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Abstract: The identification, classification and mapping of different plant communities and habitats is
of fundamental importance for defining biodiversity monitoring and conservation strategies. Today,
the availability of high temporal, spatial and spectral data from remote sensing platforms provides
dense time series over different spectral bands. In the case of supervised mapping, time series based
on classical vegetation indices (e.g., NDVI, GNDVI, . . .) are usually input characteristics, but the
selection of the best index or set of indices (which guarantees the best performance) is still based
on human experience and is also influenced by the study area. In this work, several different time
series, based on Sentinel-2 images, were created exploring new combinations of bands that extend
the classic basic formulas as the normalized difference index. Multivariate Functional Principal
Component Analysis (MFPCA) was used to contemporarily decompose the multiple time series. The
principal multivariate seasonal spectral variations identified (MFPCA scores) were classified by using
a Random Forest (RF) model. The MFPCA and RF classifications were nested into a forward selection
strategy to identify the proper and minimum set of indices’ (dense) time series that produced the
most accurate supervised classification of plant communities and habitat. The results we obtained
can be summarized as follows: (i) the selection of the best set of time series is specific to the study
area and the habitats involved; (ii) well-known and widely used indices such as the NDVI are not
selected as the indices with the best performance; instead, time series based on original indices (in
terms of formula or combination of bands) or underused indices (such as those derivable with the
visible bands) are selected; (iii) MFPCA efficiently reduces the dimensionality of the data (multiple
dense time series) providing ecologically interpretable results representing an important tool for
habitat modelling outperforming conventional approaches that consider only discrete time series.

Keywords: sentinel-2; time-series; functional data analysis; multivariate functional principal component
analysis; habitat mapping; supervised classification; remote sensing; land surface phenology

1. Introduction

Classifying and mapping plant communities and habitats are crucial for biodiversity
monitoring and defining conservation strategies for Natura 2000 sites in Europe [1,2].
Currently, vegetation mapping benefits from the growing availability of high-quality data
from remote sensing platforms such as Landsat, MODIS and Sentinel [3,4]. These platforms
offer multi-temporal and multi-spectral time series data enabling the capture of seasonal
variations in spectral reflectance related to the different phenological stages of vegetation
(i.e., vegetation seasonality). These kinds of data are essential for an accurate supervised
classification and mapping of plant communities and habitats [5–13]. Many studies have
demonstrated the potential of direct machine learning applications for raw satellite multi-
temporal data [14–18]. These models, which we can define as ‘Pure Machine Learning’
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according to Durell et al. [19], usually use time series of individual spectral bands or
classic vegetation indices, such as the popular NDVI [20], consisting of a limited number of
scenes within a single year. However, these models rely on human experience and prior
knowledge of the best data acquisition time points and the most suitable set of indices to
capture habitats during their optimal phenological stages. Therefore, these models face
challenges in terms of transferability [21]. It is clear that recommending universal optimal
time points and indices for all habitats across diverse study areas with varying vegetation
and ecological characteristics is not feasible, despite the availability of indices tailored
for specific applications [22,23]. In this context it is necessary to develop adaptable and
transferable models that can autonomously select suitable indices and determine the ideal
times for data acquisition based on the specific vegetation and ecological characteristics of a
study area. A carefully selected set of area-specific indices offers significant advantages for
land management organisations in compliance with national and international guidelines,
such as the Habitats Directive [1,24,25]. These models should handle dense time series of
remotely sensed data. Such data, which, in a specific time window, provide a richer wealth
of information than multi-temporal data, are optimal for analysing seasonal changes in
vegetation and improving classification accuracy [26,27].

Recently, promising methods known as ‘Hybrid statistical-functional Machine
Learning’ [19], which combine machine learning with Functional Data Analysis (FDA) [28],
have been employed to classify and map vegetation and habitats in two Natura 2000 sites [29,30].
Exploring such hybrid models is essential because they are capable of efficiently analysing
dense time series of remote sensing data. The results are not only accurate but also facilitate
interpretations and provide support to phytosociologists and ecologists in understanding
the temporal spectral behaviour of plant associations (plant communities) [31–33]. The
efficiency of analysing dense time series by FDA lies in its fundamental philosophy, which
considers observed data functions as single entities, rather than merely as a sequence of
individual observations [34]. In practice, if the entire time series of a pixel is expressed
as a time function and considered as a single statistical unit, then a stack of remotely
sensed images (a cube with x, y and t axes) is considered as a single temporal archive [35],
essentially composed of as many functions as there are pixels in the area under test. The
pixel-based functions (times series) of remotely sensed data can be thought of as points (or
pixels) within a functional space [34]. The functional space can be univariate or multivari-
ate, depending on the number of metrics (band or indices) used to describe and track the
spectral variations within it (Figure 1).

Functional Principal Component Analysis (FPCA) is one of the most popular tech-
niques in FDA for reducing the amount of functional data [36,37]. FPCA adapts traditional
Principal Component Analysis (PCA) concepts to functions, allowing it to identify the
main modes of variation among observations (functions) within a univariate functional
space. It is evident that multivariate functional spaces are more natural and effective than
univariate ones when describing spectral variations in vegetation (Figure 1). This is because
seasonal patterns manifest differently across various spectral bands and vegetation indices,
depending on the phenological stages of vegetation [26]. Multivariate Functional Principal
Component Analysis (MFPCA) is well-suited for analysing multivariate functional spaces.
MFPCA decomposes the multivariate functional space into a set of orthogonal multivariate
functional principal components or modes of variation of functions (multivariate eigenfunc-
tions), together with corresponding functional principal component scores (FPC scores).
These FPC scores summarize the similarities between observations (functions), providing a
compact representation of the data (one score value per multivariate principal component
and per observation). In addition, these scores are uncorrelated by construction [38]. They
can then serve as a building block for further statistical analyses such as unsupervised
clustering, supervised classification methods or functional principal component regression
with multiple covariates [39].
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Figure 1. Spectral variations in remotely sensed images over time. (a) Finite discrete time series: this 
panel shows a typical representation of remotely sensed data captured at discrete points in time 
(raw data). Each point on the graph represents data from a specific moment. (b,c) Spectral variations 
in pixels as functions of time (smoothed representation of variations). These two panels show how 
individual pixel spectral characteristics evolve over time, simplifying trend observation. In detail 
(b) defines a univariate functional space that describe the spectral variations in pixels characterized
by a single band or index, such as NDVI. This helps us to understand how one specific aspect of
vegetation changes over time while (c) shows spectral variations in pixels characterized by multiple
bands or indices, such as NDVI, GNDVI and NDWI, defining multivariate functional space (this
allows us to study how different aspects of vegetation change together over time.

In this study, we develop new hybrid models that combine machine learning with 
MFPCA. MFPCA, the best of our knowledge, has not been previously used for supervised 
classification of habitats and vegetation. We believe that these models are valuable for an-
alysing multivariate satellite dense time series, simultaneously considering seasonal spec-
tral variations from different bands or vegetation indices, and for evaluating new vegeta-
tion indices through combinatorial calculations using different formulas to identify dis-
tinctive features for classification. To further improve classification performance and cre-
ate interpretable models, we include a selection strategy to retain only relevant index time 
series and exclude unnecessary ones. Our study was conducted in two Natura 2000 sites 
in central Italy, characterized by different environmental conditions and vegetation types. 
We configured three distinct hybrid models by varying input data types and feature se-
lection strategies and compared the results. 

The objectives of this study aim to address the following questions: 
1. Do supervised hybrid classification approaches based on FDA produce a higher ac-

curacy compared to machine learning methods directly applied to raw multi-tem-
poral data in both test sites?

2. Among the examined hybrid approaches, is there one that consistently achieves the
highest accuracy in both test sites?

3. Among the explored formulas, is there one that consistently produces the highest
accuracy in both test sites?

4. Can an appropriate set of indices be identified for each study site?

Figure 1. Spectral variations in remotely sensed images over time. (a) Finite discrete time series:
this panel shows a typical representation of remotely sensed data captured at discrete points in time
(raw data). Each point on the graph represents data from a specific moment. (b,c) Spectral variations
in pixels as functions of time (smoothed representation of variations). These two panels show how
individual pixel spectral characteristics evolve over time, simplifying trend observation. In detail
(b) defines a univariate functional space that describe the spectral variations in pixels characterized
by a single band or index, such as NDVI. This helps us to understand how one specific aspect of
vegetation changes over time while (c) shows spectral variations in pixels characterized by multiple
bands or indices, such as NDVI, GNDVI and NDWI, defining multivariate functional space (this
allows us to study how different aspects of vegetation change together over time.

In this study, we develop new hybrid models that combine machine learning with
MFPCA. MFPCA, the best of our knowledge, has not been previously used for supervised
classification of habitats and vegetation. We believe that these models are valuable for
analysing multivariate satellite dense time series, simultaneously considering seasonal
spectral variations from different bands or vegetation indices, and for evaluating new
vegetation indices through combinatorial calculations using different formulas to identify
distinctive features for classification. To further improve classification performance and cre-
ate interpretable models, we include a selection strategy to retain only relevant index time
series and exclude unnecessary ones. Our study was conducted in two Natura 2000 sites in
central Italy, characterized by different environmental conditions and vegetation types. We
configured three distinct hybrid models by varying input data types and feature selection
strategies and compared the results.

The objectives of this study aim to address the following questions:

1. Do supervised hybrid classification approaches based on FDA produce a higher accu-
racy compared to machine learning methods directly applied to raw multi-temporal
data in both test sites?

2. Among the examined hybrid approaches, is there one that consistently achieves the
highest accuracy in both test sites?

3. Among the explored formulas, is there one that consistently produces the highest
accuracy in both test sites?

4. Can an appropriate set of indices be identified for each study site?

This work is structured as follows: in Section 2 we introduce the materials and methods,
focusing on the study area and the ‘hybrid statistical–functional–machine learning’ models
to analyse and classify dense remotely sensed time series. In Section 3 we present the results
of our methodology applied to two different case studies. In Section 4 we discuss the results
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and the impact of the developed approach, and in Section 5 we provide conclusions and
outline future work.

2. Materials and Methods

In this section we present two distinct approaches for classifying remotely sensed
data (see Figure 2). We begin by collecting Sentinel-2 satellite time series data, which
can be directly classified using Random Forest (first approach: ‘Pure Machine Learning’).
Alternatively, spectral bands and indices created through combinatorial methods were
transformed into continuous functions using Generalized Additive Models (GAM) and
analysed with FDA (including FPCA and MFPCA). Random Forest can then be used to
classify the FPCA-MFPCA scores (second approach: ‘Hybrid statistical-functional-Machine
Learning’). Further details are provided in the following sub-section. The developed R code
is available in [40].
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Figure 2. Starting from a set of Sentinel-2 images, we trigger a processing pipeline that extracts the
most relevant vegetation indices that could be used to characterize the study area.

2.1. Study Area

This study focuses on two distinct areas of central Italy, specifically in the Marche
region, which are part of the Natura 2000 network (Figure 3). The first area of interest is
Mount Conero, situated in the coastal area of central Marche (43◦33′00′′N, 13◦36′00′′E). It
is a Special Area of Conservation (SAC) known as ‘Monte Conero’ (code IT5320007) and
covers an area of 650 hectares. Mount Conero has an elevation of 572 m above sea level, with
an average annual precipitation of 710 mm and a mean annual temperature of 14.9 ◦C. The
second study area is the ‘Gola di Frasassi’ (code IT5320003), also referred to as the Frasassi
Gorge, located in the mountainous region of central Marche’s Apennines (43◦23′23′′N,
12◦57′36′′E). This SAC spans an area of 728 hectares and reaches an altitude of 935 m above
sea level. The average annual precipitation in this area is 1115 mm, while the mean annual
temperature is 12.7 ◦C. According to the bioclimatic classification of Rivas-Martinez [41],
both study areas belong to the temperate sub-Mediterranean macrobioclimate. The first
area is characterised by a strong sub-Mediterranean level with pronounced summer aridity,
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while the second area is characterised by a weak sub-Mediterranean level indicating lower
summer aridity [42].
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Figure 3. The two study areas: (a) national and (b) regional overview of the two study areas;
S1 is the Frasassi Gorge, and S2 is Mount Conero. (c) Panoramic image of the Frasassi Gorge area.
(d) Panoramic image of the Mount Conero area. (e) Reference data on the Digital Elevation Model
with the boundary of the Frasassi Gorge Special Area of Conservation (SAC IT5320003). (f) Reference
data on the Digital Elevation Model with the boundary of the Mount Conero area of interest.
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2.2. Target Classes and Reference Data

Different vegetation types (recognised using the Braun-Blanquet approach) and the
corresponding 92/43/EEC habitats are present in the two study areas. In the Mount
Conero area, there are four different forest plant communities while the Frasassi Gorge area
encompasses eight different vegetation typologies (four forests, two shrubs, one grassland
and a mosaic of garrigue and chasmophitic vegetation). Detailed descriptions are provided
in Table 1 and [29,30].

Table 1. Reference data for the study areas. Target classes for the supervised classification are listed.
For plant associations, we report the syntaxa name and the corresponding habitat code (Annex 1 of
the European Union Habitats Directive). The * denotes a priority habitat.

Class Plant Association (Syntaxa) Habitat Code Plots

Mount Conero area 172

Woods

c1 Quercus ilex evergreen forest with a high occurrence of Mediterranean species
Cyclamino hederifolii-Quercetum ilicis [43]. 9340 34

c2 Quercus ilex with deciduous trees mixed forest Cephalanthero longifoliae-Quercetum ilicis subass.
ruscetosum hypoglossy [43]. 9340 71

c3 Ostrya carpinifolia coastal deciduous forest Asparago acutifolii–Ostryetum carpinifoliae [44,45]. - 13
c4 Evergreen conifer forest plantations mostly dominated by Pinus halepensis and P. pinea [46]. - 54

Frasassi Gorge area 241

Woods

v1 Quercus ilex (with deciduous trees) appenninic forest Cephalanthero longifoliae-Quercetum ilicis
subass. lathyretosum veneti [43]. 9340 34

v2 Quercus pubescens deciduous forest—Cytiso sessilifolii-Quercetum pubescentis [47,48]. 91AA * 28
v3 Ostrya carpinifolia deciduous appenninic forest—Scutellario columnae-Ostryetum carpinifoliae [49]. - 56
v4 Evergreen conifer forest plantations mostly dominated Pinus nigra ssp. nigra and P. halepensis Mill. [50]. - 31

Shrublands

v5 Spartium junceum Shrub—Spartio juncei-Cytisetum sessilifolii Spartium junceum variant
(Edoardo Biondi & Casavecchia, 2002). - 16

v6 Junyperus oxycedrus shrub—Spartio juncei-Cytisetum sessilifolii Juniperus oxycedrus variant [51]. - 15
Grasslands

v7 Bromus erectus grassland—Asperulo purpureae-Brometum erecti [52]. 6210 * 16
Mosaic of garrigues and vegetation of rock and scree

v8

Satureja montana Garrigues Cephalario leucanthae-Saturejetum montanae
(could include 6110 and 6220 habitats);

Potentilla caulescens and Moehringia papulosa chasmophytic vegetation of shady and
wet rocky gorge’s wall—Moehringio papulosae-Potentilletum caulescentis

(habitat 8210 “Calcareous rocky slopes with chasmophytic vegetation”) [52,53].

6110, 6220, 8210 46

The collected reference data, distributed over the two study areas are presented in Figure 3.

2.3. Remote Sensing Data Collection and Generation of Vegetation Indices

Sentinel-2 L2A images were acquired using the Sen2r package version 1.6.0 [54]. A
total of 93 scenes (spanning from April 2017 to April 2020, as shown in Table A1) were
collected for the two study areas, ensuring a cloud cover below 25% within the training plots.
The images were pre-processed by masking the clouds and performing co-registration. A
spatial resolution of 10 m was used, with the bands at 20 m being resampled using the
nearest neighbours approach. Starting from the review of existing indices as in [55], we
tried to summarize basic formulas, but we also considered other mapping functions. We
considered up to 4 operands with basic rules to have a spectral order. The rules have been
introduced to ensure a link with well-known indices such as the NDVI (type #3 in Table 2).
The list of formulas is not related to a specific sensor/payload, and it could be applied to
data acquired using aerial and satellite platforms. We considered Sentinel-2 bands, but the
proposed approach can be applied to different types of platforms (e.g., Landsat-8).
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Table 2. List of formulas for different types of indices. We analyse formulas with 2–4 operands and
constraints on band order. We considered the following Sentinel-2 bands: B2, B3, B4, B5, B6, B7, B8*,
B11, B12; * corresponds to B8–NIR (832.8 nm). More info of Sentinel-2 bands could be found here [56].

Formula #id Formula # of Operands Constraint #1 Constraint #2 # of Combinations

0 A 1 - - 9
1 A − B 2 A > B - 36
2 A/B 2 A > B - 36
3 (A − B)/(A + B) 2 A > B - 36
4 (A − B)/C 3 A > B C > B 84
5 (A − B)/(C + B) 3 A > B C > B 84
6 (A − B)/(C − B) 3 A > B C > B 84
7 (A − B)/(A + B)

(A + C)/(A − C)
3 A > B A > C 84

8 ((A − B)/(A + B))((D − C)/(D + C)) 4 A > B D > C 126
9 A/B(C − D)/(C + D) 4 A > B C > D 126

10 A/B(A − C)/(A + C) 3 A > C - 84
11 A/B(B − C)/(B + C) 3 B > C - 84
12 A/B·C/D 4 - - 126
13 (A − B)/(A + B + C + 1e4) 3 A > B - 84
14 ((A − C)− (B − D))/((A − C) + (B − D)) 4 A > C B > D 126
15 (A − B)/(A + B + C) 3 A > B B > C 84
16 (A − B)/((A + B − C) + 1e4) 3 A > B B > C 84
17 (2A − B − C)/(2A + B + C) 3 A > B B > C 84
18 (A − (B + C))/(A + (B + C)) 3 A > B A > C 84
19 log(A/B) 2 - - 36
20 (A − B)·C 3 A > B - 84

2.4. Time Series as Functional Data

We arranged the 93 Sentinel-2 images chronologically by Day of the Year (DoY), Refs. [57–59]
addressing outliers using the clean.ts() function from the R package forecast version
8.12 [60,61]. DoY values were aggregated into weekly averages (1–52 weeks) (e.g., Figure 4a).
We interpolated and smoothed the weekly values using a GAM model with cyclic penalized
cubic regression spline smooth (with default settings) [62]. GAMs have the advantage that
they do not require measurements (like those of spectral bands) to be uniformly distributed,
which is useful since clouds and other data issues cause random gaps in the data [63].
This process generated a weekly functional cubic cyclic spline representation of spectral
variations in the plots (e.g., Figure 4b), and we applied it to all index formulas listed in
Table 2. As mentioned in [36], the original discrete data were then set aside and the esti-
mated curves (Figure 4b) were used for the rest of the analysis. The example R code for
time series smoothing is available in [40] (repository ‘habitatmapmfpca’).
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2.5. Analysis of Functional Data Using FPCA and MFPCA

FPCA is a widely used FDA technique to reduce the amount of functional data [36,37].
It adapts traditional PCA concepts to functions, while preserving the functional structure
(i.e., chronological order) of the observations (curves) [64]. FPCA extracts principal compo-
nents (eigenfunctions representing the main modes of data variation) from the estimated
curves, providing eigenvalues to quantify the captured variation and FPC scores to quantify
curve similarities [32]. It is suitable for exploring and decomposing univariate functional
spaces defined by a single variable. MFPCA extends FPCA to multivariate functional data,
such as multiple bands or vegetation indices (Figure 1). It captures joint variations between
functions, decomposing the data into orthogonal multivariate functional principal compo-
nents (multivariate eigenfunctions) with eigenvalues and component scores. This provides
a parsimonious data representation, with one score value per multivariate principal com-
ponent per observation. The MFPCA scores, uncorrelated by construction, could be used
for further statistical analyses (e.g., unsupervised functional clustering, supervised func-
tional classification) [38] and graphical representation of the results for interpretation [32].
Univariate FPCA used the fdaPace R package version 0.5.5 [65] while MFPCA used the
approach from [38] implemented in the associated R package version 1.3.6 [66].

2.6. Random Forest Classifier

Random Forest (RF) is a powerful ensemble learning classifier commonly used in
habitat mapping studies based on remote sensing data [67]. We optimized RF performance
by adjusting two key parameters: ntree (set to 1500) and mtry (evaluated from 1 to the
square root of input variables) [68]. Imbalanced training and validation data can bias RF
models in vegetation-related studies, over-predicting majority classes and under-predicting
minority classes. To address this, we employed down-sampling in RF to balance class
frequencies [29,69]. Additionally, we applied Recursive Feature Elimination to select
important predictors and reduce input data dimensionality, enhancing model efficiency.
These settings were maintained for all different supervised classification approaches (see
following section).

2.7. Supervised Classification Approaches

We conducted supervised vegetation classification using Sentinel-2 temporal spectral
variations through two approaches: ‘Pure Machine Learning’ and ‘Hybrid Statistical-
Functional Machine Learning’ [19]. In the ‘Pure Machine Learning’ approach, we directly
applied the RF classifier to raw Sentinel-2 multi-temporal imagery. The ‘hybrid’ approach
integrated RF with FDA of dense time series, utilizing FPCA and MFPCA analyses for
supervised classification. Specifically, we designed three hybrid models, each generating
distinct input datasets for the classifier, consisting of separate FPCA and MFPCA scores.
Details of these models are provided in the following subsections.

2.7.1. Pure Machine Learning Approach

Applying RF (or other machine learning methods) directly to raw satellite multi-
temporal imagery data from discrete time series is a common method for vegetation and
habitat mapping. These time series, typically based on a limited number of cloud-free
scenes (e.g., <15%) selected within one year, can be constructed using individual spectral
bands or predefined vegetation indices chosen by the authors [6,14,15,17,18,70–72]. In our
study we used Sentinel-2 spectral bands discrete time series as input data for RF, avoiding
an uncritical pre-selection among various available vegetation indices. We selected cloud-
free images from 2019 according to the criteria discussed above, providing the broadest
temporal coverage across different months for our study areas. For the Frasassi Gorge
study area we selected 9 images (excluding January, May, November, and December due to
cloud cover), and for the Mount Conero Area we selected 12 images (excluding January,
September and December due to cloud cover) (see Table A1). This approach, considered as
a baseline model, is referred to as B.
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2.7.2. Hybrid Statistical–Functional–Machine Learning Approach

The first hybrid model used is the one proposed in [29], and referred to as mF. It
involves analysing Multivariate Functional Spaces using multiple univariate FPCAs, one
for each weekly vegetation index time series. The input data for RF consists of all uni-
variate FPCA component scores. While mF models can be effective in terms of Overall
Accuracy, it is important to note that the dimensionality of the input data can increase
rapidly since univariate FPCA can extract about 6–7 components from each weekly veg-
etation index time series. The R code was developed in [29] and is available in [40]
(repository ‘habitatmapfrasassi’).

For the second hybrid model, we applied MFPCA to simultaneously analyse and com-
press all weekly vegetation index time series generated by specific formulas (e.g., 36 indices
for formula id #3—Table 2). We decided to extract a maximum of 36 multivariate func-
tional principal components, balancing computational efficiency with effective vegetation
characterization and classification. This decision was guided by the fact that, as previously
mentioned, univariate FPCA typically only extracts about 6–7 components [29]. The result-
ing MFPCA components (multivariate eigenfunctions) and their scores offer a concise data
representation [38]. The MFPCA scores for these 36 components served as input for the RF
model, and this approach is denoted as M.

The third strategy aims to enhance vegetation classification accuracy by selecting a
reduced set of time series indices specific to the study areas. This approach combines FPCA,
MFPCA and RF through forward selection. For each iteration, an index time series was
added and classified by RF (initially decomposed with univariate FPCA and subsequently
with MFPCA). This process continued until no additional time series improved the model,
with improvement assessed using the Overall Accuracy metric. As in the case of the M
models, we limited MFPCA to extract a maximum of 36 components. The MFPCA scores
from the selected index time series served as RF input data. This strategy is labelled Ms.
The R code is available in [40] (repository ‘habitatmapmfpca’).

2.8. Accuracy Evaluation and Models Comparison

We assessed model accuracy using Overall Accuracy (OA), Producer Accuracy (PA),
User Accuracy (UA) and the κ coefficient [73,74]. More details are reported in Table S1.
To ensure robust estimates and minimize bias, we conducted 10-fold cross-validation
five times, resulting in a cross-validated confusion matrix. RF models and accuracies
were evaluated using the R caret package version 6.0.86 [75]. To compare all models
simultaneously in terms of accuracy and complexity, we recorded OA, PA, the number of
selected predictors (pr) and the final mtry of the RF model as columns in a data matrix.
Each model (B, Ms, M, mF applied to each formula) was represented as a row in the matrix.
Subsequently, we conducted a standardized Principal Component Analysis (PCA) on the
data matrix.

3. Results
3.1. Models Performance and Comparison

The OA of the models is presented for both study areas, categorized into Pure Machine
Learning and Hybrid Machine Learning approaches. Within the Hybrid Machine Learning
category, the results are further detailed based on the different modelling strategies and
indices formula ids. See Table 3 and Figure 5 for a summary of the results.

In the Mount Conero area, the baseline B model achieved an OA of 81.8%. Among
the hybrid models, mF models exhibited an average OA of 84.3%, with the highest OA of
86% achieved using formula id #11 and the lowest at 81.6% with formula id #1. The M
models had an average OA of 78.6%, with the highest OA of 85.6% obtained with formula
id #18 and the lowest at 66.3% with formula id #8. The Ms models achieved an average OA
of 84.4%, with the highest OA of 87.2% linked to formula id #15 and the lowest at 77.9%
with formula id #4.
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For the Frasassi Gorge area, the B model achieved an OA of 76.9%. Among the hybrid
models, the mF models showed an average OA of 80.9%, with the highest OA of 82.9%
achieved using formula id #3 and the lowest at 77.3% with formulas ids #0 and #1. The
M models had an average OA of 74.2%, with the highest OA of 82.3% using formula id
#7 and the lowest at 63.4% with formula id #17. Additionally, the Ms models obtained an
average OA of 83.1%, with the highest OA of 86.5% linked to formula id #15 and the lowest
at 81.1% with formula id #19.

Table 3. Comparison of model and formula performances in the two study areas based on Overall
Accuracy. B—baseline model (Pure Machine Learning approach). mF, M, Ms—RF models based on
Functional Data Analysis (Hybrid statistical—functional–Machine Learning approach). Formula id
represents the different formulas used to generate indices detailed in Table 2. CO—Mount Conero
area. VM—Frasassi Gorge area. In grey if the accuracy exceeds that of B. In bold, the best performance
for each distinct hybrid approach.

Mount Conero Frasassi Gorge

Formula #id B mF M Ms B mF M Ms

0 0.818 0.826 0.812 0.812 0.769 0.773 0.785 0.812

1 0.816 0.838 0.835 0.773 0.778 0.845

2 0.844 0.768 0.839 0.816 0.675 0.824

3 0.849 0.825 0.849 0.829 0.817 0.829

4 0.857 0.790 0.779 0.811 0.733 0.832

5 0.857 0.793 0.859 0.819 0.731 0.842

6 0.841 0.675 0.842 0.808 0.646 0.815

7 0.854 0.802 0.860 0.818 0.823 0.836

8 0.831 0.663 0.838 0.816 0.644 0.840

9 0.856 0.797 0.848 0.816 0.754 0.840

10 0.835 0.778 0.840 0.792 0.667 0.811

11 0.860 0.790 0.860 0.825 0.708 0.828

12 0.842 0.732 0.851 0.825 0.668 0.814

13 0.828 0.826 0.844 0.784 0.764 0.832

14 0.844 0.819 0.838 0.802 0.778 0.840

15 0.847 0.838 0.872 0.813 0.810 0.865

16 0.832 0.814 0.843 0.783 0.787 0.828

17 0.845 0.671 0.847 0.798 0.634 0.856

18 0.845 0.856 0.857 0.806 0.798 0.835

19 0.850 0.829 0.850 0.805 0.813 0.811

20 0.852 0.794 0.851 0.820 0.764 0.822

mean 0.818 0.843 0.786 0.844 0.8 0.806 0.742 0.831

In both study areas, the Ms and mF models consistently outperformed the M and
B models, achieving a higher Overall Accuracy of 9.6 percentage points in the Frasassi
Gorge area, and 5.4 percentage points in the Mount Conero area (see Figure 5 and Table 3).
Furthermore, using indices (formula ids #1–#20 in Table 3) in the Ms and mF models
demonstrated superior performance compared to using individual bands (formula id #0 in
Table 3). In both study areas, the highest OA was achieved by the Ms models applied to
vegetation indices with formula id #15 (see Tables 2 and 3 for its definition).
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Figure 5. Comparison of Overall Accuracy (OA) among different model strategies for the two study
areas. The dashed line represents the OA achieved by the baseline B model using a Pure Machine
Learning approach. M, mF and Ms are three hybrid model strategies combining Random Forest with
Functional Data Analysis (Hybrid statistical–functional–Machine Learning approach). (a) Mount
Conero area. (b) Frasassi Gorge area.

Tables A2 and A3 offer a comprehensive overview of all models for both the Mount
Conero and Frasassi Gorge areas providing accuracy (OA and PA), and complexity metrics
(number of selected predictors, pr, and the final mtry of the RF). PCA of these tables
(Figure 6) allows for a visual representation that facilitates model comparison based on
their multivariate (inter- and intra-group) variability. Similar models are close together, and
dissimilar models are further apart. The properties of the models are indicated by black
arrows. The B model is represented by a red triangle, while the mF, M and Ms models
applied to different formulas are represented in spider plots with distinct colours. The first
principal component (PC1) axis, accounting for 49.5% and 43.8% of the total variation in the
Mount Conero and Frasassi Gorge areas, respectively, indicates an increasing gradient of
accuracy among the models. It clearly shows that the Ms and mF models outperform the B
and M models in both OA (as shown in Table 3 and Figure 5) and PA. The second principal
component (PC2) axis, which accounts for 22.5% and 17.0% of the total variation in the
Mount Conero and Frasassi Gorge areas, respectively, is directly related to the increasing
number of predictors used as input data (pr) and the mtry value.

PCA analysis reveals that the Ms models are the most parsimonious, achieving the
highest OA and PA accuracy while using the fewest predictors and mtry (Figure 6).

Tables S2 and S3 provide details from the forward selection procedure used by Ms
models. These tables outline the selected bands and indices that constitute the minimal
set needed to optimize model performance in each formula and study area. The number
of time series (bands or indices) selected ranged from 1 to 9 (1 to 7 for the Mount Conero
area and 2 to 9 for the Frasassi Gorge area). The most frequently involved bands in the
selected indices (in descending order) for the Frasassi Gorge area were B7, B5, B11, B4, B3,
B12, while band B8 was the least utilized. For the Mount Conero area, the most utilized
bands were B7, B6, B11, while bands B8 and B5 were less utilized.
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2 for 17.0%. Labels: OA–Overall Accuracy; sd–standard deviation; pr–number of input variables
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3.2. Best Models

The Ms models applied to formula id #15 (see Tables 2 and 3) achieved the highest OA in
both study areas. Below, we summarise the accuracy results of these models and compare them
to the B models by showing the error matrices (Tables 4 and 5). In the Supplementary Materials,
detailed graphical representations of the two Ms models are provided (Figures S1 and S2),
illustrating the selected time series and functional decomposition via MFPCA with the
most discriminating components (seasonal variation) for the different vegetation types.

Table 4. Cross-validated confusion matrix (10-fold, repeated five times) for predicted target classes
in the Mount Conero area. The table includes Overall Accuracy, Producer Accuracy, User Accuracy
(expressed in percentage) and the κ statistic. The rows and columns (c1–c4) represent the plant
associations and habitats listed in Table 1. B—baseline model (Pure Machine Learning approach).
Ms-F15 (Ms model with the Formula id #15) is the top-performing model in terms of Overall Accuracy
among the RF models based on Functional Data Analysis (Hybrid statistical–functional–Machine
Learning approach). Pred stands for prediction.

B Ms-Formula id #15

Reference Reference

c1 c2 c3 c4 UA c1 c2 c3 c4 UA

Pred

c1 16.2 3.2 0.0 2.1 75.5

Pred

c1 39.2 3.7 3.1 3.4 79.4
c2 4.0 36.2 3.9 3.0 76.9 c2 1.3 16.9 0.0 0.7 89.7
c3 0.0 0.3 3.5 0.0 91.2 c3 0.0 0.0 4.3 0.0 100.0
c4 0.9 0.8 0.0 25.8 93.8 c4 0.1 0.6 0.0 26.7 97.5

PA 76.8 89.3 47.7 83.7 PA 96.6 80.0 58.5 86.7

OA 81.79 (±9.50) OA 87.18 (±7.82)

K 0.72 (±0.14) K 0.80 (±0.11)



Remote Sens. 2024, 16, 1224 13 of 26

Table 5. Cross-validated confusion matrix (10-fold, repeated five times) for predicted target classes
in the Frasassi Gorge area. The table includes Overall Accuracy, Producer Accuracy, User Accuracy
(expressed in percentage) and the κ statistic. The rows and columns (v1–v8) represent the plant
associations and habitats listed in Table 1. B—baseline model (Pure Machine Learning approach).
Ms-F15 (Ms model with the Formula id #15) is the top-performing model in terms of Overall Accuracy
among the RF models based on Functional Data Analysis (Hybrid statistical–functional–Machine
Learning approach). Pred stands for prediction.

B

reference

v1 v2 v3 v4 v5 v6 v7 v8

pred

v1 11.7 0 1.32 0.74 0 0 0 0 84.9
v2 0 5.87 1.49 0 1.07 0 0.17 0 68.3
v3 0.58 4.96 18.6 0.41 1.16 0 0 0 72.3
v4 1.4 0 0.33 11.7 0 0.83 0 0 82.0
v5 0.17 0.74 0.17 0 2.07 0 0.25 0.41 54.3
v6 0 0 0 0 0.66 4.38 0 0.83 74.6
v7 0 0 0.41 0 0.33 0 5.37 0.25 84.4
v8 0.25 0 0.83 0 1.32 0.99 0.83 17.5 80.6

PA 82.9 50.7 80.4 91.0 31.3 70.7 81.3 92.2

OA 76.99 (±7.07)

K 0.72 (±0.08)

Ms-Formula id #15

reference

v1 v2 v3 v4 v5 v6 v7 v8 UA

pred

v1 13.4 0.0 0.6 0.1 0.0 0.0 0.0 0.0 95.3
v2 0.0 6.8 0.9 0.3 0.6 0.0 0.0 0.0 78.8
v3 0.4 4.3 21.3 0.4 0.2 0.4 0.0 0.0 78.9
v4 0.2 0.0 0.3 12.0 0.0 0.0 0.0 0.0 95.4
v5 0.0 0.2 0.0 0.0 3.8 0.0 0.4 0.0 85.2
v6 0.0 0.0 0.0 0.0 0.2 4.8 0.0 0.0 95.1
v7 0.0 0.0 0.0 0.0 0.1 0.4 5.9 0.4 86.6
v8 0.0 0.2 0.0 0.0 1.7 0.6 0.3 18.6 86.5

PA 95.3 58.6 92.1 93.5 57.5 77.3 88.8 97.8

OA 86.51 (±6.99)

K 0.83 (±0.08)

3.2.1. Mount Conero Area

The Ms model (applied to time series indices obtained with formula id #15) selected
six time series for the Mount Conero area (A, B, C operators of the formula id #15 index),
which were: (B12, B11, B03); (B07, B06, B04); (B11, B08, B07); (B08, B05, B04); (B07, B06, B03);
(B12, B08, B06) (Table S2). Their seasonal variations and functional decomposition are
depicted in Figure S1. With an OA of 87.18%, this model outperformed model B, which
achieved 81.7%, and demonstrated a higher PA for the target classes c1, c3 and c4, as well
as better UAs in all classes (Table 4).

3.2.2. Frasassi Gorge Area

The Ms model (applied to time series indices obtained with Formula id #15) selected
nine time series for the Frasassi Gorge area (A, B, C operators of the Formula id #15 index),
which were: (B10, B07, B04); (B08, B03, B02); (B07, B04, B02); (B07, B03, B02); (B10, B05, B04);
(B11, B10, B04); (B06, B05, B04); (B08, B07, B04); (B07, B04, B03) (Table S3). Their seasonal
variations and functional decomposition are depicted in Figure S2. With an OA of 86.5%,
this model outperformed the 76.9% achieved by the B model. Furthermore, all PAs and
UAs were higher for the Ms model compared to the B model (Table 5).



Remote Sens. 2024, 16, 1224 14 of 26

4. Discussion
4.1. Main Results

This study highlights the effectiveness of the ‘Hybrid statistical–functional–Machine
Learning’ approach, which combines RF with an FDA of dense multispectral time series.
The approach outperforms conventional methods that directly use RF on raw satellite
multi-temporal images. Dense time series, when properly analysed and compressed, offer
crucial information for characterizing seasonal spectral changes in vegetation, improving
classification accuracy [26,27]. Ms models, which were the most accurate in both study
areas, could be suitable tools with important practical implications for accurate classifi-
cation, mapping and monitoring of vegetation and habitats included in Annex I of the
92/43/EEC Directive. Indeed, these models not only effectively process dense time series
(increasingly accessible through web platforms like Google Earth Engine [76,77]) with
FDA, but also independently identify sets of indices specific to the study area (through
the forward selection strategy). The selection of location-specific indices plays a key role
in optimizing the land management [24,25]. Thus, these models are adept at capturing
vegetation and habitats during their optimal phenological stages without requiring prior
knowledge of the best times for data acquisition or the most appropriate index sets, thus
making them more transferable than conventional models [21]. In addition, the results
of these models are graphically interpretable, contributing to a better understanding of
critical seasonal multispectral variations among different plant communities and habitats
(Figures S1 and S2).

Furthermore, the Ms models allowed us to employ new vegetation indices derived
from a combinatorial approach and evaluate their effect on classification accuracy. The
results revealed two aspects of particular interest. In both study areas, the most accurate
models were the Ms models based on the formula id #15, an original index. In addition,
rarely used indices based only on visible spectral bands played a significant role, confirming
that classifications based only on known indices such as NDVI may not always be the most
effective choice for classification purposes [20,78] or for characterizing plant communities.
These results agree that specific plant communities and vegetation types have their own,
specific multispectral profiles [24,26,79].

4.2. Models Comparison
4.2.1. Pure Machine Learning Approach: B Models

The B models demonstrated a lower accuracy, with a difference of up to 9.6% compared to
the Hybrid statistical–functional–Machine Learning approach (see Table 3 and Figures 5 and 6).
This lower performance was expected for several reasons. Model B typically employs input
data based on time series of images selected for their cloud-free and low-cloud-cover
conditions in a single reference year, reducing the data processing complexity, e.g., [14].
However, this approach often results in a limited number of images being available, with
missing data for specific months. In our case, nine images were available for the Frasassi
Gorge area and twelve for the Mount Conero area, covering different months depending
on local weather conditions (e.g., excluding January, May, November and December for
the Frasassi Gorge area and January, September and December for Mount Conero area due
to cloud cover). This data gap may negatively impact the description of plant phenology
and thus the accuracy of vegetation classification [80]. These models can be defined as
“image-dependent” [81] since the timing and quality of image acquisition significantly
impact classification accuracy [24]. Another crucial aspect to consider is that B models often
skip important pre-processing steps aimed at noise detection, removal and reduction in
time series, despite recommendations from [78,82], with a negative impact on accuracy.

4.2.2. Hybrid Statistical–Functional–Machine Learning Approach

Hybrid models that combine RF with FDA, overcoming the limitations of the B model,
demonstrate a higher accuracy. The FDA approach treats temporal spectral variations
as curves (smoothed functions) (e.g., Figures 1 and 4), allowing dense time series to be
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analysed and offering richer information within a specific time window [32] than the
B models for the classification stage. Unlike B models, hybrid models can be called
‘image-independent’ [81]. In these models, it is the quality of the functional data, which
must adequately represent seasonal spectral variations in vegetation (e.g., Figure 4), that
significantly influences the accuracy of the classification, rather than the timing and quality
of the individual images used to create it. During the transformation of the raw data into a
functional data using the GAM approach, it is essential to perform pre-processing steps to
identify and remove outliers and reduce noise [83]. Another advantage over B models is
that, to create pixel-based functions, it is better to exploit as much information as possible
for each pixel. Thus, even images with only small areas without clouds or even one pixel
without clouds can be used. In other words, if a part of an image is covered by clouds, this
does not prevent the use of the part without clouds, whereas this is usually not the case for
B models. We can assert that, if using dense time series data is an ideal choice for analysing
seasonal variations in vegetation and achieving more accurate classifications [26,27,58],
then FDA serves as an ideal tool for compressing and analysing dense time series data.

Ms, mF and M models have different characteristics and levels of accuracy. The Ms
models are consistently better than the others in terms of Overall Accuracy for both study
areas (Figure 5, Table 3). The superior performance is particularly evident, especially
when applied to indices generated with formula id #15, in a more complex study area,
such as the Frasassi Gorge, which has a higher number of target classes (Table 3). These
models also performed better compared to previous studies. In the Mount Conero area,
they achieved an 87.2% accuracy, exceeding the 83.2% accuracy in [30], which used only
NDVI seasonal variation data. In the Frasassi Gorge area, these models achieved an 86.5%
accuracy, exceeding the 82.1% accuracy in [29], obtained with mF models based on six time
series of preselected indices (see Table 3). It is important to note that the Ms models are
parsimonious. They achieved such a high accuracy with the smallest number of predictors
and mtry (Figure 6, Tables A2 and A3), and this means that they can select a tailored and
mutually complementary set of indices that best align with area-specific characteristics
by capturing crucial seasonal multispectral variations. The key to this capability lies
in the incorporation of two wrapper methods within Ms models, operating at distinct
levels. Forward selection works on the entire index time series, while Recursive Feature
Elimination focuses on individual MFPCA components extracted from the progressively
selected time series. In summary, Ms models improve the characterization and distinction of
various plant communities and habitats, enabling more accurate and detailed classifications.
Their parsimonious nature makes them interpretable, contributing to a better understanding
of critical seasonal multispectral variation among different plant communities and habitats
(Figures S1 and S2). These hybrid models can complement species-based approaches
in plant community ecology [30,32,33,38,84]. Besides their strengths, Ms models have
some limitations. Indeed, forward selection does not guarantee the identification of the
best model since the final set of selected indices is highly dependent on the first index
chosen [85]. Moreover, they may require long computation times for evaluation, especially
when dealing with many time series, such as those generated by formula id #15 (126 time
series of indices). However, to improve the efficiency of these models and reduce the
number of models to be evaluated, a preliminary filtering method could be implemented in
future analyses. This method aims to identify and remove strongly correlated time series,
allowing Ms models to process a smaller and more focused set of candidate time series.

The mF models, in line with prior research [29], demonstrated their effectiveness by
achieving high accuracies. However, they also exhibited complexity and a lack of parsi-
mony due to the utilization of many predictors (see Figure 6, Tables A2 and A3). This
complexity arises from the limitation of multiple separate FPCAs in adequately addressing
joint variations among different time series, resulting in the extraction of numerous cor-
related and redundant components. This redundancy makes the interpretation of results
complicated [38]. Each vegetation plot has multiple scores associated with different univari-
ate FPCA analyses which cannot be synthesized into a single functional reduced-ordination
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space [29]. Consequently, while effective, these models are not very efficient and do not
facilitate the understanding of crucial seasonal multispectral variation among different
plant communities and habitats.

Finally, among the hybrid models, the M models proved to be less accurate. Their
accuracies were modest and highly variable, consistently lower than the mF and Ms models,
and often inferior to the B models as well (Table 3, Figures 5 and 6). The M models compress
all the time series of vegetation indices associated with a specific formula using a single
MFPCA, and the corresponding scores serve as input data for RF. It is likely that the
established number of components extracted (k = 36) proved inadequate and too low,
probably discarding useful seasonal variations for RF. To increase the accuracy of the model,
one solution would be to increase the number of MFPCA components. However, this
approach, as in mF models, hinders the identification of the minimum set of time series and
indices specific to the vegetation of the study area. This limitation prevents us from fully
capturing the crucial seasonal multispectral variations among different plant communities
and habitats. In contrast, this method is suitable when the time series and indices specific
to the study area are few and known.

4.3. Formula Comparison

Ms models performed best in both study areas using formula id #15. Surprisingly, this
formula performed better than the well-known and widely used normalized difference
(NDVI, Formula id #3) and simple difference (DVI, Formula id #1) formulas (Table 3). To
our knowledge, formula id #15 is an original index that has not been found in the literature
or common databases. It can be considered an extension of the normalized difference index,
as it uses the difference between two bands in the numerator and the sum of the same
two bands plus a third one in the denominator.

The results presented in Tables S2 and S3 show the final indices selected from the Ms
models in the two study areas. In particular, the frequent use of Red Edge spectral bands
(B5 and B7), SWIR (B11, B12) and, especially in the Frasassi Gorge area, visible bands (green
and red, B3 and B4) is evident. These results are in line with previous studies [70,79,85–88],
which emphasized the importance of these bands for distinguishing and mapping tree
species, vegetation and habitats. The importance of visible bands is evident in the Frasassi
Gorge area, where, out of five indices selected through formula id #1, which achieved a
satisfactory Overall Accuracy, three are based exclusively on visible bands. This result is
significant for habitat mapping (Directive 92/43/EEC) because these indices, which are
often overlooked, can improve the accuracy of classification and offer the advantage of an
intuitive understanding of their variations [89].

In this study, the NIR had a lower contribution to classification accuracy than the other
bands mentioned above, despite the fact that its important role in vegetation mapping is
well known and proven [7,90]. NIR plays a key role in satellites with a higher spatial but
lower spectral resolution than Sentinel-2, such as IKONOS-2 and WorldView-2 [91,92].

4.4. Limits and Future Works

The first step in FDA is to transform raw data into functional objects by fitting discrete
observations with curves that approximate the underlying continuous process. Achieving
a balance between data fit and avoiding overfitting or neglecting essential aspects of the
estimated smooth function is a common goal in the smoothing process [36]. Developing
appropriate curves to describe the seasonal dynamics of vegetation across spectral bands
or indices is crucial for accurate supervised vegetation classifications. Although promising
results have been obtained in this and previous studies [29,30] using pixel-based functions
interpolated with GAM (with default parameters: Knots = 10 and cross-validation for
penalty value selection), future research could investigate how parameter variations and
alternative smoothing methods [93,94] can improve classification accuracy. However,
understanding the data-generating process and experimentation are fundamental tools in
spline smoothing [28,36].
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The Ms models demonstrated a superior performance in both study areas. However,
the error matrices (Tables 3 and 4) revealed challenges in discriminating between some cate-
gories such as hornbeam and oak forests (e.g., 91AA* habitat). Incorporating topographical
variables [29,95] and more extensive reference data could enhance model performance. The
amount of reference data in our study, although well-distributed (see Figure 3), is relatively
small and this may negatively affect the performance of classification [96] and the selection
of time series. The main challenge, in fact, in mapping plant communities and habitats
lies in the time required for field data collection [6]. The activities of “drone truthing”,
obtaining reference data through drones [97–99], offers a cost-effective way for biologists to
verify satellite-derived maps, overcoming the limitations associated with ground-truthing
for habitat mapping [100]. The acquired RGB images allow for the recognition of plant
species [101], improving the efficiency of vegetation and habitat identification, even in
complex environments, by recognizing indicator species of plant communities [102]. We
are currently extending our analysis to other areas in the Central Apennines of Italy, where
we have obtained extensive reference data through both ‘ground-truthing’ and ‘drone-
truthing’. Preliminary results confirm the effectiveness of the Ms models in selecting a
minimal number of appropriate indices for the accurate classification of 16 different vegeta-
tion categories, demonstrating a significant level of discrimination for oak and hornbeam
forests in this context.

In addition to statistical validation, the robustness of the model can be qualitatively
assessed through the map generated by applying the model to all pixels [18,103]. In this
study, we chose not to perform mapping. This is because, even if feasible, it would have
been laborious given the numerous models developed. Our intention was to create a
standardized and easily adaptable methodology that could select the most suitable indices
for the study area.

Future developments will focus on evaluating other machine learning algorithms
besides RF. One intriguing option could be the use of Linear Discriminant Analysis (LDA),
which is also applicable in the functional context [104,105]. In the context of habitat and veg-
etation mapping, the adoption of a Hybrid statistical–functional model with LDA should
ensure good classification results and at the same time identify the seasonal discriminant
function that indicates the times when maximum differences between vegetation types
emerge. This approach would improve the interpretability of the results from an ecological
point of view, a crucial aspect for territorial entities engaged in habitat management and
conservation, as required by the Habitats Directive.

5. Conclusions

In this paper we studied different approaches to supporting the classification of
vegetation. These models combine machine learning, using RF, with the application of FDA
to dense satellite time series. Our main goal was to improve the accuracy of vegetation
and habitat classification in two different study areas. We achieved this by comparing
the performance of these models to that of the most common classification methods,
which apply machine learning directly to raw multi-temporal satellite data. Furthermore,
we analysed the effect of different formulas for calculating vegetation indices, using a
combinatorial approach. The goal was to identify the best approach and formula that
consistently generated the best classification accuracies in both study areas. Now, analysing
the results based on the research questions formulated at the beginning of this work, we
derive the following conclusions:

1. The Hybrid supervised classification approaches based on FDA produce higher accu-
racy than common machine learning methods applied directly to raw multi-temporal
data in both test areas.

2. Among the hybrid approaches examined, the Ms models achieve the highest accuracy
in both test sites. These models effectively combine FDA, by exploiting MFPCA that
compresses multiple time series based on different vegetation indices, with the use
of RF. Using a forward selection strategy, we identified a limited set of indices that
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meaningfully represent crucial multispectral seasonal variations obtaining really good
results. Ms models are remarkably efficient, producing high accuracies with a low
number of input data.

3. Among the formulas explored for calculating vegetation indices, the formula id #15
proved to be the best performing one in both study areas. However, other formulas
have achieved good results (e.g., formula ids #17, #1), suggesting that further studies
could be conducted in different study areas and with more reference data. In general,
the use of indices rather than individual bands achieves better results.

4. This study demonstrated that Ms models can effectively identify a specific set of
indices for each study area, adapting to the ecological characteristics and vegetation
of the respective areas.

In conclusion, in scenarios characterized by an increasing availability of satellite data
(and then dense time-series), we believe that Ms models could play a role of significant
practical relevance in habitat monitoring and mapping. These models can identify the most
suitable indices, based on the specific characteristics of the study site and the ecological and
vegetation peculiarities of the analysed area, with the aim of maximizing the accuracy of
the classifications. Furthermore, the results obtained can be integrated with the field data
based on species recognition (for example, the Braun-Blanquet method), thus contributing
to the understanding and conservation of biodiversity in the study areas. These models
represent a promising contribution to overcoming the obstacle of transferability in remote
sensing for the conservation of Natura 2000 habitats [21]. The R code for these models is
available in [40] (repository habitatmapmfpca).
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Appendix A

Table A1. Selection of Sentinel-2 Images: All images were employed to represent spectral seasonal
variations as pixel-based functions, which were then used for Hybrid Statistical-Functional-Machine
Learning models with RF Models based on Functional Data Analysis. The * and ** scenes from
2019 were used for the baseline model (Pure Machine Learning Approach) with Random Forest
directly applied to raw time series for the Mount Conero and Frasassi Gorge areas, respectively.

Num Date Doy Week Month Num Date Doy Week Month

1 21 April 2017 111 16 4 48 13 October 2018 286 41 10
2 1 May 2017 121 18 5 49 12 November 2018 316 46 11
3 31 May 2017 151 22 5 50 7 December 2018 341 49 12
4 20 June 2017 171 25 6 51 12 December 2018 346 50 12
5 10 July 2017 191 28 7 52 27 December 2018 361 52 12

https://www.mdpi.com/article/10.3390/rs16071224/s1
https://www.mdpi.com/article/10.3390/rs16071224/s1
https://github.com/geobotany/habitatmapmfpca
https://github.com/geobotany/habitatmapmfpca


Remote Sens. 2024, 16, 1224 19 of 26

Table A1. Cont.

Num Date Doy Week Month Num Date Doy Week Month

6 20 July 2017 201 29 7 53 31 January 2019 31 5 1
7 30 July 2017 211 31 7 54 26 January 2019 26 4 1
8 9 August 2017 221 32 8 55 5 February 2019 36 6 2
9 19 August 2017 231 33 8 56 15 February 2019 ** 46 7 2

10 29 August 2017 241 35 8 57 20 February 2019 * 51 8 2
11 18 September 2017 261 38 9 58 25 February 2019 56 8 2
12 8 October 2017 281 41 10 59 2 March 2019 ** 61 9 3
13 18 October 2017 291 42 10 60 12 March 2019 71 11 3
14 28 October 2017 301 43 10 61 17 March 2019 76 11 3
15 27 November 2017 331 48 11 62 22 March 2019 *,** 81 12 3
16 7 December 2017 341 49 12 63 1 April 2019 ** 91 13 4
17 22 December 2017 356 51 12 64 16 April 2019 * 106 16 4
18 6 January 2018 6 1 1 65 31 May 2019 151 22 5
19 15 February 2018 46 7 2 66 5 June 2019 *,** 156 23 6
20 6 April 2018 96 14 4 67 15 June 2019 166 24 6
21 16 April 2018 106 16 4 68 25 June 2019 176 26 6
22 21 April 2018 111 16 4 69 30 June 2019 * 181 26 6
23 26 April 2018 116 17 4 70 5 July 2019 186 27 7
24 11 May 2018 131 19 5 71 20 July 2019 * 201 29 7
25 16 May 2018 136 20 5 72 25 July 2019 ** 206 30 7
26 21 May 2018 141 21 5 73 30 July 2019 211 31 7
27 31 May 2018 151 22 5 74 4 August 2019 * 216 31 8
28 10 June 2018 161 23 6 75 9 August 2019 221 32 8
29 15 June 2018 166 24 6 76 14 August 2019 226 33 8
30 20 June 2018 171 25 6 77 19 August 2019 ** 231 33 8
31 30 June 2018 181 26 6 78 24 August 2019 236 34 8
32 10 July 2018 191 28 7 79 29 August 2019 * 241 35 8
33 15 July 2018 196 28 7 80 8 September 2019 251 36 9
34 20 July 2018 201 29 7 81 13 September 2019 256 37 9
35 25 July 2018 206 30 7 82 18 September 2019 ** 261 38 9
36 30 July 2018 211 31 7 83 8 October 2019 * 281 41 10
37 4 August 2018 216 31 8 84 23 October 2019 ** 296 43 10
38 9 August 2018 221 32 8 85 7 November 2019 311 45 11
39 19 August 2018 231 33 8 86 1 January 2020 1 1 1
40 24 August 2018 236 34 8 87 6 January 2020 6 1 1
41 29 August 2018 241 35 8 88 5 February 2020 36 6 2
42 3 September 2018 246 36 9 89 15 February 2020 46 7 2
43 8 September 2018 251 36 9 90 20 February 2020 51 8 2
44 18 September 2018 261 38 9 91 11 March 2020 71 11 3
45 23 September 2018 266 38 9 92 16 March 2020 76 11 3
46 28 September 2018 271 39 9 93 21 March 2020 81 12 3
47 3 October 2018 276 40 10

Table A2. List of models for the Mount Conero area, displaying their accuracy (OA—Overall Accuracy
and sd—standard deviation; for c1–c4 vegetation types Producer’s Accuracy was reported) and model
complexity (pr—number of input predictors and Random Forest’s mtry value for tree splits).

Model Formula pr mtry OA sd c1 c2 c3 c4

B 0 38 4 0.818 0.095 0.768 0.893 0.477 0.837
M 0 6 1 0.812 0.076 0.692 0.901 0.538 0.844
M 1 2 1 0.838 0.085 0.730 0.887 0.754 0.867
M 2 18 1 0.768 0.082 0.757 0.887 0.015 0.800
M 3 6 1 0.825 0.076 0.654 0.941 0.462 0.878
M 4 34 1 0.790 0.081 0.714 0.930 0.031 0.841
M 5 36 2 0.793 0.075 0.768 0.899 0.015 0.859
M 6 30 5 0.675 0.092 0.400 0.893 0.138 0.704
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Table A2. Cont.

Model Formula pr mtry OA sd c1 c2 c3 c4

M 7 26 5 0.802 0.082 0.703 0.927 0.385 0.807
M 8 34 5 0.663 0.120 0.454 0.930 0.185 0.567
M 9 36 3 0.797 0.091 0.703 0.935 0.262 0.807
M 10 14 1 0.778 0.087 0.768 0.918 0.000 0.789
M 11 10 2 0.790 0.088 0.686 0.868 0.508 0.830
M 12 22 3 0.732 0.088 0.708 0.882 0.000 0.730
M 13 10 1 0.827 0.074 0.719 0.955 0.354 0.844
M 14 34 4 0.671 0.098 0.562 0.859 0.385 0.570
M 15 10 3 0.856 0.072 0.762 0.938 0.615 0.870
M 16 6 2 0.814 0.076 0.659 0.904 0.615 0.848
M 17 6 2 0.838 0.081 0.730 0.899 0.585 0.893
M 18 10 2 0.829 0.081 0.714 0.913 0.492 0.878
M 19 18 4 0.794 0.081 0.735 0.904 0.354 0.796
M 20 36 6 0.793 0.090 0.703 0.921 0.215 0.826
mF 0 46 2 0.826 0.084 0.751 0.910 0.477 0.852
mF 1 258 11 0.816 0.082 0.714 0.893 0.492 0.863
mF 2 274 13 0.844 0.079 0.773 0.921 0.554 0.859
mF 3 290 7 0.849 0.074 0.719 0.944 0.615 0.870
mF 4 290 7 0.857 0.070 0.746 0.938 0.631 0.881
mF 5 630 15 0.857 0.070 0.751 0.955 0.585 0.867
mF 6 674 21 0.841 0.074 0.741 0.930 0.585 0.856
mF 7 294 15 0.854 0.066 0.724 0.924 0.738 0.878
mF 8 954 22 0.831 0.084 0.757 0.930 0.508 0.830
mF 9 818 19 0.856 0.071 0.730 0.972 0.523 0.870
mF 10 518 21 0.835 0.077 0.757 0.907 0.554 0.863
mF 11 658 20 0.860 0.072 0.751 0.963 0.631 0.856
mF 12 910 28 0.842 0.078 0.746 0.941 0.477 0.867
mF 13 118 2 0.828 0.084 0.703 0.907 0.631 0.859
mF 14 710 20 0.845 0.071 0.762 0.938 0.615 0.833
mF 15 634 24 0.845 0.072 0.730 0.927 0.662 0.863
mF 16 674 11 0.833 0.088 0.724 0.907 0.600 0.867
mF 17 610 7 0.847 0.070 0.730 0.932 0.646 0.863
mF 18 610 3 0.850 0.066 0.730 0.949 0.631 0.856
mF 19 250 6 0.852 0.077 0.735 0.944 0.600 0.870
mF 20 122 3 0.818 0.094 0.708 0.882 0.692 0.841
Ms 0 14 3 0.812 0.086 0.730 0.913 0.354 0.848
Ms 1 6 1 0.835 0.075 0.719 0.938 0.431 0.878
Ms 2 19 3 0.839 0.073 0.762 0.944 0.369 0.867
Ms 3 10 2 0.849 0.082 0.746 0.932 0.615 0.867
Ms 4 8 3 0.779 0.086 0.719 0.834 0.338 0.856
Ms 5 10 2 0.859 0.072 0.751 0.941 0.677 0.870
Ms 6 14 2 0.842 0.071 0.697 0.961 0.585 0.848
Ms 7 6 1 0.860 0.082 0.697 0.958 0.769 0.863
Ms 8 10 2 0.838 0.082 0.778 0.927 0.431 0.859
Ms 9 10 3 0.848 0.072 0.708 0.966 0.523 0.870
Ms 10 24 4 0.840 0.081 0.751 0.944 0.631 0.815
Ms 11 14 2 0.860 0.074 0.757 0.938 0.646 0.881
Ms 12 10 1 0.851 0.074 0.686 0.972 0.662 0.852
Ms 13 10 3 0.844 0.084 0.751 0.932 0.523 0.870
Ms 14 10 2 0.838 0.077 0.762 0.913 0.554 0.859
Ms 15 10 2 0.872 0.078 0.800 0.966 0.585 0.867
Ms 16 10 3 0.844 0.079 0.795 0.938 0.446 0.848
Ms 17 6 1 0.847 0.079 0.757 0.938 0.554 0.856
Ms 18 10 3 0.857 0.073 0.773 0.921 0.677 0.874
Ms 19 10 2 0.850 0.075 0.741 0.930 0.646 0.867
Ms 20 6 2 0.851 0.075 0.697 0.941 0.754 0.863
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Table A3. List of models for the Frasassi Gorge area, displaying their accuracy (OA—Overall Accuracy
and sd—standard deviation; for v1–v8 vegetation types Producer’s Accuracy was reported) and
model complexity (pr—number of input predictors and Random Forest’s mtry value for tree splits).

Model Formula pr mtry OA sd v1 v2 v3 v4 v5 v6 v7 v8

B 0 62 3 0.770 0.071 0.829 0.507 0.804 0.910 0.313 0.707 0.813 0.922
M 0 26 4 0.785 0.070 0.771 0.571 0.857 0.813 0.350 0.707 0.850 0.974
M 1 26 5 0.778 0.076 0.882 0.436 0.864 0.871 0.287 0.653 0.825 0.935
M 2 30 5 0.675 0.083 0.676 0.371 0.696 0.794 0.550 0.600 0.775 0.791
M 3 30 5 0.817 0.063 0.853 0.600 0.839 0.877 0.400 0.827 0.875 0.974
M 4 34 5 0.733 0.080 0.682 0.421 0.718 0.903 0.550 0.653 0.813 0.930
M 5 34 5 0.731 0.079 0.700 0.529 0.721 0.826 0.525 0.707 0.800 0.883
M 6 34 5 0.646 0.078 0.682 0.314 0.857 0.587 0.137 0.293 0.675 0.887
M 7 34 5 0.823 0.080 0.924 0.500 0.879 0.865 0.413 0.893 0.800 0.978
M 8 36 6 0.644 0.081 0.618 0.300 0.893 0.613 0.187 0.093 0.588 0.948
M 9 22 2 0.754 0.077 0.747 0.386 0.843 0.761 0.425 0.747 0.850 0.957
M 10 36 4 0.667 0.081 0.506 0.393 0.718 0.710 0.512 0.640 0.750 0.900
M 11 36 6 0.708 0.075 0.712 0.164 0.768 0.839 0.463 0.680 0.775 0.952
M 12 36 4 0.668 0.090 0.588 0.407 0.743 0.626 0.375 0.613 0.763 0.913
M 13 30 3 0.764 0.074 0.835 0.307 0.896 0.787 0.300 0.747 0.775 0.974
M 14 34 3 0.634 0.072 0.659 0.179 0.882 0.690 0.050 0.053 0.838 0.870
M 15 30 4 0.798 0.069 0.841 0.543 0.829 0.897 0.375 0.773 0.788 0.978
M 16 18 3 0.788 0.071 0.771 0.536 0.904 0.787 0.400 0.693 0.875 0.948
M 17 18 2 0.810 0.071 0.812 0.521 0.843 0.839 0.562 0.893 0.825 0.978
M 18 18 4 0.813 0.078 0.924 0.586 0.807 0.852 0.463 0.787 0.813 0.978
M 19 30 4 0.764 0.071 0.841 0.486 0.825 0.761 0.338 0.773 0.813 0.935
M 20 34 4 0.786 0.070 0.771 0.493 0.861 0.890 0.325 0.760 0.800 0.978
mF 0 58 2 0.773 0.073 0.735 0.614 0.839 0.839 0.312 0.493 0.938 0.970
mF 1 250 3 0.773 0.066 0.806 0.550 0.850 0.819 0.350 0.640 0.863 0.922
mF 2 275 16 0.816 0.067 0.924 0.571 0.814 0.903 0.613 0.680 0.813 0.948
mF 3 202 7 0.829 0.062 0.912 0.579 0.807 0.942 0.588 0.707 0.875 0.978
mF 4 550 22 0.811 0.065 0.924 0.550 0.821 0.890 0.488 0.733 0.813 0.961
mF 5 550 9 0.819 0.073 0.935 0.600 0.821 0.890 0.525 0.720 0.813 0.952
mF 6 202 12 0.808 0.072 0.947 0.564 0.768 0.903 0.450 0.760 0.913 0.943
mF 7 606 15 0.818 0.066 0.953 0.579 0.789 0.897 0.563 0.693 0.813 0.978
mF 8 530 2 0.816 0.065 0.894 0.500 0.893 0.884 0.350 0.707 0.938 0.970
mF 9 998 17 0.816 0.062 0.853 0.529 0.900 0.871 0.475 0.720 0.813 0.978
mF 10 470 21 0.792 0.065 0.894 0.536 0.782 0.865 0.550 0.707 0.850 0.935
mF 11 606 12 0.825 0.065 0.912 0.536 0.882 0.890 0.500 0.707 0.813 0.978
mF 12 886 20 0.825 0.065 0.935 0.529 0.879 0.923 0.550 0.707 0.813 0.935
mF 13 498 1 0.785 0.064 0.853 0.493 0.879 0.832 0.375 0.627 0.863 0.935
mF 14 782 26 0.798 0.071 0.947 0.571 0.786 0.871 0.350 0.720 0.875 0.948
mF 15 646 25 0.806 0.067 0.935 0.557 0.761 0.910 0.475 0.707 0.850 0.978
mF 16 470 1 0.784 0.068 0.835 0.464 0.868 0.839 0.413 0.653 0.863 0.943
mF 17 510 10 0.813 0.066 0.906 0.600 0.786 0.903 0.500 0.693 0.875 0.978
mF 18 438 12 0.805 0.066 0.912 0.571 0.779 0.871 0.488 0.707 0.875 0.978
mF 19 202 4 0.820 0.063 0.906 0.607 0.814 0.890 0.575 0.693 0.813 0.978
mF 20 474 6 0.789 0.067 0.788 0.557 0.846 0.858 0.338 0.707 0.925 0.952
Ms 0 22 3 0.812 0.076 0.865 0.586 0.821 0.839 0.625 0.733 0.813 0.970
Ms 1 22 4 0.845 0.065 0.929 0.550 0.839 0.923 0.663 0.827 0.825 0.987
Ms 2 26 1 0.824 0.073 0.924 0.471 0.893 0.884 0.475 0.840 0.925 0.922
Ms 3 18 2 0.829 0.075 0.953 0.543 0.839 0.942 0.713 0.693 0.762 0.930
Ms 4 22 1 0.832 0.081 0.912 0.579 0.871 0.910 0.425 0.800 0.863 0.970
Ms 5 14 2 0.842 0.070 0.924 0.714 0.846 0.813 0.587 0.773 0.863 0.978
Ms 6 22 4 0.815 0.065 0.941 0.464 0.814 0.903 0.437 0.813 0.925 0.970
Ms 7 18 3 0.836 0.065 0.971 0.514 0.868 0.890 0.525 0.867 0.775 0.974
Ms 8 34 3 0.840 0.075 0.900 0.679 0.879 0.897 0.437 0.733 0.925 0.952
Ms 9 18 1 0.840 0.060 0.906 0.486 0.936 0.806 0.437 0.973 0.875 1.000
Ms 10 18 2 0.811 0.071 0.959 0.579 0.846 0.852 0.400 0.747 0.825 0.930



Remote Sens. 2024, 16, 1224 22 of 26

Table A3. Cont.

Model Formula pr mtry OA sd v1 v2 v3 v4 v5 v6 v7 v8

Ms 11 22 2 0.828 0.075 0.853 0.450 0.893 0.935 0.625 0.787 0.813 0.978
Ms 12 18 2 0.814 0.087 0.900 0.529 0.843 0.890 0.437 0.907 0.813 0.939
Ms 13 22 4 0.833 0.074 0.924 0.600 0.864 0.865 0.538 0.787 0.813 0.970
Ms 14 22 3 0.840 0.074 0.865 0.664 0.868 0.897 0.525 0.840 0.888 0.948
Ms 15 22 3 0.865 0.070 0.953 0.586 0.921 0.935 0.575 0.773 0.888 0.978
Ms 16 22 4 0.828 0.064 0.906 0.493 0.896 0.845 0.425 0.880 0.900 0.974
Ms 17 22 4 0.856 0.055 1.000 0.550 0.893 0.910 0.550 0.827 0.838 0.978
Ms 18 22 2 0.835 0.055 0.953 0.457 0.889 0.910 0.613 0.827 0.838 0.943
Ms 19 26 4 0.811 0.063 0.894 0.493 0.864 0.890 0.425 0.773 0.863 0.957
Ms 20 22 2 0.822 0.064 0.747 0.621 0.929 0.865 0.550 0.707 0.763 1.000
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