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Abstract: The urban–rural temperature difference is widely used in measuring surface urban heat
island intensity (SUHII), where the accurate determination of rural background is crucial. However,
traditionally, the entire permeable rural surface has been selected to represent the background
temperature, leaving uncertainty about the impact of non-uniform rural surfaces with multiple land
covers on the accuracy of SUHII quantification. In this study, we proposed two quantifications of
SUHII derived from the primary (SUHII1) and secondary (SUHII2) land types, respectively, which
successively occupy over 40–50% of whole rural regions. The spatial integration and temporal
variation of SUHII1 and SUHII2 were compared with the result from whole rural regions (SUHII)
within 34 urban agglomerations (UAs) in China. The results showed that the SUHII1 and SUHII2

differed slightly with SUHII, and the correlation coefficients of SUHII and SUHII1/SUHII2 are
generally above 0.9 in most (32) UAs. Regarding the long-term SUHII between 2003 and 2019, the
three methods demonstrated similar seasonal patterns, although SUHII1 (or SUHII2) tended to
overestimate or underestimate compared to SUHII. As for the multi-year integration at the regional
scale, the day–night cycle and monthly variations of SUHII1 and SUHII were found to be identical for
each geographical division separately, indicating that the spatiotemporal pattern revealed by SUHII
is minimally affected by the diversity of rural landcover types. The findings confirmed the viability
of the urban–rural LST difference method for measuring long-term regional SUHII patterns under
non-uniform rural land cover types.

Keywords: surface urban heat island; urban–rural temperature difference method; non-uniform rural
landcover; spatial and temporal pattern

1. Introduction

In recent years, the phenomenon of the surface urban heat island (SUHI) has been ob-
served in thousands of cities globally [1,2]. Numerous studies have indicated that the SUHI
contributed to various environmental changes, including alterations in regional climate [3],
compromised vegetation growth [4], and degradation of water and air quality [5]. Given
that urban areas accommodate approximately 55% of the world’s population, these changes
pose threats to human well-being and development [6], leading to increased morbidity and
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mortality rates [7], and even potential risks of violence [8]. As urbanization profoundly
impacts human living conditions [9], accurate monitoring of SUHI patterns is essential to
support effective strategies for managing the urban thermal environment.

Advancements in remote sensing technology have facilitated the revelation of spa-
tiotemporal patterns of global SUHIs and their associated driving factors on various scales
using land surface temperature (LST) products [10–12]. Currently, the urban–rural differ-
ence method stands as one of the most prevalent approaches for quantifying SUHI intensity
(SUHII). However, the identification of urban and rural regions varies among different
studies conducted in diverse global cities [13–16]. As the accuracy of SUHII is pivotal
for depicting its spatial and temporal patterns [1,17], it is imperative to investigate the
sensitivity of SUHII analysis to different quantification indices.

Accurate delineation of rural regions is crucial for obtaining background LST dur-
ing SUHII calculation. Traditionally, the process of SUHII quantification first used land
use/land cover (LULC) data to identify the urban and rural areas [18]. After identifying
the urban clusters, a buffer at a fixed distance from the urban center or an area with a
fixed multiple of the urban area is generally defined as its rural region. Generally, urban
and rural were identified by differentiating the continuous urban regions from rural pixels
enclosed in fixed urban administrative boundaries [13,19] or in a dynamic form of varied
urban regions with urban expansion and buffered rural regions [20]. It is convenient and
feasible to provide reliable results for global SUHI. However, analysis based on the LST of
entire rural land surfaces and woodlands, respectively, demonstrated contrasting SUHII
patterns in a semi-arid city [21]. Currently, methods prioritize elevation control and wa-
ter body exclusion [2,19], while the impact of the diversity of rural land cover types on
regional SUHI studies involving multiple cities has received limited attention [22]. It has
been stressed that the proximity to water bodies in urban and non-urban areas should be
similar, and the altitudinal difference between urban and non-urban points should be as
small as possible [23]; yet, whether the selection of different rural components dominates
the regional pattern of SUHII is unexplored. For rural surfaces comprising various non-
uniform land covers, it remains unclear whether SUHII quantification based on the entire
background affects its multi-scale spatiotemporal patterns [10]. Therefore, to accurately
depict the evolution of SUHII and its driving factors, it is crucial to verify the feasibility of
SUHII quantification under diverse rural land cover types [24].

As China undergoes rapid urbanization, it has emerged as one of the most populous
developing countries with vast terrain, complex climate and topography, and diverse rural
land cover types corresponding to cities in different regions [25,26]. Numerous studies have
revealed the presence of SUHI phenomena in most large cities across China, elucidating
them at multiple scales [13,27,28]. Urbanization has significantly contributed to local and
regional surface warming [29]. Recent studies have shown the magnitude of SUHII in
China’s major cities to be definition-independent [2,13], yet their diurnal and seasonal
patterns conflict across these definitions [30]. Considering the sensitivity of SUHII to rural
backgrounds with compound land cover types in China, it is necessary to fully compare
different quantifications of SUHII in investigating its regional patterns.

Hence, this study first reveals rural land cover types and urban expansion in 34 of
China’s major urban agglomerations (UAs) between 2003 and 2019. Subsequently, new
quantifications of SUHII are proposed based on the principal and secondary rural land
cover components. To verify the feasibility and credibility of the urban–rural difference
method in depicting patterns and temporal variations of regional SUHII, SUHII from
different quantification methods are compared within each geographical division. Finally,
the spatiotemporal pattern of SUHII in China, including the day–night cycle, monthly
variation, and interannual trend, is further investigated to support the feasibility of SUHII
quantified by the entire rural region.
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2. Materials and Methods
2.1. Study Area

In China, the main population is concentrated in provincial-level administrative
regions, which are economically developed, experiencing rapid urban development, and
have been widely concerned with urban environment issues in recent years. The study
encompasses 34 of China’s provincial capitals, municipalities, and special administrative
regions, chosen due to observed escalating trends in SUHI in recent years [31]. The primary
and secondary rural regions, respectively, constituting approximately 40–50% of the total
rural land use types for each city, were identified based on previous research [20] using
land use data from MCD12Q1 between 2003 and 2019. Generally, China’s main cities can
be grouped into six regions according to geographic variations regarding geographical
location, climatic conditions, and economic development levels. While considering the
similarity of rural land cover types and SUHII patterns [32], six major regions of China have
been consolidated into three: Northwest, Northeast, and Southeast regions. The boundaries
of these regions are delineated by interconnected provincial borders.

As shown in Figure 1, the center point is identified with the abbreviation of the city
name (BJ: Beijing, CC: Changchun, CD: Chengdu, CQ: Chongqing, CS: Changsha, FZ:
Fuzhou, GY: Guiyang, GZ: Guangzhou, HAK: Haikou, HB: Harbin, HF: Hefei, HK: Hong
Kong, HT: Hohhot, HZ: Hangzhou, JN: Jinan, KM: Kunming, LS: Lhasa, LZ: Lanzhou, NC:
Nanchang, NJ: Nanjing, NN: Nanning, SH: Shanghai, SJZ: Shijiazhuang, SY: Shenyang,
TJ: Tianjin, TY: Taiyuan, UQ: Urumqi, WH: Wuhan, XA: Xi’an, XN: Xining, YC: Yinchuan,
ZH: Zhuhai, ZZ: Zhengzhou); the principal and/or secondary landcover types in rural
areas are marked with corresponding numbers. It should be noted that the urban area of
Macau was connected with Zhuhai after executing the urban identification method (details
in Section 2.3). The 34 cities are distributed with diverse rural landcover types, which were
geographically divided into the Northwest, the Northeast, and the Southeast regions.
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Figure 1. The spatial distribution of 34 Chinese urban agglomerations, indicating their principal
(numbers in red color) and/or secondary (numbers in blue color) rural land types. The labels in each
city center are their abbreviation name as defined in the main text.

In the Northwest, characterized by an arid climate, grasslands dominate as the prin-
cipal rural land cover. Notably, Yinchuan and Lhasa feature cropland and barren land as
their secondary rural land types, respectively. The Southeast, predominantly in the warm
temperate zone, comprises savannas and evergreen broadleaf forests as the primary rural
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land cover types. Notable variations include mixed land covers of savanna and cropland in
Nanjing, Shanghai, and Chongqing, and combinations of evergreen broadleaf forests with
woody savannas in Hong Kong. Conversely, Taipei features evergreen broadleaf forests and
savannas. In the Northeast, cropland predominates as the principal rural land cover type.
Concerning the Northeast region, the principal rural land type for each UA is cropland.
The diverse rural land cover types across the 34 major UAs in China provide a suitable
basis for analyzing the urban-rural LST difference method under complex, non-uniform
rural backgrounds.

2.2. Data
2.2.1. MODIS Land Surface Temperature

The MODIS LST, widely employed in SUHII quantification [33–35], was sourced from
the MOD11A1 and MYD11A1 datasets (Version 6) onboard the Terra and Aqua satellites.
These datasets offer daily surface temperature/emissivity product data for each pixel, with
a spatial resolution of 1 km and a sinusoidal projection. The transit times of the Terra and
Aqua satellites are approximately 10:30 and 22:30 at local solar time, and 01:30 and 13:30
at local solar time, respectively. The period of available datasets is from 24 February 2000
to the present for MOD11A1 and from 4 July 2002 to the present for MYD11A1. For this
study, all available global day/night LST datasets from 1 January 2003 to 31 December 2019
were utilized.

2.2.2. MODIS Land Cover Type

Annual land cover types were extracted from the MODIS Land Cover Type product
(MCD12Q1, Version 6), providing global land cover distribution at annual intervals. This
product utilizes supervised decision tree classification technology with MODIS Terra/Aqua
reflectance data, offering a spatial resolution of 500 m. To align with the LST dataset time-
frame, MCD12Q1 data from 2003 to 2019 were selected to obtain land use and land cover
(LULC) types. The dataset comprises 17 land cover categories based on the International
Geosphere-Biosphere Programme (IGBP) classification scheme [36] as detailed in Table 1.
The Land Cover Type data were used to identify the primary and secondary rural land
cover types.

Table 1. IGBP legend and classification for MCD12Q1.

Value Name Description

1 Evergreen Needleleaf Forests Dominated by evergreen conifer trees
(canopy > 2 m). Tree cover > 60%.

2 Evergreen Broadleaf Forests Dominated by evergreen broadleaf and palmate
trees (canopy > 2 m). Tree cover > 60%.

3 Deciduous Needleleaf Forests Dominated by deciduous needleleaf (larch) trees
(canopy > 2 m). Tree cover > 60%.

4 Deciduous Broadleaf Forests Dominated by deciduous broadleaf trees
(canopy > 2 m). Tree cover > 60%.

5 Mixed Forests
Dominated by neither deciduous nor evergreen

(40–60% of each) tree type (canopy > 2 m).
Tree cover > 60%.

6 Closed Shrublands
Dominated by neither deciduous nor evergreen

(40–60% of each) tree type (canopy > 2 m).
Tree cover > 60%.

7 Open Shrublands Dominated by woody perennials (1–2 m height)
10–60% cover.

8 Woody Savannas Tree cover 30–60% (canopy > 2 m).
9 Savannas Tree cover 10–30% (canopy > 2 m).

10 Grasslands Dominated by herbaceous annuals (<2 m).
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Table 1. Cont.

Value Name Description

11 Permanent Wetlands Permanently inundated lands with 30–60% water
cover and >10% vegetated cover.

12 Croplands At least 60% of the area is cultivated cropland.

13 Urban and Built-up Lands At least 30% impervious surface area, including
building materials, asphalt, and vehicles.

14 Cropland/Natural Vegetation
Mosaics

Mosaics of small-scale cultivation 40–60% with
natural tree, shrub, or herbaceous vegetation.

15 Permanent Snow and Ice At least 60% of the area is covered by snow and ice
for at least 10 months of the year.

16 Barren
At least 60% of the area is non-vegetated barren

(sand, rock, soil) areas with less than
10% vegetation.

17 Water Bodies At least 60% of the area is covered by permanent
water bodies.

2.2.3. Elevation

Surface elevation data were extracted from the GTOPO30 dataset with a spatial res-
olution of 1 km from the US Geological Survey (USGS, Reston, VA, USA). The center
point for the digital elevation model (DEM) is given every 30 s of latitude and longitude
worldwide. The latitude and longitude grid composed of these discrete points divides the
earth’s surface into many quadrilateral grid areas so that the elevation value of any point
in the grid area can be obtained by interpolation from the surrounding four grid points.

2.3. Quantification of SUHII

As the 34 UAs in China contain one or two main rural land types (Figure 1), the
principal and secondary land types, respectively, refer to the components that successively
occupy over 40–50% of whole rural regions. In this study, we compared the results of
SUHIIs defined by different rural regions.

The urban extent that varied annually was identified using the city clustering algo-
rithm (CCA) [37] with the LULC dataset. The city center was determined by the World
Population Prospect (WUP) issued by the United Nations, and then based on the inter-
connection of urban regions, the urban clusters could be identified by an iterative search.
The corresponding dynamic rural regions were identified as the equal-area buffer from
the dynamic urban extents. Thereafter, both the whole rural region and the primary and
secondary rural regions varied by year. SUHII was calculated in Equation (1) as the dif-
ference between urban and rural LST, excluding rural pixels with elevations exceeding
±200 m of the regional average based on the Dynamic Urban Extent method (DUE) [20].
Unlike DUE, which determines the average LST across the entire rural surface, rural LST
pixels for pure primary and secondary rural surface components were selected to calculate
corresponding reference LST. Equations (2) and (3) represent the new quantifications of
SUHII, where average urban LST is subtracted by the average LST of the principal and
secondary rural land cover types, respectively, yielding the corresponding SUHI intensity
(SUHII1 and SUHII2). Subsequently, daytime and nighttime mean SUHIIs were averaged
from Terra/Aqua results (approximately 10:30/13:30 and 01:30/22:30), and monthly and
yearly mean SUHIIs were integrated from daily results. The new quantifications of SUHII1
and SUHII2 are shown in Equations (1) and (2) as follows:

SUHII = Tu − Tr, (1)

SUHII1 = Tu − Tr1, (2)

SUHII2 = Tu − Tr2, (3)
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where the Tu is the average urban LST, the Tr, Tr1 and Tr2 are the average LST of the whole,
the principal and secondary rural land use types, respectively, and SUHII, SUHII1 and
SUHII2 are the corresponding intensity of SUHI. Correspondingly, the SUHIs from the
whole rural region were calculated in similar steps. Afterward, the daytime and nighttime
mean SUHIIs were averaged by the result from Terra and Aqua. The monthly and yearly
mean SUHIIs were integrated from the daily results.

3. Results
3.1. Urban Form Expansion

The urban form expansion of the 34 UAs identified by the CCA algorithm [37] is
illustrated in Figure 2. The red and blue areas represent urban boundaries in 2003 and 2019,
respectively. Notably, the urban areas identified by the CCA algorithm may surpass actual
administrative boundaries, potentially connecting large cities with surrounding satellite
cities. For instance, Shanghai and Guangzhou form urban agglomerations connecting the
central large city with surrounding areas.
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Figure 2. Spatial variations of urban morphology of 34 Chinese urban agglomerations during 2003
and 2019. The boundaries were delineated with a city clustering algorithm based on LULC data
(details in Section 2.3).

Figure 3 displays the urban area and change rate of each UA from 2003 to 2019. The
changing rate was calculated using the Sen’s Slope. Notably, urban areas of Shanghai,
Guangzhou, Beijing, and Tianjin exceed 2000 km2. Except for Lanzhou, Lhasa, and Hong
Kong, all UAs exhibit a significant increasing trend in urban areas, with larger cities
generally experiencing higher rates of change. For example, Shanghai, Guangzhou, Beijing,
and Chengdu witness urban area expansions at rates exceeding 50 km2 per year. The
expansion of urban form and size is typically accompanied by changes in surrounding rural
land use types, emphasizing the necessity of employing dynamic urban-extent methods to
accurately quantify SUHI intensity.
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3.2. Comparison of Different SUHII Quantifications
3.2.1. Comparison of Monthly SUHIIs

Pearson’s correlation coefficient was utilized to assess the correlation between daytime
and nighttime SUHII and SUHII1 and SUHII2. Scatter plots of SUHII and SUHII1/SUHII2
are presented in Figures 4 and 5 for daytime and nighttime, respectively. During the
daytime, the correlation coefficients of SUHII and SUHII1/SUHII2 in most UAs are above
0.9, except for Xining in the northwest region and Hong Kong in the southeast region. At
nighttime, the correlation coefficients of SUHII and SUHII1/SUHII2 in each city are all
above 0.9, except for SUHII2 calculated by cropland in Lhasa, and SUHII1 and SUHII2 cal-
culated by evergreen broadleaf forests and savannas, respectively, in Hong Kong. Overall,
the difference between SUHII and SUHII1/SUHII2 in 34 major UAs in China is negligible,
except for UAs with mixed rural land cover types.

During the daytime, the LST is primarily influenced by vegetation activities. In
the northwest region, where grassland and cropland dominate rural areas, the SUHII1
compared to SUHII2, was more similar to SUHII (Figure 4). However, in UAs like Yinchuan,
SUHII2 is underestimated in low-value regions and overestimated in high-value regions
compared to SUHII, possibly due to seasonal variations in vegetation activity. As the high
and low-value regions correspond to different growth seasons of vegetation, the rural LST
is lower in the season of vigorous vegetation activity, which resulted in a greater SUHII2,
and vice versa. Similarly, in Lhasa, which is located at a high altitude, the surrounding
farming and pastoral areas are dominated by grassland and barren, where the proportion
of grassland has increased in recent years [38]. Under normal circumstances, the LST of
barren land is higher than that of urban surface and green space [21], while the LST of bare
rock may be lower in Lhasa, which is located on the Tibetan Plateau, due to factors such
as topography and altitude [39]; thus, the daytime SUHII2 is overestimated compared to
SUHII. In the Northeast region, the rural landcover types are all dominated by cropland,
and there is little difference between SUHII1 and SUHII during the day. In Hong Kong
and Taipei, the difference in vegetation activity led to an overestimation of daytime SUHII1
quantified by evergreen broadleaf forests, while daytime SUHII2 calculated with savanna
was underestimated, compared to SUHIIs, respectively.
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secondary (SUHI2) rural components, with traditional SUHII by whole rural region (X-axis). The U-x
points in orange and blue colors represent the values of SUHI1 and SUHI2, respectively.

At nighttime, the influence of vegetation weakened, and factors like precipitation
and surface roughness affected the surface sensible heat flux and surface heat storage
that regulated the LST. It can be seen from Figure 5 that the difference between SUHII1
(estimated by grassland) and SUHII in Lhasa was not that obvious, while the SUHII2 by
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barren land is underestimated. The rough terrain of the bare rock surface in mountainous
areas is more conducive to energy storage; thus, the lower nighttime LST leads to the lower
SUHII2. Ningxia is located in the arid area of Northwest China, where the roughness of
grassland is greater with higher aerodynamic resistance. Therefore, the LST of grassland
at night is higher than that of cropland, which leads to overestimated SUHII2 [39,40]. In
the Northeast region, the difference between nighttime SUHII1 and SUHII is not evident.
In the southeast region, the difference between SUHII1 and SUHII2 at nighttime in Hong
Kong and Taipei is lower compared with that at daytime, which is mainly due to the
weakening of vegetation activities at night, and the reduced impact of evapotranspiration
on rural LST. In Shanghai, the nighttime SUHII2 quantified by cropland is overestimated.
Compared with savannas, it may be due to the higher roughness of the cropland and the
larger aerodynamic impedance, which reduces the sensible heat flux; thus, the LST of the
cropland at night is higher and leads to relatively lower SUHII.

3.2.2. Comparison of Long-Term Variation in Monthly SUHIIs

From 2003 to 2019, the monthly average daytime and nighttime SUHII of each city was
calculated separately, and UAs with two components of principal rural land use types were
picked out for comparison. The long-term variation for different quantifications of daytime
and nighttime monthly SUHII is shown in Figures 6–9. Among them, the blue curve is the
SUHII quantified by the whole rural LST, and the orange-red and yellow curves are the
SUHII1 and SUHII2, respectively.
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Figure 7. Long-term trend of monthly daytime SUHIIs between 2003 and 2019 in several of Southeast
China’s urban agglomerations (mainly croplands and savannas in rural).

In the Northwest region (Figure 6), the SUHII1 is underestimated and SUHII2 is
overestimated compared to SUHII, both at daytime and nighttime in Yinchuan. In contrast,
the SUHII1 is underestimated and SUHII2 is overestimated at daytime for Lhasa, and the
opposite occurs at night.

In the Southeast region (Figure 7), the daytime SUHII1 calculated with the savanna
and SUHII shows little difference, while the daytime SUHII2 calculated with the cropland
is underestimated for Nanjing, Nanchang and Shanghai in summer. As shown in Figure 8,
the nighttime SUHII1 is not underestimated in Nanjing and Shanghai, while nighttime
SUHII2 is overestimated in Nanjing, Shanghai and Chongqing.

In the Southeast region (Figure 9), Hong Kong and Taipei, with evergreen broadleaf
forests as the principal rural background and savanna as the secondary rural background,
exhibit an obvious overestimation of daytime SUHII1, while there is an underestimation of
daytime SUHII2 that is more pronounced in summer. At nighttime, the SUHII1 and SUHII2
are slightly different from SUHII in Hong Kong, while the SUHII1 in Taipei is overestimated.

In addition, in the northwest, southeast, and northeast regions, the difference between
SUHII1 and SUHII2 is slight in some cities with grassland, savanna, and cropland as the
single rural land use type, which is not investigated in detail here.
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3.3. Spatiotemporal Patterns of Regional SUHII in China
3.3.1. Day–Night Cycle

To explore the day–night cycle of SUHII in China’s sub-regions, the SUHIIs obtained
by Terra and Aqua at four times of the day were averaged for 34 UAs from 2003 to 2019.
Figure 10 illustrates the day–night cycle of annual, summer, and winter-averaged SUHII.
Generally, the day–night cycles derived from SUHII and SUHII1 were consistent for each
region at a certain temporal scale.
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In summer, the day–night variations of SUHII in the Northeast, Southeast regions, and
the whole country are similar, peaking at 13:30 and reaching a minimum at nighttime (01:30
or 22:30). Conversely, the day–night variation in SUHII in the Northwest region is opposite,
typically reaching its lowest value at 10:30 and gradually increasing at nighttime. At the
same time, the magnitude is lower than in other regions. Since the UAs in the Northwest
region are located in the arid zone, the pattern of day –night variation aligns with that in
the global arid zone [20].

In winter, the day–night variation pattern of SUHII in the Southeast region mirrors
that of summer, with peaks at 13:30 and a minimum at night (01:30 or 22:30). However, the
absolute value of SUHII is lower in winter. Correspondingly, the Northwest region exhibits
a similar pattern to summer, with the lowest values in the morning and increasing values at
night. However, daytime SUHII in the Northwest region is generally lower than in summer,
occasionally showing negative values indicative of cold islands. In the Northeast region,
the day–night cycles of SUHII are similar to those of the whole country but opposite to
the variations in summer. Here, SUHII reaches a minimum at noon (10:30 or 13:30) and
gradually increases at night (01:30 or 22:30). This anomaly is attributed to stronger urban
long-wave radiation at night due to severe pollution in winter, resulting in higher nighttime
SUHII compared to daytime [13].

3.3.2. Monthly Variation

Figure 11 shows the variation in monthly average SUHII in China. Similar to the results
in the diurnal cycle, the seasonal variations derived from monthly SUHII and SUHII1 were
also consistent for each region at a certain temporal scale. The seasonal variation in daytime
SUHII is more pronounced than that at night. During the daytime, SUHII reaches its
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highest value in July (or August) and drops to its lowest value in December (or January)
for the whole country.
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Figure 11. Variations of daytime and nighttime monthly SUHII (SUHII and SUHII1) in China’s
sub-regions. The mean value is denoted in solid lines, and its standard errors are in shaded patches.

At nighttime, the monthly variations of SUHII are less obvious in each area. In autumn
and winter, the nighttime SUHII in the Northeast and Northwest regions is higher than
during the daytime, reaching its lowest value of the year in July and September. Conversely,
nighttime SUHII in the Southeast region is lower than during the daytime throughout
the year.

Comparing the upper and lower rows of Figure 11, it is apparent that the pattern of
monthly variations by SUHII1 and SUHII are similar. This indicates that in regional-scale
spatiotemporal analysis, the regional average SUHII quantified by the original “urban-
rural temperature difference method” with entire rural reference is not affected by the
diversification of rural landcover types and can accurately reveal the spatiotemporal
patterns of regional SUHII.

3.3.3. Interannual Trend

From the foregoing analysis, the SUHII was hardly affected by the diversity of rural
land use when reflecting its regional spatiotemporal pattern. On the annual average,
summer, and winter average scales, respectively, the SUHII of 34 major UAs in China were
averaged to obtain the inter-annual variation in SUHII across the country and for each
geographic region, as shown in Figures 12–14. The Mann–Kendal (MK) test was used to
determine whether there is a significant interannual trend [41], and then the Sen’s slope
(p < 0.05) was calculated [42].
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over the period 2003–2019. The solid line depicts the mean value of each year, and its standard errors
are in the shaded patch. The Sen’s slope is calculated at a 95% significant interval. The variations
with significant linear trends are delineated with dashed lines in all sub-figures.
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Figure 13. Inter-annual variations of summer daytime and nighttime SUHII for China’s sub-regions
over the period 2003–2019. The solid line depicts the mean value of each year, and its standard errors
are in the shaded patch. The Sen’s slope is calculated at a 95% significant interval. The variations
with significant trends are delineated with a dashed line. The variations with significant linear trends
are delineated with dashed lines in all sub-figures.
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Figure 14. Inter-annual variations of winter daytime and nighttime SUHII for China’s sub-regions
over the period 2003–2019. The solid line depicts the mean value of each year, and its standard errors
are in the shaded patch. The Sen’s slope is calculated at a 95% significant interval. The variations
with significant trends are delineated in the dashed line. The variations with significant linear trends
are delineated with dashed lines in all sub-figures.

As shown in Figure 12, on a national scale, the annual daytime SUHII presents no
significant trend, while the annual nighttime SUHII shows a significant increasing trend
(0.07 ◦C/decade). In the Northeast and Northwest regions, the nighttime SUHII increased
significantly with slopes of 0.14 ◦C/decade and 0.10 ◦C/decade, respectively, while the
daytime SUHII decreased significantly during the day (−0.31 ◦C/decade) in the Northwest
region and increased significantly (0.24 ◦C/decade) in the Southeast region.

It can be seen from Figure 13 that on the summer scale, there is a significant increasing
trend in daytime and nighttime SUHIIs with slopes of 0.11 ◦C/decade and 0.10 ◦C/decade,
respectively, on a national scale. Concerning the inter-annual trends of daytime SUHI in
each region, it decreased significantly in the Northwest region (−0.32 ◦C/decade) and
increased significantly in the Southeast region (0.29 ◦C/decade). For nighttime SUHII, it in-
creased significantly for the Northeast and Southeast regions with slopes of 0.14 ◦C/decade
and 0.09 ◦C/decade, respectively.

It can be seen from Figure 14 that for the winter scale, there is no obvious change in the
daytime, while the nighttime SUHII increases significantly (0.08 ◦C/decade) on the national
scale. In the Northeast and Northwest regions, the daytime SUHII decreases significantly
with slopes of −0.28 ◦C/decade and −0.34 ◦C/decade, respectively, while it increases
significantly in the Southeast region (0.15 ◦C/decade). For nighttime SUHII, it increases
significantly for the Northeast and Northwest regions with slopes of 0.25 ◦C/decade and
0.17 ◦C/decade, respectively. There was no obvious trend for nighttime SUHII in the
Southeast region.

4. Discussion

The quantification of SUHII relies on distinguishing between rural and urban land
surface temperatures (LST), which are influenced by land use and land cover (LULC)
information. Given the typically minor variations in LST within urban clusters, accurately
defining “rural” regions is crucial for SUHII quantification [23]. When rural regions exhibit
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a mix of LULC types, they may yield varying SUHII values for a single city, depending
on the specific land cover types selected for reference [30]. However, it remains unclear
how the SUHII values obtained using the entire rural area compare to those obtained using
specific land cover categories. This issue, along with the feasibility of quantifying regional
SUHII patterns using all rural LULC types and the potential impact of heterogeneous
rural LST, has received limited attention in large-scale studies. In this study, we aimed to
verify the reliability and feasibility of urban–rural difference methods in regional SUHI
analysis. Understanding the effect of multiple rural land types on SUHII quantification
under different rural backgrounds is crucial for clarifying these uncertainties.

Our results revealed that, in most UAs in China, the SUHII quantified using the entire
rural area differed only slightly from SUHII1 and SUHII2, except in certain UAs with
mixed rural land covers. Additionally, while there was a slight disparity in the monthly
magnitude between SUHII and SUHII1 and SUHII2, the long-term patterns revealed by
SUHII were not significantly affected by the diversity of rural landcover types. Moreover,
according to the day–night cycle and seasonal variations integrated from the regional
averages, the similar result of SUHII and SUHII1 further confirmed that the urban–rural
method involving the whole rural region as a reference was feasible in the regional analysis
of SUHI. The strong correlation between SUHII, SUHII1, and SUHII2 from single-city and
regional scales, together with the analogous pattern of diurnal and seasonal SUHII and
SUHII1, comprehensively verified the feasibility of the urban-rural LST difference method
for large-scale regional SUHI analysis. The findings validate and supplement the previous
uncertainties in the sensitivity of SUHI quantification under non-uniform rural background
surfaces [21,23].

Given the feasibility of the urban–rural LST difference method in depicting regional
SUHII patterns, our study identified significant spatial and temporal variations in SUHII
across the Northeast, Northwest, and Southeast regions in China. Although consistency
was found between the regional patterns of SUHII and SUHII1, this result is preliminary
and limited to certain UAs in China. To extend the comparison of multiple SUHII indices
to a global scale, future studies should consider quantifying SUHI under rural regions with
more diverse land cover types and varied climate backgrounds to facilitate its applicability.
Additionally, it is important to note that our SUHII measurements were based solely
on clear-sky observations, which may lead to an overestimation of regional averaged
results [43]. Therefore, the improved high-resolution LST was recommended in future
SUHII studies at a regional scale.

5. Conclusions

The study comprehensively analyzed urban form expansion from 2003 to 2019 for
34 major UAs in China. Different quantifications of SUHII (SUHII1 and SUHII2) were then
constructed by differentiating principal and secondary rural land cover types. These new
quantification methods were compared with the original SUHII, based on the entire rural
background, in terms of monthly average values and interannual variation. Finally, SUHII
and SUHII1 were further compared in terms of the day–night cycle, monthly variation, and
inter-annual trends across the country and in various geographic regions. These analyses of
SUHIIs from multiple spatial and temporal aspects affirmed the reliability of the traditional
urban-rural LST difference method in exploring regional SUHII patterns. Moreover, the
study investigated the spatiotemporal dynamics of SUHII in China.

The main conclusions are as follows:

(1) Among the 34 UAs in China, 32 UAs other than Lanzhou and Lhasa experienced
significant urban expansion accompanied by changes in surrounding rural land
use types during 2003–2019, underscoring the significance of defining the dynamic
urban–rural extent in SUHII quantification.

(2) Considering different SUHII quantifications at each UA, the long-term variation in
monthly SUHII and SUHII1/SUHII2 showed identical trends with strong correlation
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coefficients of over 0.9 in most (32) UAs but with varying magnitudes in certain
arid UAs.

(3) The regional patterns of diurnal and monthly SUHIIs revealed by considering the
entire rural area, in Northeast, Northwest, and Southeast China, respectively, are not
influenced by the diversity of rural land covers.

(4) Seasonal SUHII exhibits disparities in day–night variation and regional contrast in
China. In summer, SUHII peaks at noon and decreases at night, exhibiting the opposite
pattern in the northwest region. Conversely, in winter, SUHII is lowest at noon and
rises at night for most regions, with the southeast region displaying the opposite trend.

(5) The monthly variation in daytime SUHII is more pronounced than that at night.
Nationally, daytime SUHII peaks in July (or August) and reaches its lowest point
in December (or January), with nighttime values remaining relatively stable across
geographical regions.

(6) Interannual trends of SUHII vary across different regions. On a national scale, there
is no significant trend in annual daytime SUHII from 2003 to 2019, while nighttime
SUHII shows a steady increase at a rate of 0.07 ◦C/decade. Both summer daytime and
nighttime SUHII exhibit significant increasing trends, with rates of 0.11 ◦C/decade
and 0.10 ◦C/decade, respectively. Notably, there is a significant increasing trend
(0.08 ◦C/decade) for winter nighttime SUHII.
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