, parallel computing significantly reduces the training
times, enhancing efficiency. However, the effectiveness of parallel computing depends
on the computing platform’s number of CPU cores and whether GPUs are utilized. In
scenarios with limited resources or single-core computing platforms, training times for
XGBoost may exceed those of other algorithms.

When assessing classifier performance within each category, it is evident that both
classifiers utilizing the CART algorithm exhibit lower accuracy in Rice and Sugarcane. This
phenomenon, where a classifier tends to overestimate the main category with a large sample
size or minimal intragroup variation while neglecting minor categories, is more likely in
datasets characterized by unequal sample sizes or a substantial number of categories [32].
To mitigate the oversight of minor categories, modifications to the algorithm’s loss function
or evaluation method can be considered to increase the associated penalty or by adopting
ensemble learning-based algorithms [32–35]. SVM employs a multiclass classifier formed
by voting on binary classifier results, reducing the tendency to overlook minor categories
through classifier ensembling [17]. XGBoost, an ensemble learning algorithm, aggregates
results from multiple classifiers, akin to the multiclass SVM mentioned earlier, effectively
preventing the neglect of minor categories. This elucidates why XGBoost exhibits high
accuracy in classifying multiclass image datasets.

4.4. The Effect of GLCM and Haralick Features

The outcomes reveal that the percentiles of images representing color features con-
tribute significantly to image classification, whether for all categories or exclusively for
crops. Emphasizing color features in the classifier yielded robust performance during
testing, aligning with findings from prior studies and underscoring the importance of
spectral information [3,36]. Combining the dataset with GLCMv and percentiles resulted
in an improved accuracy of approximately 2 to 3 percentage points. When comparing
GLCMv and Haralick features, employing only a single texture feature from GLCMv led
to a classification accuracy of 28 and 25 percentage points higher than that achieved with
Haralick features in two distinct scenarios. This suggests that the direct utilization of
GLCMv imparts more information than Haralick features, and proficient machine learning
algorithms adeptly capture more information from these features. Interestingly, when both
types of texture features were added to color features, accuracy improved only with the
inclusion of GLCMv, signifying that Haralick features did not provide supplementary infor-
mation to a model already equipped with information from color features. The proposed
resampling method for feature extraction obviates the need to calculate texture features
and generate feature maps, as required by sliding window methods. Moreover, it enables
the direct use of GLCMv from each field as features, thereby enhancing the provision of
valuable information.

4.5. Temporal Effect

To compare the impact of adding temporal effects on the data labels, we calculated the
Within-group Sum of Squares (WSS) for two sets of labels. The mean value of each feature
for every category was represented as the cluster center, and the Euclidean distance was
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calculated. Since each category in Label 1 corresponded to three categories in Label 2, we
aggregated the three WSS values for the same category to derive the WSS for Label 2.

In contrast to label 1, label 2 regroups the categories by the imaging date to reduce
variability. Table 9 shows the WSS for each category under label 1 and label 2, the reduction
in WSS using label 2, and the enhancement in Overall Accuracy (OA) for the XGBoost
classifier. Notably, substantial differences in WSS values exist among categories, with
Bean having the largest WSS at 2,364,385 and Sugarcane the smallest at 735,664 when
using label 1. Label 2 diminishes the WSS due to an increase in the number of group
centers in each category. Label 2 decreased the WSS of Rice and Bean by 66% and 31%,
respectively. The decreasing WSS indicates the difference in features across three photo
dates, and the difference is likely due to the changes in crop appearance throughout
different growth stages. The information on the imaging date leads to a WSS reduction, and
it likely contributes to the observed improvement in testing OA. This reduction in WSS also
explains why classifiers employing SVM can train faster using label 2, as a smaller WSS
could make the algorithm’s identification of support vectors more efficient and expedite
the training process [37].

Table 9. WSS of each category under two different labeling methods and the improvement in WSS
and the OA using label 2.

Aqua Bean Facility Fruit Maize Rice Sugarcane

Label 1 807,313 2,364,385 1,333,897 741,067 1,961,822 778,614 735,664
Label 2 649,441 1,626,266 1,183,913 667,866 1,754,380 267,928 690,059

WSS improvement 2% 31% 11% 1% 11% 66% 6%
Accuracy improvement 1% 1% 0% 2% 0% 1% 1%

5. Conclusions

In this investigation, we employ high-resolution and multitemporal visible-light RGB
UAV imagery for analysis. By integrating the texture and color features and utilizing
machine learning classification algorithms, we develop an effective multiclass classification
model to discern Taiwan’s fragmented and diverse agricultural lands. The most success-
ful model attains an overall accuracy of up to 82%. Exploiting the repetitive patterns
within the field images allows us to adapt the feature extraction process through resam-
pling, addressing the unequal number of samples, and facilitating the use of GLCMv as a
texture feature.

Advancements in machine learning algorithms have enabled us to achieve enhanced
classification accuracy using the same features. The XGBoost algorithm, rooted in ensemble
learning, surpasses its traditional CART or SVM counterparts in accuracy while exhibiting
shorter training times and rapid recognition capabilities. Regarding image features, we
utilize the percentiles of the three RGB bands as color features for distinguishing various
land-use types. Examining texture differences among land use types reveals that employ-
ing GLCMv as the texture feature yields more informative results, leading to improved
classification accuracy compared to using the Haralick feature. Leveraging more powerful
machine learning models and features containing richer information, such as GLCMv,
while entrusting the task of information extraction to the machine learning model, is a
preferable choice for enhancing model accuracy.

Concerning the temporal effect, our observations indicate that temporal disparities in
crop types were crucial in influencing classification outcomes. This underscores the need for
a more nuanced consideration of temporal differences in future analyses, where temporal
variations in crop imagery will be a focal point in our ongoing research. Moving forward,
we aim to delve into temporal and spatial variations more comprehensively. Simultaneously,
we aspire to leverage the features of GLCMs to furnish analyzable information on texture
differences that can serve as indices for tracking such variations.
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