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Abstract: The Horn of Africa has sensitive, arid ecosystems, with its vegetation commonly distressed
by factors such as climate change, population increase, unstable water resources, and rarely enforced
land use management practices. These factors make countries such as Djibouti highly variable
locations for the growth of vegetation and agricultural products, and these countries are becoming
more vulnerable to food insecurity as the climate warms. The rapid growth of satellite and digital
image processing technology over the last five decades has improved our ability to track long-term
agricultural and vegetation changes. Data cubes are a newer approach to managing satellite imagery
and studying temporal patterns. Here, we use the cloud-based Digital Earth Africa, Open Data
Cube to analyze 30 years of Landsat imagery and orthomosaics. We analyze long-term trends
in vegetation dynamics by comparing annual fractional cover metrics (photosynthetic vegetation,
non-photosynthetic vegetation, and bare ground) to the Normalized Difference Vegetation Index.
Investigating Djibouti-wide and regional vegetation trends, we provide a comparison of trends
between districts and highlight a primary agricultural region in the southeast as a detailed example
of vegetation change. The results of the Sen’s slope and Mann–Kendall regression analyses of the
data cube suggest a significant decline in vegetation (p = 0.00002), equating to a loss of ~0.09 km2 of
arable land per year (roughly 2.7 km2 over the 30-year period). Overall, decreases in photosynthetic
vegetation and increases in both non-photosynthetic vegetation and bare soil areas indicate that the
region is becoming more arid and that land cover is responding to this trend.

Keywords: Open Data Cube; spatiotemporal trends; fractional cover; photosynthetic vegetation;
Djibouti; food security; land cover trends

1. Introduction

Globally, vegetation in arid regions is often susceptible to the small shifts in tempera-
ture and precipitation that arise due to climate change [1–4]. Current research shows that
arid regions are a challenging environment for vegetation to grow, and that agriculture
and food security are closely tied to trends in climate change [5,6]. Global climate models
predict increased variability in precipitation, higher temperatures, and more intense precip-
itation events [7]. These short-term variations drive the need for new analytical tools that
can efficiently examine the long-term temporal trends of vegetation in response to climate
change. The Digital Earth Africa (DEA) Open Data Cube (ODC) is a relatively new tool that
efficiently addresses the existing problem of analyzing large quantities of remote sensing
data for wide-ranging spatial scales across multiple decades.

The growth of satellite technology over the last five decades has improved the ability
of scientists to track long-term vegetation change in arid regions where vegetation is
sensitive to shifting climates. Satellite remote sensing is a leading technology in providing
comprehensive information about numerous earth systems, particularly in monitoring
global vegetation health and trends [8–14]. In handling remote sensing data, data cubes
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are a newer approach to managing imagery, with hundreds or thousands of revisits to
the same swath of land [15–17]. They are designed to efficiently store extensive sets of
repeat imagery and are tailored for rapid access, processing, and analyses using a Python
Application Programming Interface (API) [15,17,18]. The primary dimensions of a data
cube for remote sensing purposes usually consist of the latitude, longitude, spectral data,
and time [15]. The ODC is a non-profit, open-source data cube project driven by the need
to uniformly manage and study temporally repetitive satellite data, and is freely available
to the public [15–19].

DEA is an ODC initiative supported by the Australian Department of Foreign Affairs
and Trade, funded in part by the Helmsley Charitable Trust and derived from Digital
Earth Australia [20,21]. It maintains robust imagery libraries for the United States Geolog-
ical Survey (USGS) Landsat mission, the European Commission (EC) and the European
Space Agency (ESA) Copernicus Sentinel-2 mission. DEA also provides a cloud-based
user computational platform in the form of a sandbox, operating in a Jupyter Notebook
environment [20]. The ODC is freely available through DEA for users working on any type
of African geospatial challenges [20–22].

The challenge being addressed here is analyzing the long-term temporal vegetation
trends in arid Africa, with a focus on Djibouti. In the Horn of Africa, vegetation systems
and agricultural areas are fragile ecosystems that are regularly distressed by extreme heat
and drought, increasing populations, unstable water resources with limited irrigation
options, and poor land use management practices such as a lack of crop rotation or a lack
of controls for disease and pests [9,23–31]. Over half of the global population growth in
the next 25 years is expected to occur in Africa. With this, the population of sub-Saharan
Africa is projected to double by 2050 [8,32–34]. With future projections of climate warming
and population growth, food systems and security will continue to be vulnerable in arid
nations such as Djibouti [8,35–40].

Analyzing annual vegetation dynamics provides key information for determining
the overall trends in natural vegetation and agricultural areas that may be subjected to
abnormal drought, poor cropland management practices, or abandonment [41,42]. In
arid regions, vegetation can be categorized either as photosynthetic (i.e., green leaves,
healthy growing crops) or non-photosynthetic (dead/decaying/brown vegetation) [42–49].
Fractional cover algorithms use spectral unmixing [43,46–48] to determine the proportion
of photosynthetic vegetation (pv), non-photosynthetic vegetation (npv), and bare soil (bs)
(i.e., bare soil or rock) contained within a single pixel of imagery [44,46,49]. Comparing
the ratios over months in a particular year and over multiple years indicates trends in a
nation’s land use management [47] and, more broadly, land cover.

This research (1) analyzed 30 years of Landsat fractional cover data products for
Djibouti using DEA’s ODC to quantify the fractional cover vegetation type (pv, npv, or bs),
(2) compared the fractional cover results to the commonly used Normalized Difference
Vegetation Index (NDVI) metric, and (3) tested for significant temporal trends using Mann–
Kendall regressions and Sen’s slope tests. For these statistical tests, we present a null
hypothesis (H0) of no trend in vegetation changes between 1990 and 2020, and an alternate
hypothesis (Ha) of a significant trend in vegetation changes between 1990 and 2020. In
the alternate hypothesis, the direction of the trend (positive or negative) is noted by the
Mann–Kendall statistic and Sen’s slope tests. For further clarification, in this study, the
terms “photosynthetic cover” and “green cover” are used interchangeably to describe
photosynthetic vegetation.

2. Materials and Methods
2.1. Area of Interest

Djibouti is a small country in the Horn of Africa (Figure 1), bordered by Eritrea to the
north, Ethiopia to the west and south, and Somalia to the southeast. Djibouti has a population
of approximately one million people and a land area of 23,200 km2 [35,37,40,50–60]. However,
only a small percentage of this land is considered cultivable due to factors such as aridity
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and soil quality [52]. Only about 0.04% of Djibouti’s land is classified as arable land, which
is equivalent to around 9200 hectares or 92 square kilometers [40]. It receives an average
of 147 mm/year of precipitation and had a water supply that could serve only half of
the urban population and 21% of the rural population as of 1990 [40]. Its economy relies
heavily on services, particularly those related to its status as a regional trade and logistics
hub [52,53,61,62]. As a result, agriculture represents only a small fraction of its GDP, and
it experiences frequent droughts that severely impact food security [50,51]. Djibouti is
classified by the United Nations as a “chronic food-deficit country” due to its limited
agricultural resources and recurrent droughts [40,52,53].
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For a more intent focus, a smaller, 23 km2 study area (Figure 1C) was selected to ex-
emplify the study results in raster format (Figure 2) and was selected in consultation with 
previous studies [63]. This smaller, exemplary region is the most visible cropland area in 
the region; it is prominently observable on satellite imagery and highlights an agricultur-
ally important region in Djibouti District, just south of Djibouti City (Figure 1C). The 

Figure 1. Location of Djibouti and study area in the arid Horn of Africa of the Eastern African
Continent. Djibouti is one of ~20 African countries in arid regions. (A) Location of Djibouti and the
Horn of Africa on the African Continent. (B) Djibouti location in the Horn of Africa. (C) SE Djibouti
study area location and sub-regions in Djibouti.

For a more intent focus, a smaller, 23 km2 study area (Figure 1C) was selected to
exemplify the study results in raster format (Figure 2) and was selected in consultation with
previous studies [63]. This smaller, exemplary region is the most visible cropland area in
the region; it is prominently observable on satellite imagery and highlights an agriculturally
important region in Djibouti District, just south of Djibouti City (Figure 1C). The region,
while not inclusive of the entire country, served as a representation of the common regional
geographic features and highlights one of the primary productive agricultural areas in
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Djibouti. Agricultural production in Djibouti is concentrated in small pockets of fertile land
located mainly in the southeast and northwest regions of the country [40,53].
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Figure 2. Example of photosynthetic vegetation (pv) cover in the SE Djibouti study area (Figure 1C)
for the first and final portion of the 30-year period, May 1990 (A) and May 2019 (B).

2.2. Data Utilized

This study utilized several Landsat datasets, accessed for this study through the DEA
platform. USGS Landsat Collection 2 Surface Reflectance imagery from Landsat 5, 7, 8,
and 9 [20] was used by DEA to create the fractional cover (FC) products [41,64] for this
study’s 30-year study period (1990–2020). A Water Observations from Space product, also
created by DEA [65], was used to mask the water and cloud pixels. An FC data cube was
compiled using DEA’s FC product to provide FC percentages at timesteps matching the
Landsat satellite’s 16-day temporal resolution. The FC products utilize each pixel in the
study area at a 30 m cell size and use the WGS 1984 UTM Zone 38N Coordinate Reference
System (CRS) (EPSG: 32638). Temporal data coverage is consistently available biweekly,
aside from a two-year gap from 2006 to 2007 due to a Scan Line Corrector (SLC) failure
with the Landsat 7 Enhanced Thematic Mapper plus (ETM+) sensor [66].

There are four bands in the FC dataset that express the percentage of fractional cover
as an integer ranging between 0 and 100 for bare soil, photosynthetic (green) vegetation,
and non-photosynthetic (dead/decaying) vegetation [12]. Also included is a fourth spectral
unmixing error band [22] (Table 1).

Table 1. Data products and band IDs of fractional cover and water observations from space products
derived from Landsat collection 2 surface reflectance.

Product Description Band ID Name Value
Range Units No Data

fc_ls
Fractional

Cover from
Landsat

bs bare soil 1–100 percent 255

pv photosynthetic
vegetation 1–100 percent 255

npv non-photosynthetic
vegetation 1–100 percent 255

ue unmixing error 1 255

wofs_ls

Water Obser-
vations from
Space using

Landsat

water Water Observation
Feature Layer 0–255 na 1

2.3. Processing in ODC

This study comprised three main processing phases: (1) computation structuring,
(2) data compilation, and (3) analysis (Figure 3). We completed all three phases using DE
Africa’s online ODC python-based scripting environment. Parallel processing was used
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to process the large volume of time slices in the data cube covering the thirty years and
was accomplished using a four-core computer cluster and 28 gigabytes of memory. DEA
utilizes Dask for dynamic task scheduling, which is a flexible library for parallel computing
in Python [67]. It uses parallel arrays and data frames that run on top of dynamic task
schedulers. Here, we assembled multiple data cubes to compare the FC and NDVI at both
national and regional levels. A water and cloud mask were used to mask the presence of
water and cloud pixels from the data cube, providing a cloud-free analysis.
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tion structuring, data compilation, and analysis; these were all within the ODC environment.

2.4. Fractional Cover Calculations

The Joint Remote Sensing Research Program (JRSRP) developed the FC algorithms [41]
used to build the DEA’s bare soil (bs), photosynthetic vegetation (pv), and non-photosynthetic
vegetation (npv) products, and DEA provided access to the algorithms and products as
part of its analytic data sets [20]. The FC algorithm (Equation (1)), developed by Scarth
et al. for Digital Earth Australia [41], is defined as[

x
δ

]
=

[
M

δ1T

]
f + e (1)

where δ is a weighting for the sum to one constraint and 1T =
[
1 1 . . . 1

]
is a c + 1

vector of ones. The optimal value of δ is determined during the 10-fold cross validation
process [41].

A comparison between the fractional cover and the more common NDVI provides
insight into general relationships with a well-studied metric [42,44,45,47,49,68–70].

A spectral unmixing approach using the NDVI and the Cellulose Absorption Index
(CAI) was applied in the creation of the FC product for this project [41,44,47]. In total,
675 images were filtered for clouds, leading to 119 scenes with less than 10% cloud cover
being processed for the FC data products covering the period from 1 January 1990 to
1 January 2020. Each pixel in the Djibouti study area was input to the fractional cover
algorithm after masking out cloud and water pixels.

We also conducted a district-level (Figure 1C) statistical comparison to summarize the
changes over the 30-year period, including the minimum, maximum, range, mean, and
standard deviation of pv values. The maximum values for pv signify the maximum cover
level of green vegetation throughout the study period, the mean pv provides a general
measure, and the minimum pv signifies the lowest level of green vegetation throughout the
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study period. Variability/stability was measured using the range and standard deviation.
Here, we present our results in the maximum, minimum, quartiles, and mean pv values
by year. The maximum and minimum pv are the maximum or minimum pv value for any
single pixel in any of the scenes contained within a given year, signifying both seasonal
and spatial variations. The mean pv is the mean value in every pixel over the entire year.
The presentation of results in this manner enables the average trends through the mean to
be observed and highlights the locations and periods with the healthiest vegetation and
most arid conditions.

Next, we summarized the FC results for each of the 119 scenes using the yearly FC
maximum (wet season), minimum (dry season), and average to analyze consistent seasonal
trends rather than include seasonal noise. We aggregated all scenes by year in the three
categories (bs, pv, npv) for minimum, mean, and maximum levels, and calculated trendlines
using linear and moving-average regressions for each.

2.5. Statistical Testing

Finally, the FC dataset was subjected to spatiotemporal statistical testing for photosyn-
thetic vegetation, as photosynthetic vegetation is most frequently associated with healthy
vegetation [47]. To test the direction of trends, we performed Sen’s slope and Mann–Kendall
trend tests (alpha = 0.05) to test the null (H0) and alternate hypotheses (Ha):

• H0: No significant temporal trend in FC types, by percent cover.
• Ha: Significant temporal trend in FC types, by percent cover.

Sen’s slope and Mann–Kendall regressions are both methods of testing for trends in
univariate, non-normally distributed temporal data. The direction of the trend (positive
or negative) is noted by the Mann–Kendall (MK) test, where positive and negative values
are, respectively, indicative of positive and negative temporal trends in photosynthetic
vegetation over the entire 30-year study period. Mann–Kendall tests require computation
of the z-statistic (Equation (2)), which is calculated as follows:

Z = (τ − 1)/
(√Var(τ) (2)

where τ is Kendall’s Tau, Var(τ) is the variance of Kendall’s Tau, and Z is the test statistic.
Kendall’s Tau (Equation (3)) is the non-parametric correlation coefficient (or measure of
association) for the sample and is defined as

τn =
c − d
c + d

=
S

(
n
2
)

=
2S

n(n − 1)
(3)

where S is the number c of concordant pairs minus the number d of discordant pairs [71,72].
The Z-statistic is compared with the critical value to determine the significance of the trend
in the time series data [71,73,74]. A significant result indicates the presence of a trend, either
positive or negative, while a non-significant result suggests the absence of a significant
trend [71,74].

Sen’s slope was then used to provide an estimate of the 95% confidence interval around
the mean trend. The Sen’s slope test is a non-parametric method used to estimate the slope
or trend in a time series by computing the median of all possible slopes between pairs of
data points. It is robust to outliers and does not assume any specific distribution of the
data. The calculation contains two steps:

1. For each pair of data points (xi, xj) in the time series, calculate the slope as (xj − xi)/(j
− i), where i and j are the indices of the data points.

2. Compute the median of all calculated slopes. This median slope is considered the
Sen’s slope [73,75–77].
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3. Results
3.1. Fractional Cover Regression

Analysis of the temporal trends in total green vegetation showed both periods of
increase and decrease over the thirty-year period, but the overall pv fractional cover
decreased between 1990 and 2020 with a −0.00025 slope (Figure 4). Non-photosynthetic
vegetation and bare soil comprised 35–60% of the study area, and photosynthetic vegetation
accounted for only 10% of the fractional cover (Figure 4). The non-photosynthetic vegetation
and bare soil had negative correlations with photosynthetic vegetation, and both displayed
increasing trends over the study period. Each point on the graph (Figure 4) represents the
average value for pv, npv, and bs for each of the 119 images in the data cube.
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Figure 4. Image-averaged FC values (in percent) of the study area for the 30-year study period (119
cloud-free scenes total). The pv (photosynthetic vegetation) makes up less than 10% of cover annually
and shows an overall decrease, whereas npv and bs show high variability and a slight increase
throughout the study period.

The change in photosynthetic (green) vegetation for all 119 scenes of the study
area showed a clear decreasing trend in the linear average (Figure 4). The linear regres-
sion slope was −0.00025 per year and showed a weak association with the input data
(R2 = 0.30649). Considering the area of Djibouti (23,200 km2), this means that Djibouti
has lost the equivalent of 5.8 hectares of pv per year, which equates to 174 hectares over
the 30-year study period.

To account for seasonal variability, we aggregated the pv data to the yearly level,
reducing the time cube from 119 images (Figure 5A) to 30 annual composites, one for
each year, and re-analyzed the regressions (Figure 5B–D). The decreasing trend in green
vegetation was more readily observable when the data were aggregated annually to show
the mean (Figure 5B), minimum (Figure 5C), and maximum (Figure 5D) photosynthetic
vegetation levels for each of the 30 years.

The aggregated mean pv regressions showed similar results to the pre-aggregated
dataset with a regression coefficient of −0.00028 and an R-squared of 0.73902 (Figure 5B).
The aggregated minimum pv showed a slightly lower regression coefficient of −0.00011
and an R-square of 0.67484 (Figure 5C). The maximum green FC showed a linear regression
coefficient of −0.00051 and an R-squared of 0.61761 (Figure 5D). The mean, min and max
regression values represent various stages of photosynthetic vegetative growth, whether
early spring-like growth (min) or full peak-season growth (max).
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3.2. Mann–Kendall and Sen’s Slope Tests

All trends show general decreases in green fractional cover throughout the 30 years.
The Mann–Kendall test (Table 2) rejected the null hypothesis (H0 = no change in pv cover)
and showed decreasing trends in the minimum, maximum, and mean photosynthetic
vegetation covers, with MK-stat values of −242, −134, and −190, respectively. The pv
covers also showed negative Sen’s slopes (Table 2) over the entire study period of −0.034,
−0.156, and −0.091, respectively.

Table 2. Mann–Kendall and Sen’s slope results for smoothed photosynthetic cover. We computed all
statistics at 95% confidence (alpha = 0.05) [78,79].

Mann-Kendall Sen’s Slope

Photosynthetic
(Smoothed) Alpha MK-Stat z-Stat p-Value Trend Alpha Slope Intercept

MEAN 0.05 −190 −3.945 0.00008 yes 0.05 −0.091 1.984
MAXIMUM 0.05 −134 −2.776 0.00550 yes 0.05 −0.156 3.669
MINIMUM 0.05 −242 −5.030 0.00000 yes 0.05 −0.034 0.718

The rasterized change detection results further support the statistical outcomes, show-
ing a distinct decrease in photosynthetic fractional vegetative cover. Comparing the May
1990 image (Figure 2A) and the May 2019 image (Figure 2B) shows a distinct decrease in
pv cover in the study area (Figure 6). Most pixels in the study area, and across Djibouti,
decreased in pv between 1990 and 2019, while only small areas had increasing pv levels.
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3.3. Zonal Summary Statistics

The pv and NDVI summary statistics over the 30-year study period (Figure 7) for the
five districts of Djibouti (Figure 1C) show a positive relationship between pv and the NDVI.
Ali Sabieh shows the greatest increase in pv between 1990 and 2005 (Figure 7C) and 2006
and 2020 (Figure 7D), and aligns with the NDVI results for the same region (Figure 7A,B).
Dikhil and Tadjourah districts show maximum pv values at 100% in both the 1990–2005
(Figure 7C) and 2006–2020 (Figure 7D) periods. The statistical ranges for the Dikhil and
Tadjourah districts were the greatest of all the districts for the full 30 years (showing the
greatest variation in both pv and NDVI). Djibouti, Obock, and Tadjourah had the highest
maximum NDVI values for both the 1990–2005 and 2006–20202 periods at 0.53, 0.59, and
0.65 (Figure 7A) and 0.61, 0.67, and 0.64 (Figure 7B), respectively.
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4. Discussion

Here, we discuss the above rasterized results for a study area in SE Djibouti, the
relationship between the FC and NDVI, and their general decreases over time. We also
highlight the capabilities of DE Africa’s ODC for processing and analyzing high volumes
of satellite imagery and the results displaying decreasing trends in overall vegetation
abundance and health. We discuss their implications toward heightened vulnerability in
terms of agriculture and food production.

4.1. Temporal Vegetation Trends in Djibouti

The results suggest that throughout the study period, the Djibouti study area was
covered by 35–60% of both non-photosynthetic vegetation and bare soil, and less than
10% of photosynthetic vegetation (Figure 5). The results also show a negative correlation
between pv versus npv and bs [80]. This suggests the death of vegetation and the transition
of those areas into bare soil, or the growth of vegetation into photosynthetic vegetation.
Consequently, both the npv and bs covers demonstrated increasing trends over the study
period as the pv cover decreased.

The district-level zonal statistics revealed a generally positive relationship between
pv and the NDVI. The Tadjourah and Dikhil districts had the highest pv FC and NDVI
(Figure 4) estimations, as well as the widest ranges throughout the study period. This
suggests a greater presence of photosynthetic vegetation in these districts over a longer
period, and a higher variability in the vegetation in Tadjourah and Dikhil. This finding
spatially correlates with agricultural production in Djibouti being mostly concentrated in
the more fertile land located primarily in the SE Djibouti study area and northwest regions
(Figure 1C) of the country [81,82].

Focusing on the SE Djibouti study area (Figure 1C), a decreasing trend in total green
vegetation was observed between 1990 and 2020 (Figure 2), with some periods of smaller
positive trends from 1990 to 1995 and 1997 to 1999 and negative trends from 1995 to 1997
and 1999 to 2001. Between the years of 1997 and 2003, Djibouti underwent its most severe
decline in pv over the study period.

Analyzing the change in photosynthetic (green) vegetation across all 119 scenes (Fig-
ure 5) revealed a clear decreasing trend when examining the and three-year moving
averages (Figure 5A). The linear regression coefficient for the entire period from 1990 to
2020 indicated a consistent decline. However, the R-squared value was relatively low,
indicating that the linear regression model did not fit the data well. To account for seasonal
variability, we performed a yearly aggregation of the data (Figure 5B–D), which further
accentuated the decreasing trend in green vegetation.

More specifically, the yearly smoothed minimum green fractional cover (Figure 5B),
while exhibiting a slightly smaller regression, also confirmed the decreasing trend in the
lowest pv values. The smoothed mean (Figure 5C) and maximum (Figure 5D) green
fractional covers displayed decreasing trends as well, indicating that the average and
highest levels of pv cover also decreased throughout the 30 years. These quantitative
results aligned with the qualitative imagery observation of decreasing green fractional cover
over the 30 years (Figure 2). The Mann–Kendall and Sen’s slope statistical tests (Table 2)
supported the rejection of the null hypothesis (of no change), indicating a significant decline
in photosynthetic vegetation cover.

The raster results further substantiate the drastic change in photosynthetic fractional
vegetative cover over the thirty years (Figure 7), and between the 10 May 1990 image
(Figure 2A) and 10 May 2019 image (Figure 2B). These results demonstrate a distinct
decrease in photosynthetic vegetation within the study area, highlighting the increasingly
challenging environment in which plants grow and their inability to quickly adapt to a
warming climate by relocating to new locales.

While there are minimal studies in the published literature using the NDVI and FC
to specifically assess Djibouti’s vegetative trends [83], the findings of this study align
with the concerns about Djibouti published by the United Nations’ Food and Agriculture
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Organization [40] and Development Program [52], the World Bank [56], and the U.S. Agency
for International Development‘s Famine Early Warning System [35], who all report on
Djibouti’s food insecurity and need to strengthen resiliency over the long term.

4.2. Connections between FC and NDVI

In other published works, the relationship between the FC and NDVI have been
found to correlate positively with one another [69,84–88]. The general positive relationship
between the FC and NDVI in this study and others is not surprising given that each is a
measure of vegetation existence, abundance, and health. Carlson and Ripley (1997) [87]
found the NDVI and fractional vegetation cover to be dependent, particularly when the
NDVI is scaled between the limits of the minimum (bare soil) and maximum fractional
vegetative cover [87]. Gao et al. (2020) reviewed algorithms for estimating the fractional
cover using pure vegetation index values [69]. Their review of 173 selected scientific
publications found that relative vegetation abundance (RA) algorithms for determining FC
based on scaled maximum/minimum vegetation index values (such as the NDVI) are those
most widely used, as opposed to other methods such as spectral mixture analysis (SMA),
spectral-based supervised classification algorithms or machine learning algorithms [83].
They also noted that there were few regional studies of the fractional vegetative cover over
Africa, Oceania and South/Central America presented in the reviewed literature [83].

The comparison between the FC and NDVI in these results offers valuable insights
into their respective implications for assessing vegetation dynamics [69,84–87]. Firstly, the
positive relationship observed between the FC and NDVI throughout the 30-year study
period underscores their correlation. The peaks in the FC and NDVI in different years
suggest temporal variations in vegetation health, with the FC peaking in one year and the
NDVI in another. This implies that while both the FC and NDVI are related, they respond
differently to changing environmental conditions or land management practices.

One notable finding is the maximum pv values at 100% observed in the Dikhil and
Tadjourah districts in both the first and second halves of the study period. These districts
also consistently exhibit the highest NDVI values, indicating a more robust photosynthetic
vegetation cover than the other districts. This suggests that, in these districts, the FC and
NDVI align closely [69,87,88], confirming the utility of both metrics in assessing vegetation
health [69,87,88]. However, the variations in the range of NDVI values in these districts
over the 30-year study period indicate the sensitivity of the NDVI to environmental changes
that the FC may not fully capture [69].

The raster results further substantiate the correlation between the FC and NDVI.
The distinct drop in green vegetative cover shown in the raster results between 1990 and
2019 (Figure 2) aligns with the quantified trends in the NDVI. This evidence reinforces
the importance of FC as a valuable tool for monitoring and assessing changes in green
vegetation cover, especially in under-studied regions like Djibouti [83], where such changes
can have significant ecological, environmental, and socio-economic impacts [42,47,69,89,90].

4.3. Advantages of Data Processing in Datacubes

Utilizing DE Africa’s ODC to access and analyze the study data resulted in a substantial
reduction in both the processing time and the need for high-power computing resources.

Data cubes store spatial, spectral, and temporal data in multidimensional arrays [91]
as opposed to traditional methods that involve downloading and maintaining individ-
ual images referenced as single files, requiring separate analysis steps for each file [15].
DE Africa’s ODC provided analysis-ready data (ARD) and a processing platform for
analysis and sharing [20] that saved time, effort and computing resources, allowing the
analyst to spend more time on research and minimal time on data preparation and man-
agement [15,18,91,92]. Conducting the same study on a local PC, requiring the need to
download, preprocess, and analyze data, would have taken an estimated 500% longer than
the same study conducted on the DE Africa servers using the ODC. The parallel computing
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of the DE Africa servers supports the complex workflows necessary for the sophisticated
algorithms used in machine learning, image processing, and statistics [93].

4.4. Implications for Agriculture and Food Security

The results provide insights into the implications for agricultural vegetation in the
30-year period. Considering that agricultural vegetation is photosynthetic and that pho-
tosynthetic vegetation has declined over the study period, our results suggest that it has
become more challenging to grow agricultural plant products in Djibouti. These results
generally align with the findings of other researchers [9,94–96]. These implications are
essential for understanding the dynamics and sustainability of agriculture and its larger
implications for food security in Djibouti.

The negative trend of a mean pv of 0.00028% throughout the study period points to
the loss of ~0.09 km2 of arable land per year, and ~2.68 km2 of arable land throughout
the 30-year period between 1990 and 2020. Contrarily to the results of this study, the
World Bank reports a 0.1% increase since 2000, and states that, in 2023, 0.15% of Djibouti’s
23,200 km2 was arable, which equates to 34.5 km2 [50,56]. Considering these values, our
study suggests that Djibouti loses about 0.2% of its arable land per year on average. Over
the thirty-year period, Djibouti lost the equivalent of 7.7% of its currently arable land.

Unfortunately, in the absence of in situ data confirming the areas of true agricultural
vegetation, it is difficult to precisely determine agricultural abundance and health over the
study period. High-resolution remote sensing of the study area and hyperspectral imaging
for the region are beyond the scope of this study but warrant further investigation to
validate the results and confirm the agricultural trends independent of fractional cover. The
trend toward decreasing photosynthetic vegetation is concerning enough to call for further
investigations into why photosynthetic vegetation is decreasing, and possible mitigation
strategies that could include increased political investments, adoption of climate-resilient
farming styles, or increased planting of climate-resilient crops.

5. Conclusions

The major conclusion of this study is that, based on the FC and NDVI measures,
Djibouti’s vegetation has declined in abundance and health between the beginning of
1990 and the beginning of 2020. The ODC platform made processing quicker and easier
than traditional GUI- or Python-based iterative methods. A lack of in situ data makes
these conclusions less certain, but the comparison of FC and NDVI metrics suggests good
agreement and provides supporting evidence for these further conclusions:

• The FC values for pv suggest an overall decline of vegetation abundance and health, in
alignment with an increasingly arid environment and less photosynthetic vegetation,
equating to a loss that is equivalent to ~7.7% of Djibouti’s arable area.

• Districts with the greatest levels of pv and NDVI showed the greatest variability in those
measures, pointing to the sensitive nature of photosynthetic vegetation in arid regions.

• Climate change, although not studied here, poses an imminent threat to photosynthetic
vegetation, agriculture, and food security in Djibouti and other arid nations.

Overall, further investment in climate-resilient strategies would surely benefit Djibouti
and the region, while improving geopolitical stability in the face of climate change and the
connected challenges facing vegetation and agriculture in the Horn of Africa.
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