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Abstract: The timely and robust prediction of wheat yield is very significant for grain trade and
food security. In this study, the yield prediction model was developed by coupling an ensemble
model with multi-source data, including vegetation indices (VIs) and meteorological data. The results
showed that green chlorophyll vegetation index (GCVI) is the optimal remote sensing (RS) variable
for predicting wheat yield compared with other VIs. The accuracy of the adaptive boosting- long
short-term memory (AdaBoost-LSTM) ensemble model was higher than the LSTM model. AdaBoost-
LSTM coupled with optimal input data had the best performance. The AdaBoost-LSTM model had
strong robustness for predicting wheat yield under different irrigation and extreme weather events
in general. Additionally, the accuracy of AdaBoost-LSTM for rainfed counties was higher than that
for irrigation counties in most years except extreme years. The yield prediction model developed
with the characteristic variables of the window from February to April had higher accuracy and
smaller data requirements, which was the best prediction window. Therefore, wheat yield can be
accurately predicted by the AdaBoost-LSTM model one to two months of lead time before maturity
in the HHHP. Overall, the AdaBoost-LSTM model can achieve accurate and robust yield prediction
in large-scale regions.

Keywords: wheat; Huang-Huai-Hai Plain; ensemble model; vegetation indices; yield prediction

1. Introduction

Huang-Huai-Hai Plain (HHHP) is an important grain production base in China, with
wheat production accounting for over 35% of the country’s total output [1]. Studies on
growth monitoring and yield prediction of wheat are beneficial to the accurate grasp of
grain production status and the set of government agricultural policies [2,3]. Remote
sensing (RS) data can cover a large area and reflect sufficient surface information, with high
timeliness and low cost, which provides a new technical method for the fast and precise
acquisition of crop growth information [4–6].

A traditional yield estimation method combined with RS data directly developed
statistical models to predict yield based on the relationship between RS variables (e.g., vege-
tation indices, VIs) and crop yield [7,8]. However, crop yield formation exhibited nonlinear
responses to extreme environment conditions, which may result in a poor performance
of previous linear regression models [9,10]. Machine learning (ML) was an advanced
method for crop yield estimation and widely used in agriculture-related domains [11,12].
Compared with linear analysis, ML algorithms can capture nonlinear relationships between
crops and their external environmental variables. Feng et al. [13] found that the prediction
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model coupling with an ML algorithm could perform better in wheat yield prediction
than that coupling with the multiple linear regression (MLR) algorithm. In recent years,
there have been an increasing number of studies on crop yield prediction using ML algo-
rithms in a large-scale region. Cai et al. [14] showed that the prediction model for wheat
yield based on the combination of enhanced vegetation index (EVI) and climate variables
performed well in southeastern and southwestern Australia. Han et al. [15] developed a
county-level wheat yield prediction model based on ML and multi-source data in China
and obtained good results. Deep learning (DL) was a more advanced ML algorithm, which
was widely applied in crop yield prediction [16–18]. As compared with the ML algorithm,
DL had better performance in crop yield prediction [19,20]. Zhang et al. [21] found that
the yield prediction model using long short-term memory (LSTM) to integrate climate
data and vegetation indices outperforms light gradient boosting machine (LightGBM)
and least absolute shrinkage and selection operator (LASSO). However, with a limited
training dataset, both ML and DL were prone to overfitting [22–25]. The ensemble model
can combine the prediction of several weak learners to make the final prediction, which
can obtain better prediction performance [26–29]. Li et al. [30] integrated multiple ML
models with a Bayesian average model to improve the prediction accuracy of maize yield
in Northeast China. The adaptive boosting (AdaBoost) algorithm was the more practical
boosting algorithm and widely used to improve the performance of weak learners [31,32].
Sun et al. [33] proposed the AdaBoost-LSTM ensemble learning model to predict financial
time series, while the AdaBoost-LSTM model outperformed other single prediction models
and ensemble models. However, the performance of the AdaBoost-LSTM in crop yield
prediction has not been well investigated.

On the other hand, the selection of RS variables had a great influence on the precision
of yield prediction. Son et al. [34] found that EVI-based models were slightly more accurate
than those from NDVI-based models in the rice yield prediction. Some studies used solar-
induced chlorophyll fluorescence (SIF) to predict crop yield [35,36]. Zhou et al. [37] found
that SIF had better prediction for yield than traditional VIs (e.g., EVI and NDVI). However,
the spatial resolution of existing SIF products was coarse and had much noise [14,38]. This
would increase the uncertainty in yield prediction. Recently, near-infrared reflectance
(NIRv) has been suggested as the effective substitution of SIF after theoretical derivations
and radiative transfer simulations [39], which has been used to estimate GPP, phenology
and yield [40–42]. Moreover, kernel NDVI (kNDVI) exhibited a stronger correlation than
the NDVI and NIRv in some independent products (e.g., GPP and SIF) [43], while there
was a marked correlation between the green chlorophyll vegetation index (GCVI) and leaf
area index (LAI) [44,45]. The selection of optimal RS variables was very important for the
accuracy and robustness of yield prediction.

Given the trade-off between temporal resolution and spatial resolution, complicated
phenological information was usually obtained from MODIS images, GLASS LAI data
or other low spatial resolution data [46,47]. Nevertheless, plenty of mixed pixels in the
classification map would exist due to the status. Accurate acquisition of spatial crop
spatial distribution was a prerequisite for growth monitoring and yield prediction [48].
Furthermore, the prediction model generally had different performance under irrigation
conditions. Compared with irrigated fields, yield prediction in rainfed fields maybe more
accurate [8]. Some researchers will delete samples with irrigation records when conducting
yield-related studies [49,50]. The performance of yield prediction models under extreme
weather conditions was also noteworthy [14]. Additionally, few studies had systematically
analyzed the roles of different input characteristic variable and prediction windows in the
yield prediction model.

In this study, the aims were to (1) combine the threshold method with ML algorithm to
obtain high-resolution wheat planting area maps at 30 m resolution in the HHHP; (2) use
the AdaBoost-LSTM ensemble model to obtain robust prediction of wheat yield in the
HHHP under extreme weather events and different irrigation conditions; (3) compare the



Remote Sens. 2024, 16, 1259 3 of 17

effects of different VIs and select the optimal VI in yield prediction; and (4) evaluate the
optimal prediction window for wheat yield prediction.

2. Data Sources and Methods
2.1. Study Area

There are seven provincial-level administrative regions (Hebei, Shandong, Henan,
Anhui, Jiangsu, Beijing and Tianjin) in the HHHP (Figure 1), and 427 counties in the
HHHP were selected as the study area. The main cropping system in the study area is
the double-cropping system of wheat/maize or wheat/rice, while winter wheat is usually
planted in mid-to-late October and harvested in early June. In the study area, the northern
region is irrigated agriculture, and the southern region is rainfed agriculture [51]. The
region has a warm temperate monsoon climate, while most precipitation appears from
July to September.
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2.2. Data Sources

The data mainly included satellite data, meteorological data, county-level statistics of
wheat planting area and yield and phenology from agro-meteorological stations (Table 1).

Table 1. Data used in this study.

Data Variable Source

Satellite data

NDBI,
MNDWI,

NDVI,
EVI,

GCVI,
kNDVI,
NIRv

Landsat5/7/8,
MOD09A1,
MOD09GA
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Table 1. Cont.

Data Variable Source

Meteorological data

Pr
Srad
Tmin
Tmax
VPD
ET
SM

TerraClimate

Crop data
phenology China’s Meteorological

Administration
planting area China Agricultural Statistical

Yearbookyield

2.2.1. Satellite Data

The images from Landsat 5/7/8 and MODIS products used in this study can be
obtained on the Google Earth Engine (GEE) platform (Table 1). We can process satellite
images by using the immense computing power of Google and improve the efficiency
of research in a large-scale region on the GEE platform, which has been widely used in
many research fields [52,53]. The temporal resolution and spatial resolution of Landsat
images were 16 d and 30 m, respectively. The temporal resolution and spatial resolution
of MOD09GA EVI images were 1 d and 500 m, while the temporal resolution and spatial
resolution of MOD09A1 images were 8 d and 500 m. According to previous studies, three
VIs of satellite images including normalized difference vegetation index (NDVI), normal-
ized difference building index (NDBI) and modified normalized difference water index
(MNDWI) were chosen for crop classification. The NDVI is an important parameter reflect-
ing crop growth and is widely used in related fields [54–56]. The NDBI and MNDWI were
used to distinguish non-crop areas such as buildings and water bodies, respectively [57–60].
Additionally, the NDVI and other four VIs (including the EVI, kNDVI, GCVI and NIRv)
were selected to develop the model for comparison of performance in predicting yield. The
relevant calculation formulas were as follows:

NDVI = (NIR − RED)/(NIR + RED) (1)

NDBI = (SWIR1 − NIR)/(SWIR1 + NIR) (2)

MNDWI = (GREEN − SWIR1)/(GREEN + SWIR1) (3)

GCVI =
NIR

GREEN
− 1 (4)

EVI = 2.5 × (NIR − RED)/(NIR + 6 × RED − 7.5 × BLUE + 1) (5)

NIRv = (NDVI − 0.08)× NIR (6)

kNDVI = tanh
(

NDVI2
)

(7)

where BLUE, GREEN, RED, NIR and SWIR1 represented blue band, green band, red band,
near infrared band and short-wave infrared reflectance band, respectively.

2.2.2. Meteorological Data

The precipitation (Pr), short-wave radiation (Srad), maximum temperature (Tmax),
evapotranspiration (ET), minimum temperature (Tmin) and vapor pressure deficit (VPD)
data used in this study were obtained from TerraClimate dataset on GEE platform. The
TerraClimate dataset was a monthly, ~4 km spatial resolution climate dataset generated by
combining the mean climate variables at high spatial resolution from the WorldClim dataset
with temporal data at coarse resolution from other data sources. Compared with other
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climate datasets at coarse spatial resolution, the overall mean absolute error of the dataset
was significantly reduced, and the ability to capture spatial features was improved [61].

In addition, given the impact of soil topsoil layer on crop growth [62–64], soil moisture
(SM) was used as input variables for the wheat yield prediction. SM used in the study was
derived from the TerraClimate dataset generated by using a one-dimensional soil water
balance model. Therefore, SM was divided into meteorological data for discussion.

2.2.3. Crop Data

Crop data mainly included county-level statistics and field data at experimental sta-
tions. County-level statistics mainly referred to the planting area and yield data for wheat,
which can be obtained from the China Agricultural Statistical Yearbook. County-level
wheat planting data were mainly used to estimate the precision of the wheat planting
area extracted in this study, while yield data was used to train and test the yield predic-
tion model. The field data at experimental stations mainly included the phenological
information of wheat, which was obtained from China’s Meteorological Administration.

2.3. Methods

A flow chart of this study is shown in Figure 2 and includes two steps: the extraction
of the wheat planting area and the development of the wheat yield prediction model.
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2.3.1. Extraction of Planting Area

Extraction of the wheat planting area was divided into two steps. Firstly, green up-date
(GD) and heading date (HD) of wheat were determined based on MOD09GA images using
the dynamic threshold method [65,66] and maximum method [67,68], respectively. The
maximum and minimum values of GD and HD were determined according to the pheno-
logical characteristics of wheat in the study area, while pixels higher than the maximum
value or lower than the minimum value were eliminated. Then the preliminary extraction
of the wheat planting area was achieved.
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Secondly, cloud-free images from Landsat were unified as monthly intervals (from
October to the following May), and MOD09A1 images were processed using bilinear resam-
pling to fill gaps of monthly images due to the limitation of satellite images from Landsat.
Then the time series of satellite images during the wheat growth period was reconstructed
using the Savitzky–Golay (S–G) filter. Finally, the preliminary extraction results were used
to filter out sample points selected according to the phenological information and location
information of agro-meteorological stations. Relevant studies showed that five years is the
minimum time interval to provide sufficient images for time aggregation [69]. Therefore,
wheat planting area maps for 2000, 2005, 2010, 2015 and 2020 were generated by combining
the time series images, filtered sample points and random forest (RF) algorithm [70,71].
The statistical data of the wheat planting area at the county level was used to estimate
the precision.

2.3.2. Development of Wheat Yield Prediction Model

Firstly, all input data with coarse spatial resolution (e.g., meteorological data) were
resampled to 30 m resolution using bilinear resampling. Then satellite images and me-
teorological data were masked using the extraction of the wheat planting area and then
aggregated mean variables at the county level. Given that HHHP was a traditional wheat
planting region, the wheat planting area will not change significantly in five years. There-
fore, wheat planting area maps for 2000, 2005, 2010, 2015 and 2020 were used to mask input
data for 2001–2002, 2003–2007, 2008–2012, 2013–2017 and 2018–2020, respectively. Finally,
satellite images and meteorological data during the wheat growth period (from October to
the following May) were applied in the wheat yield prediction model. To explore the best
VI in predicting yield, input data (including the GCVI, EVI, NDVI, NIRv and kNDVI) were
divided into five groups: (1) EVI and meteorological data (EVI); (2) GCVI and meteorologi-
cal data (GCVI); (3) kNDVI and meteorological data (kNDVI); (4) NDVI and meteorological
data (NDVI); and (5) NIRv and meteorological data (NIRv).

The LSTM algorithm is a special kind of recurrent neural network (RNN). On the
basis of RNN, LSTM can solve the short-term memory problem of RNN by adding gates,
which would make LSTM better applied in the study of time series prediction [72]. The
AdaBoost algorithm is a boosting method that combines several weak learners into a
strong learner, which reduces the risk of overfitting and improves the performance of the
model [31,32]. To avoid the overfitting problem of LSTM, the AdaBoost-LSTM ensemble
model was developed by Sun et al. [33]. The technical flowchart of the AdaBoost-LSTM
ensemble model is shown in Figure 3. Among them, k (k = 1, 2, . . ., i) is the number of
iterations. In this study, the LSTM model consisted of two hidden layers with 50 neurons
each. The adam_v2.Adam was set as the optimizer, and the learning rate was set as 0.001.
The randomly split validation was that all data samples (n = 8132) during 2001–2020 were
randomly split into 70% (n = 5692) for training and 30% (n = 2440) for validation. The
ten-fold cross validation was used to optimize parameters of the AdaBoost-LSTM ensemble
model based on the randomly split training dataset (n = 5692) from 2001 to 2020, and the
most effective parameters were incorporated into the prediction models.

In this study, the effects of different VIs, different prediction methods (including the
LSTM model and the AdaBoost-LSTM model) were compared based on a randomly split
validation dataset (7:3) (n = 2440). Then the performances of the optimal model under
different meteorological conditions and irrigation treatments were demonstrated using
“Leave one year out”. “Leave one year out” was that data from each independent year
during 2001–2020 were used as the validation dataset, while data from other years were
used as the training dataset. For example, when data in 2020 were used as the validation
dataset, data in other years (2001–2019) were used as the training dataset. The counties
where the effective irrigated area accounts for more than 50% of the cultivated land area
were defined as irrigation counties, and the other counties were rainfed counties. Moreover,
performances and data demand of yield prediction models combined with input variables
at different wheat growth periods were compared to identify the best prediction window
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for wheat yield. Eventually, the RF algorithm was used to analyze the importance of input
characteristic variables at different periods.
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2.4. Assessment of Model Performance

In this study, the accuracy of the wheat planting area maps was validated by calculating
the root mean square error (RMSE) and coefficient of determination (R2) values between
the estimated and statistical data. On the other hand, the performance of yield prediction
model was also validated by calculating the RMSE, R2 values between the estimated and
statistical data. First, five input combinations and two regression models (the LSTM model
and AdaBoost-LSTM model) were evaluated to determine the optimal VI and regression
model based on random splitting validation data (7:3). Then “Leave one year out” was
used to test the performance of the optimal model under different irrigation and extreme
weather events. Finally, the input variables during different periods were used to develop
a yield prediction model to determine the best prediction window. In addition, in order to
study the contribution of different input variables at different periods to the yield prediction
model, the importance values of input characteristic variables were analyzed based on the
RF algorithm using random splitting validation data, which has been used to analyze the
importance in many studies [73,74].

3. Results
3.1. Wheat Planting Map at 30 m Spatial Resolution

Comparisons of the wheat planting area at county level between the estimated and
statistical data in 2000, 2005, 2010, 2015 and 2020 are shown in Figure 4. The R2 values for
2010, 2015 and 2020 were above 0.85, while the R2 values for 2000 and 2005 were 0.75 and
0.78, respectively. This is largely due to the availability and quality of satellite images at
different periods. According to the spatial distribution characteristics of the estimated data
from RS data in five periods (2000, 2005, 2010, 2015 and 2020) (Figure 5), the change range
of wheat planting areas in the HHHP from 2000 to 2020 was small. In Hebei, Beijing and
Tianjin, the wheat planting area was delimitated in the north by Yanshan Mountain and
in the west by Taihang Mountain, which was the traditional wheat production area. The
planting area in Henan province was the largest and distributed in the whole province
except for the western and southern mountainous areas. In Shandong province, wheat
was mainly concentrated in the west and south. Wheat in Anhui province was mainly
distributed north of the Huaihe River, but less so south of the Huaihe River. Wheat in
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Jiangsu province was mainly concentrated in the northern and central regions of Jiangsu
province, while the distribution of wheat in southern regions was relatively less dense and
more fragmented. The statistical data showed that the planting areas of wheat in the HHHP
ranged from 14,000 to 17,000 kha, while the wheat planting area extracted from satellite
images was from 15,000 to 19,000 kha. Moreover, the classification results showed relatively
detailed spatial distribution information of the wheat planting area maps (Figure 5f–i). In
general, the spatial distribution patterns of the wheat planting area extracted by satellite
images in each period maintained good consistency with the statistical data of the wheat
planting area at the county level.
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3.2. Performances of Different Yield Prediction Models

Performances of yield prediction models developed by different input characteristic
variables and statistical regression algorithms are shown in Figure 6. Among them, the
accuracy metrics were generated through the random splitting validation (7:3) using the
validation samples (validation data: 2440 samples) from 2001 to 2020. The performance
of the yield prediction model developed with the GCVI and meteorological data (R2

ranged from 0.72 to 0.78, RMSE ranged from 627 kg/ha to 703 kg/ha) was better than that
developed with other VIs and meteorological data (R2 ranged from 0.68 to 0.76, RMSE
ranged from 646 kg/ha to 747.8 kg/ha) (Figure 6). The GCVI has more advantages in
predicting yield compared with other VIs.
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Figure 6. Performances of yield prediction model developed using different combinations of input
variables and regression algorithms. Accuracy metrics ((a) R2; (b) RMSE) were generated through the
random splitting validation (7:3) using the validation samples (validation data: 2440 samples) from
2001 to 2020.

The AdaBoost-LSTM model developed in this study had the best performance com-
pared with the LSTM model. The R2 and RMSE values of the AdaBoost-LSTM model based
on multi-source input data (including the GCVI and meteorological data) reached 0.78
and 627 kg/ha, respectively, which indicated that the AdaBoost-LSTM model has a good
application prospect in yield prediction on a regional scale.

3.3. Performance of the Optimal Model under Different Irrigation and Extreme Weather Events

The meteorological conditions in the HHHP during 2001–2020 are shown in Figure 7.
According to Figure 7, low temperature events in 2003, 2005, 2010, 2011 and 2013, drought
events in 2010 and high temperature events in 2007, 2017 and 2020 were relatively severe.
Therefore, these years were defined as extreme years, and the other years were defined as
normal years.

The “leave-one-year-out” method was used to test the performance of the AdaBoost-
LSTM model under different irrigation and meteorological conditions. As is shown in
Figure 8, the AdaBoost-LSTM model generally performed better in rainfed (R2 was 0.73,
RMSE was 639 kg/ha) and irrigation (R2 was 63, RMSE was 635.1 kg/ha) counties in all
years. In normal years, the accuracy of the AdaBoost-LSTM model in rainfed counties was
higher than that in irrigation counties. Relatively speaking, the error of AdaBoost-LSTM
model in irrigation counties was lower than that in rainfed counties in extreme years. In
general, the AdaBoost-LSTM model can achieve acceptable predictions under different
irrigation and extreme weather events.
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Figure 8. Performance of AdaBoost-LSTM model based on GCVI and meteorological data in irrigation
and rainfed counties under different meteorological conditions during 2001–2020. Accuracy metrics
were generated based on “leave-one-year-out” method. Dashed lines represent the 1:1 lines.



Remote Sens. 2024, 16, 1259 11 of 17

3.4. The Optimal Prediction Window for Wheat Yield Prediction in the HHHP

Performances of the AdaBoost-LSTM model combined with input characteristic vari-
ables of different growth periods from 2001 to 2020 indicated that the performances were
significantly improved with the accumulation of input characteristic variables at multiple
growth periods (Figure 9). The R2 values for the prediction model only developed with
characteristic variables in October was 0.35. The performance for the prediction model
developed with characteristic variables from October to the following February was im-
proved, but R2 was still lower than 0.62. During the above period, wheat was in the early
growth period, and meteorological variables played an important role in the yield predic-
tion model, such as Tmin in December, Tmax in January and Pr in February (Figure 10).
However, the spatial difference of VIs was insignificant, and the ability to reflect the space
information was poor, which affected the accuracy of the yield prediction model. Wheat
growth accelerated with the rise in temperature in February, and the spatial information
reflected by the GCVI greatly increased, and the importance of the GCVI in April and
May increased significantly (Figure 10a). The prediction ability of models developed with
characteristic variables in the prediction window from October to the following April or
May was further improved, while the R2 held steady above 0.76. However, considering
the large amount of data processing in large-scale regions, shortening of the prediction
window and reduction of data demand must be noted. In summary, the yield prediction
model developed with characteristic variables of the prediction window from February to
April (roughly from GD to HD) had similar prediction accuracy and small data demand
and can achieve the yield prediction in one to two months of lead time before maturity,
which is the optimal prediction window.
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which the samples (n = 8132) from 2001 to 2020 were randomly split into 70% for training (n = 5692)
and 30% for validation (n = 2440).
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4. Discussion

Due to the lack of a classification map of specific crops, the crop yield prediction
model in some studies was developed using the cropland map as mask data to mask
input variables such as satellite images and climate data [11,49,75]. This often led to
the confusion between target crop and other crops and increased the uncertainty of the
crop yield prediction model, though these studies achieved the target of yield prediction
to a certain extent. The classification maps of specific crops (e.g., maize and rice) at
1 km resolution were used as mask data to develop yield prediction models in some
studies [35,76]. However, crop maps at coarse resolution were affected by mixed pixels,
and input variables masked based on this data would have a large deviation compared
with the standard observations. Therefore, relatively accurate crop maps at high resolution
can reduce errors in RS data and climate data masked by crop maps and can further
improve the model prediction precision [77]. In this study, the wheat planting area at 30 m
resolution was extracted in the HHHP, which reduced the impact of mixed pixels on the
yield prediction to some extent.

The response of crop growth to external environmental conditions was nonlinear
because of the complexity in the crop growth system. ML models can explore the effective
information of multi-source and multidimensional datasets, reduce the error of prediction
and have great potential for crop yield prediction in a large-scale region [49,71]. In addition,
compared with a single model, the ensemble model can further reduce the error of the
prediction model and improve the model performance [26–28]. In this study, as compared
with the LSTM model, the AdaBoost-LSTM model combined with the AdaBoost and LSTM
algorithm had the highest accuracy and robustness in wheat yield prediction. However,
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a lack of training samples led to a large deviation for the prediction in high-yield and
low-yield counties, which increased the uncertainty of prediction model [19]. In the future,
the data-processing ability of ML algorithms can function at full capacity by obtaining more
sample data, and the accuracy and robustness of the prediction model can be improved.

VIs had different performances in crop yield prediction [41]. The emerging VIs
(e.g., kNDVI and NIRv) had good performance in the evaluation of plant traits and
GPP [39,43,78]. Performances of the emerging and traditional VIs were systematically
compared in this study in the prediction of crop yield. The results of this study showed
that the prediction model developed with the GCVI outperformed models developed with
other VIs, including the NDVI, EVI, kNDVI and NIRv. There was a significant correlation
between the GCVI and the LAI, and the GCVI can improve the sensitivity to high biomass
compared with the NDVI [45,79]. Therefore, the GCVI was used as the yield predictor for
multiple crops in many previous studies [51,80,81].

Irrigation and rainfed agriculture coexisted, and agricultural management measures
were very complicated in the HHHP [82]. The irrigation measures will be different accord-
ing to conditions and the subjective judgment of farmers [83,84], which will increase the
uncertainty of crop yield prediction. The accuracy of yield prediction in irrigation and
rainfed agriculture was quite different [8]. However, the yield prediction model developed
by combining the ensemble model and multi-source data in this study obtained acceptable
accuracy in both irrigation and rainfed counties (R2 was between 0.63 and 0.73, RMSE
was between 635.1 kg/ha and 639 kg/ha), and the difference in model performance for
irrigation and rainfed agriculture was not prominent.

Extreme temperature and drought stress had adverse effects on crop growth and yield
formation [50,85], which will affect the accuracy of yield prediction. Cai et al. [14] showed
that their prediction model had low performance for predicting wheat yield in Australia
in 2006 with extreme drought. Jiang et al. [49] found that the error of the LSTM model
for predicting corn yield in the US Corn Belt under extreme weather events is higher than
that in normal years. In this study, the AdaBoost-LSTM model had strong robustness for
predicting wheat yield in normal years (R2 was 0.73, RMSE was 638 kg/ha) and extreme
years (R2 was 0.71, RMSE was 633.9 kg/ha) generally.

The performance of the yield prediction model combined with input variables at
different growth periods exhibited great differences. This was mainly because input
characteristic variables at different periods have different levels of importance in the yield
prediction model [15]. A suitable prediction time window can not only obtain excellent
yield prediction but can also reduce the need for training data. The importance of RS
information, such as Vis, in the yield prediction model was significantly lower than that
of climate variables in the early growth periods for wheat, while VIs can reflect more
information about crop growth, and its importance in yield prediction model increased
rapidly after entering the peak growth period [14,86]. In this study, meteorological variables
(e.g., Tmin in December, Tmax in January and Pr in February) in the early growth stage of
wheat were of high importance in the yield prediction model. However, the importance of
the VI in the middle and late period of wheat growth (from April to May) was far more
important than other input variables and occupied a dominant position. Considering the
appropriate shortening of the prediction time window and the reduction in training data
demand, the window from February to April was recommended as the best yield prediction
time window.

However, there were some limitations to this study. First, the prediction accuracy of
the wheat yield using the AdaBoost-LSTM model in irrigation counties was lower than
that in rainfed counties in most years. Obtaining the dataset about irrigation management
practices may be a way to improve the model prediction performance in irrigation counties.
On the other hand, using the AdaBoost-LSTM model to obtain high-resolution crop yield
maps in large-scale areas also faces the challenge of computational efficiency. In the future,
with more input variables and further improvement of the AdaBoost-LSTM model, the
model will have great potential in crop yield prediction.
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5. Conclusions

In this study, AdaBoost-LSTM was developed to predict wheat yield based on multi-
source data, such as VIs and meteorological data. The results showed that the GCVI is
the optimal RS variable for wheat yield prediction compared with other VIs (including
emerging VIs). Compared with the LSTM model, the AdaBoost-LSTM model had the best
performance. In general, the AdaBoost-LSTM model with the GCVI as input data had
strong robustness for predicting wheat yield in irrigation and rainfed counties in extreme
years. The window from February to April was the best prediction time window for wheat
yield prediction, which can realize the yield prediction with one to two months of lead
time before maturity with less input data. The results can provide a method of support for
large-scale regional crop yield prediction. However, the structure of the AdaBoost-LSTM
model was more complex, resulting in a large amount of calculation, and it was difficult to
apply in a large number of pixels. In the future, we hope to obtain high spatial-resolution
crop yield maps by simplifying or improving the AdaBoost-LSTM model.
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