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Abstract: Detecting and attributing vegetation variations in the Yellow River Basin (YRB) is vital
for adjusting ecological restoration strategies to address the possible threats posed by changing
environments. On the basis of the kernel normalized difference vegetation index (kNDVI) and key
climate drivers (precipitation (PRE), temperature (TEM), solar radiation (SR), and potential evapo-
transpiration (PET)) in the basin during the period from 1982 to 2022, we utilized the multivariate
statistical approach to analyze the spatiotemporal patterns of vegetation dynamics, identified the key
climate variables, and discerned the respective impacts of climate change (CC) and human activities
(HA) on these variations. Our analysis revealed a widespread greening trend across 93.1% of the
YRB, with 83.2% exhibiting significant increases in kNDVI (p < 0.05). Conversely, 6.9% of vegetated
areas displayed a browning trend, particularly concentrated in the alpine and urban areas. With the
Hurst index of kNDVI exceeding 0.5 in 97.5% of vegetated areas, the YRB tends to be extensively
greened in the future. Climate variability emerges as a pivotal determinant shaping diverse spatial
and temporal vegetation patterns, with PRE exerting dominance in 41.9% of vegetated areas, fol-
lowed by TEM (35.4%), SR (13%), and PET (9.7%). Spatially, increased PRE significantly enhanced
vegetation growth in arid zones, while TEM and SR controlled vegetation variations in alpine ar-
eas and non-water-limited areas such as irrigation zones. Vegetation dynamics in the YRB were
driven by a combination of CC and HA, with relative contributions of 55.8% and 44.2%, respectively,
suggesting that long-term CC is the dominant force. Specifically, climate change contributed to the
vegetation greening seen in the alpine region and southeastern part of the basin, and human-induced
factors benefited vegetation growth on the Loess Plateau (LP) while inhibiting growth in urban
and alpine pastoral areas. These findings provide critical insights that inform the formulation and
adaptation of ecological conservation strategies in the basin, thereby enhancing resilience to changing
environmental conditions.

Keywords: vegetation change; climate variability; anthropogenic effects; kNDVI; long-term; Yellow
River Basin

1. Introduction

Vegetation plays a vital role in terrestrial ecosystems, regulating material and energy
exchanges between the land and the atmosphere while offering invaluable ecological
services [1,2]. It serves as a crucial indicator of ecological and environmental changes,
exhibiting sensitivity to the combined impacts of climate change and human activities [3,4].
Satellite monitoring has revealed a significant global greening trend over the past two
decades, with China and India being dominant contributors [5]. Quantifying the relative
contributions of climate change (CC) and human activities (HA) to vegetation growth is
essential for developing rational ecological restoration strategies.

Remote Sens. 2024, 16, 1280. https://doi.org/10.3390/rs16071280 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16071280
https://doi.org/10.3390/rs16071280
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-7648-7930
https://doi.org/10.3390/rs16071280
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16071280?type=check_update&version=1


Remote Sens. 2024, 16, 1280 2 of 20

Global changes have significantly focused attention on the relationship between global
climate change and terrestrial ecosystems [6]. Temperature (TEM), precipitation (PRE), and
solar radiation (SR) are crucial factors influencing vegetation growth, with their significance
extending to the fundamental process of photosynthesis [7–9]. Research has unveiled a note-
worthy global greening trend in vegetation due to climate warming, which is particularly
evident in the northern hemisphere [10,11]. A higher TEM contributes to a longer growing
season in the alpine region, which further substantiates the importance of TEM as a limiting
variable for plant growth [12,13]. Arid zones, defined by water restrictions for vegetation,
rely on PRE as the crucial water source necessary to support and stimulate vegetation
growth [14–16]. SR emerges as an important factor shaping vegetation spatiotemporal
patterns in China, particularly within the Tibetan Plateau [17,18]. Moreover, SR appears to
be the predominant climatic driver influencing vegetation sensitivity [19]. Additionally,
potential evapotranspiration (PET) signifies the maximum evapotranspiration recorded
under adequate moisture supply conditions, reflecting a combination of SR, wind speed,
and vapor pressure deficit, establishing it as a non-negligible climatic driver influencing
vegetation dynamics [20,21]. Additionally, human activities are crucial in shaping vegeta-
tion dynamics. Vegetation cover has increased as a result of ecological initiatives, such as
the conversion of farmland to forests, afforestation, and natural forest protection [22–24].
Conversely, urban expansion, overgrazing, reclamation, and deforestation have been as-
sociated with a decline in vegetation cover [25–27]. Given the dual influence of CC and
HA on vegetation (facilitating or suppressing it), evaluating their roles is imperative for
effective ecological conservation.

Satellite-related vegetation indices are effective tools for large-scale vegetation dy-
namics monitoring, with the NDVI being the most extensively utilized metric [28–30].
Acknowledged for its linear or near-linear correlation with leaf density, photosyntheti-
cally active radiation, vegetation productivity, and cumulative biomass, the NDVI has
gained recognition as a dependable indicator for evaluating vegetation condition on a
large scale [31–33]. Nevertheless, the precision of the data is impeded by the abundance
of plants in thick foliage and susceptibility to variations in the brightness of the canopy
background [34,35]. In contrast, Camps-Valls et al. [36] proposed a kNDVI that is grounded
in kernel approach principles, demonstrating its effectiveness in assessing vegetation dy-
namics through enhanced consistency with primary productivity, resistance to saturation,
bias mitigation, and adaptation to the phenological cycle [36,37]. The kNDVI improves
robustness and instability toward noise on both spatial and temporal scales and has proven
effective for assessing vegetation dynamics [38–41].

The Yellow River Basin (YRB) is a highly vulnerable and ecologically fragile region,
attracting significant attention for the detection and attribution of its vegetation variations
in the context of CC and HA. In summary, there are two primary limitations underlying
the previous study: (1) limitations regarding the adopted vegetation indices. Previous
studies were mostly conducted based on the third-generation Global Inventory Modeling
and Mapping Studies (GIMMS) NDVI 3g (1982–2015) [42–44], the Moderate Resolution
Imaging Spectroradiometer (MODIS) NDVI (2000–present) [45–47], and combinations of
the above two sources of NDVI data [48–50], with relevant research using a long-term
NDVI dataset from a unified source being absent. Additionally, NDVI saturation is often
neglected. (2) Limitations regarding methods for attributing vegetation dynamics. Three
principal methods are employed to attribute vegetation variations: the regression model,
residual trend analysis, and the biophysical model [51]. Residual trend analysis is the most
widely used approach for quantitatively separating the role of climate change and human
activities as regards its effects on vegetation dynamics, given its simplicity in modeling and
explicit presuppositions [52]. Although most studies employ residual analysis to assess
TEM and PRE as climate factors [47,53], recent investigations have begun to integrate SR as
a complementary factor [4,54]; however, PET is frequently overlooked.

To address these gaps, our study applied residual analysis to investigate the effects of
CC and HA on vegetation dynamics in the YRB, based on long-term continuous kNDVI
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data. Furthermore, TEM, PRE, SR, and PET were considered as representative climatic
variables, and the dominant climate factors driving vegetation dynamics were analyzed
by partial correlation analysis. We aim to: (1) explore the spatiotemporal patterns of
kNDVI trends and their persistence in the YRB; (2) identify the key climatic factors affecting
vegetation growth; (3) separate and quantify the relative contributions of CC and HA to
vegetation variations, then determine the dominant driver. The outcomes of our research
will provide a valuable reference for adjusting ecological protection strategies in response
to the changing environment of the YRB.

2. Materials and Methods
2.1. Study Area

The Yellow River originates in the Bayan Har Mountains in Qinghai Province of
China, flows through nine provinces, and then flows into the Bohai Sea, with the YRB
covering an area of 79.5 × 104 km2 [47]. The elevation of the YRB gradually decreases from
northwest to southeast, spanning four landforms: the Tibetan Plateau, the Inner Mongolian
Plateau, the LP, and the Huang-Huai-Hai Plain from upstream to downstream (Figure 1a).
According to the ecogeographical classification of China developed by Zheng [55], the
YRB is characterized by an arid climate in the north, a semi-arid climate in the middle,
and a semi-humid climate in the south. The average PRE in the YRB is 435 ± 48 mm
(mean ± standard deviation, with the same below), the average TEM is 13.5 ± 0.5 ◦C, the
average SR is 1500 ± 33 W m−2, and the average evaporation is 761 ± 31 mm, respectively
(Figure 1b–e). Grassland, cropland, and forest dominate the vegetation type of the YRB
(Figure 1f). Specifically, the upper reaches are located in regions with high mountains and
are mostly forested. The middle reaches comprise plateaus with relatively gentle terrain,
vegetated primarily with forest and grassland. The lower reaches are mostly characterized
by a plain landscape containing a large proportion of cropland.
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Figure 1. Spatial patterns of the multiyear average of climate variables and vegetation types in the
Yellow River Basin. (a) Geographic location and elevation; (b) precipitation; (c) temperature; (d) solar
radiation; (e) potential evapotranspiration; (f) land-use types in 2000.

2.2. Datasets

A spatiotemporally consistent global dataset of the GIMMS normalized difference
vegetation index (PKU GIMMS NDVI), generated by Li et al. [56], was used in this study.
Based on a machine learning model, the PKU GIMMS NDVI integrates Landsat, GIMMS,
and MODIS NDVI data, effectively eliminating the obvious orbital drift and sensor degra-
dation effects in the tropics and showing high consistency with MODIS NDVI results. The
PKU GIMMS NDVI covers the whole global vegetation area at a half-month temporal
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resolution and a spatial resolution of 1/12◦ for the period from 1982 to 2022. To eliminate
atmospheric disturbances, monthly NDVI was calculated with the maximum synthesis
algorithm (MVC) [9] and was further smoothed by the use of the Savitzky–Golay filter (SG)
to minimize noise [57]. To mitigate the influence of water bodies and snowpack, areas with
NDVIs below 0.1 during the growing season (April–October) were masked.

Four climate variables from two data sources were used in the present study. Monthly
PRE and TEM for the period 1901–2022 were acquired from the National Tibetan Plateau
Data Center (TPDC) and are provided at a spatial resolution of 1 km. Peng et al. [58]
used the Delta downscaling technique to fuse the Climate Research Unit (CRU) data and
WorldClim data and then validated it using observations from 496 weather stations in
China, confirming its accuracy and reliability. The SR and PET were sourced from the
TerraClimate dataset [59], spanning the period from 1958 to 2022, at a spatial resolution of
4 km. TerraClimate integrates the advantages of the high spatial resolution of the World-
Clim dataset and the time-varying strengths of the CRU and Japanese 55-year Reanalysis
(JRA55) dataset. TerraClimate has been robustly validated against Global Historical Climate
Network (GHCN) station-based observations and is well correlated with the FLUXNET
station-based reference evapotranspiration data.

Topographical data were acquired from digital elevation models (DEMs) of the Shuttle
Radar Topography Mission (SRTM), with a 90 m spatial resolution [60]. Land-use data were
sourced from the “China Multi-Period Land Use Remote Monitoring Dataset” (CNLUCC).
The CNLUCC spans from 1980 to 2022 and categorizes China’s land use into six primary
types: cropland, forest land, grassland, water, construction land, and unused land [61]. All
data were resampled to align with the NDVI resolution before further analysis to ensure
consistency. Detailed descriptions of the datasets utilized in this study are provided in
Table 1.

Table 1. Dataset description for the present study.

Data Types Dataset Variables Resolution Period Reference

NDVI PKU GIMMS NDVI NDVI half-monthly/1/12◦ 1982–2022 [56]

Climate

1-km monthly
precipitation/temperature

dataset for China

PRE monthly/1 km 1901–2022 [58]TEM

TerraClimate
SR monthly/4 km 1958–2022 [59]PET

Topography SRTM 90 DEM 90 m – [60]

Land use Landsat LUCC 30 m
1980, 1990, 1995, 2000,
2005, 2008, 2010, 2013,
2015, 2018, and 2020

[61]

2.3. Methods
2.3.1. Calculation of kNDVI

The kNDVI, rooted in the theory of kernel methods, is defined as follows:

kNDVI =
k(n, n)− k(n, r)
k(n, n) + k(n, r)

(1)

where NIR (n) and red (r) bands are the reflectance. The term k is used to describe the “ker-
nel function”, which can be defined as k(n, r) = exp(−(n − r)2/2σ2), where σ determines
the measure of distance between n and r. Thus, Equation (1) can be simplified as follows:

kNDVI =
1 − k(n, r)
1 + k(n, r)

= tanh

((
n − r

2σ

)2
)

(2)

Considering the equal distance between the NIR and red bands, Equation (1) can be
further reduced to:

kNDVI = tanh
(

NDVI2
)

(3)
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In this study, we used a simplified algorithm (Equation (3)) to calculate the monthly
kNDVI, which was then enumerated into the average growing season kNDVI to reflect the
dominant vegetation growth process.

2.3.2. Trend Analysis

To measure the kNDVI trend, we created a linear regression model, and estimated the
model parameters using least squares calculations with the help of the following formula:

slope =
n × ∑n

i=1 i × kNDVIi − ∑n
i=1 i ∑n

i=1 kNDVIi

n × ∑n
i=1 i2 − (∑n

i=1 i)2 (4)

Here, slope denotes the change rate and kNDVIi denotes the variable of the i-th value;
when slope > 0, an increasing trend is evident, and a decreasing trend is apparent for
slope < 0. The significance of the F-test was determined as follows:

F =
SR

SE/(n − 2)
(5)

Here, SR = ∑n
i=1

(
ˆkNDVIi − kNDVI

)2
and SE = ∑n

i=1

(
kNDVIi − ˆkNDVIi

)2
denote

the sums of the regression squares and residual squares, respectively. n − 2 represents the
degrees of freedom of residuals, and ˆkNDVIi is the linear regression value of the variable.
The trend can be categorized as significant (p < 0.05), more significant (p < 0.01), or
extremely significant (p < 0.001), based on the F-test.

2.3.3. Persistence Analysis

Hurst [62] proposed the Hurst exponent (H) to evaluate the persistence of a time series.
For a long-term kNDVI with a length of n, the primary computational procedures for the
Hurst exponent are as follows:

(1) Divide the original kNDVI into subsequences, kNDVIτ , with a length of τ, and
calculate the mean value of each subsequence:

kNDVIτ =
1
τ

τ

∑
t=1

kNDVI(t), τ = 1, 2, 3, . . . , n (6)

(2) Calculate the cumulative deviation (V(t, τ)) and its fluctuation range (R(τ)) for each
kNDVIτ :

V(t, τ) =
τ

∑
t=1

(
kNDVI(t) − kNDVI(t)

)
(7)

R(τ) = maxV(t,τ) − minV(t,τ), 1 ≤ t ≤ τ; τ = 1, 2, 3, . . . , n (8)

(3) Calculate the standard deviation (Sτ) for each subsequence. Then, the H exponent
can be derived from the following expression:

Sτ =

[
1
τ

τ

∑
t=1

(NDVI(t) − kNDVI(t))
2
] 1

2

(9)

R(τ)

S(τ)
= (cτ)H (10)

The H exponent indicates whether changes in kNDVI are persistent or not, with
H > 0.5, H < 0.5, and H = 0.5 representing the presence of persistence, anti-persistence,
and non-persistence for kNDVI, respectively.
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2.3.4. Contribution Analysis

Residual analysis is a commonly utilized approach for measuring the contributions of
climatic and anthropogenic influences on vegetation change. Residual analysis obtains the
predicted value (kNDVIpre) by building a multiple regression model between the observed
value of the vegetation index (kNDVIobs) and climatic factors, considering that (kNDVIpre)
reflects the effects of climate on kNDVI variations. Regardless of other factors, the residual
value (kNDVIres) is defined to reflect anthropogenic impact. The specific expression is as
follows:

kNDVIpre = a × PRE + b × TEM + c × SR + d × PET + ε (11)

kNDVIres = kNDVIobs − kNDVIpre (12)

Here, kNDVIpre denotes the predicted value of kNDVI, kNDVIres denotes the resid-
ual value of kNDVI, and kNDVIobs denotes the observed value of kNDVI. a, b, c, and d
correspond to the regression coefficients of growing season PRE, air TEM, SR, and PET in
the multivariate regression model, and ε is a constant term.

Through the analysis given in Section 2.3.2, we can infer the trend of vegetation
dynamics, with slopeobs > 0 and slopeobs < 0 indicating the observed greening and degra-
dation trend of vegetation dynamics, respectively. Similarly, slopepre > 0 and slopepre < 0
suggest that climate change promotes and inhibits vegetation growth, respectively, while
sloperes > 0 and sloperes < 0 suggest that human activities promote and inhibit vegetation
growth, respectively.

According to slopepre and sloperes, climate and anthropogenic contributions can be
classified into seven categories (Table 2). Additionally, the relative contributions of CC and
HA to kNDVI changes were calculated based on the classification outlined in Table 3.

Table 2. Classification of the climatic and anthropogenic effects on vegetation dynamics.

Slopepre or Sloperes (10 −3 yr−1) Degree of Impact

<−2.0 Significantly inhibited
[−2.0, −1.0) Moderately inhibited
[−1.0, 0.2) Slightly inhibited
[−0.2, 0.2) Basically unaffected
[0.2, 1.0) Slightly promoted
[1.0, 2.0) Moderately promoted
≥2.0 Significantly promoted

Note: Slopepre and Sloperes represent the climate change-related and anthropogenic-related trends in vegetation
dynamics, respectively.

Table 3. Identification criteria and relative contribution calculation in relation to the drivers of
vegetation dynamics in the Yellow River Basin.

Vegetation
Change Slopeobs Slopepre Sloperes

Relative Contribution
of Climate Change (%)

Relative Contribution
of Human Activities (%)

Greening
>0 <0 >0 0 100
>0 >0 <0 100 0
>0 >0 >0 Slopepre

Slopeobs
× 100

Sloperes
Slopeobs

× 100

Degradation
<0 <0 >0 100 0
<0 >0 <0 0 100
<0 <0 <0 Slopepre

Slopeobs
× 100

Sloperes
Slopeobs

× 100

Note: Slopeobs, Slopepre, and Sloperes represent observation-indicated, climate change-related, and anthropogenic-
related trends in vegetation dynamics, respectively.
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2.3.5. Partial Correlation Analysis

Controlling for the potential impacts of other climatic factors on kNDVI changes, we
employed partial correlation analysis to investigate the individual correlations between
kNDVI and each climatic driver (TEM, PRE, SR, and PET). In contrast to linear correlation,
partial correlation excludes the interactive effects of other climate drivers when determining
the influence of climate on vegetation dynamics, reflects a more realistic vegetation–climate
relationship, and is widely used to identify the dominant climate drivers associated with
vegetation change. The partial correlation coefficient (PCC) quantifies the strength of the
correlation between vegetation dynamics and a single climatic factor; the larger the PCC,
the stronger the correlation. The primary calculation procedures of the PCC are outlined as
follows [9,63]:

r = ∑n
i=1[(xi − x)(yi − y)]√

∑n
i=1(xi − x)2

√
∑n

i=1(yi − y)2
(13)

PCC12,3 =
r12 − r13 × r23√(
1 − r2

13
)(

1 − r2
23
) (14)

PCC12,34 =
PCC12,3 − PCC14,3PCC24,3√(
1 − PCC2

14,3

)(
1 − PCC2

24,3

) (15)

PCC12,34...p =
PCC12,34...(p−1) − PCC1p,34...(p−1)× PCC2p,34...(p−1)√

(1 − PCC2
1p,34...(p−1))(1 − PCC2

2p,34...(p−1))
, p ≥ 5 (16)

Here, r is the Pearson correlation coefficient, and PCC12,3, PCC12,34, and PCC12,34...p
denote the PCCs of first order, second order, and multiple orders (order ≥ 3), respectively.
Furthermore, the significance of the PCC was evaluated by t-test (Equation (15)), which
was tested at a significance level of 0.05.

t =
PCC12,34...p

√
n − k − 2√

1 − PCC2
12,34...p

(17)

Here, n is the sample number and k is the order of the PCC.
To identify the dominant climate factors affecting kNDVI variations, we compared the

absolute values of the PCC between kNDVI and the four climate variables, according to the
following rules. In Scenario 1, where all the PCCs were either significant or insignificant
(at the same level of significance), we directly compared the absolute values of the PCCs,
and then the largest correlation coefficients were taken as corresponding to the dominant
climate driver. In Scenario 2, both significant and insignificant PCCs were present, and we
set the importance of significant PCCs as higher than that of insignificant PCCs. We then
ranked the importance of climate factors in terms of the absolute value of the PCC under
the same significance level in order to identify the most critical climate drivers.

3. Results
3.1. Spatial Patterns and the Annual Variability of kNDVI

As shown in Figure 2, clear spatial and temporal heterogeneity in vegetation dynamics
was observed in the YRB. Within the year, the kNDVI in the YRB displayed a single-peak
pattern, with its highest points occurring in August at a value of 0.31 ± 0.02 (Figure 2a).
The growing season kNDVI in the YRB was 0.20 ± 0.02, decreasing spatially from southeast
to northwest. The high values of kNDVI occurred in the southeastern YRB, characterized
by a warm and humid climate, where the vegetation cover is dominated by crops, and
the distinct growth process of the crops contributes to the presence of better vegetation
conditions in the region. In contrast, the dry northwestern YRB was characterized by low
vegetation cover that was predominantly distributed in grassland ecosystems. Over the
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past 41 years, the inter-annual fluctuation of vegetation dynamics in the YRB was irregular,
with a coefficient of variation of 0.21 ± 0.13. Spatially, the northwestern YRB (corresponding
to the area with low vegetation cover) showed strong kNDVI fluctuations, with coefficients
of variation being greater than 0.2 in most areas. The southeastern YRB, however, exhibited
lower kNDVI fluctuations, with better vegetation conditions (Figure 2b).
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3.2. Spatio-Temporal Trends and the Persistence of kNDVI

We further investigated the trend as well as its persistence in vegetation variations in
the YRB using linear regression and the Hurst index (Figure 3). A significant increase in
kNDVI in the YRB was observed from 1982 to 2022, with a slope of 0.0016 yr−1 (p < 0.001).
Moreover, the changes in kNDVI in the YRB show obvious phase features, which could
be roughly divided into two phases: 1982 to 1999 and 2000 to 2022. In the first phase, the
vegetation showed a significant greening trend, with the slope of kNDVI being 0.009 yr−1

(p < 0.05). In contrast, the greening rate of the vegetation in the YRB accelerated significantly
in 2000–2022, with the slope of kNDVI being 0.029 yr−1 (p < 0.001), which is more than
three times higher than that in the first phase (Figure 3a). This indicates that the ecological
protection facilities, most notably the Grain to Green Program (GTGP) initiated in 1999,
demonstrated a remarkable effect on improving the vegetation condition. Over the period
from 1982 to 2022, 93.1% of the YRB experienced extensive greening, with 83.2% of the areas
increasing significantly in terms of kNDVI. In the YRB, browning was observed in 6.9% of
the vegetated areas, of which 2.3% were significantly brown, mainly in urban and alpine
areas (Figure 3b). The Hurst index of kNDVI is greater than 0.5 in 97.5% of the vegetated
areas in the YRB, indicating that the YRB will tend to be extensively greened in the future
(Figure 3c). Synthesizing the results of the trend and persistence analysis, we found that
83% of the vegetated areas in the YRB are expected to undergo significant greening in the
future (Figure 3d). In contrast, only 0.5% of the vegetated area will tend to be significantly
browned in the future and will be located primarily in alpine and urban areas, underlining
the urgency and complexity of ecological protection in these regions.
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3.3. Response of Vegetation Dynamics to Changing Climate

To obtain a quantitative description of the climatic effect on vegetation variations in
the YRB, we established a multiple regression model between kNDVI and the primary
climatic variables (PRE, TEM, SR, and PET), as illustrated in Figure 4. From 1982 to 2022,
most vegetated zones were highly influenced by climate change, with a multiple linear
regression coefficient (MLRC) of 0.32 ± 0.15 (Figure 4a). The northeastern YRB recorded the
highest vegetation–climate relationship values, whereas alpine and urban areas recorded
lower values. Furthermore, the t-test revealed that climate change significantly affected
over 75% of the vegetated areas, which corresponded to the high-value area of the MLRC
(Figure 4b).

We further quantitatively described the relationship between kNDVI and single cli-
matic factors by utilizing partial correlation analysis and identified the dominant climatic
factors associated with vegetation change (Figure 5). Over the past four decades, 88.1%
of the vegetated areas in the YRB benefited from increased PRE, of which 60.3% showed
a significantly positive correlation between kNDVI and PRE (p < 0.05), primarily in arid
and semi-arid regions (Figure 5a). In contrast, increased PRE primarily suppressed vegeta-
tion growth in the alpine and southeastern YRB. Warming promoted vegetation growth
in 78% of the areas of the YRB (with a significant effect being observed in 41.8% of the
region), whereas it negatively affected 22% of vegetated areas, especially in the arid zone
(Figure 5b). In addition, the increased SR inhibited vegetation growth in nearly 70% of
vegetated areas, primarily in the northeastern YRB, while it promoted vegetation growth
in alpine areas (Figure 5c). Moreover, the enhanced PET significantly promoted vegetation
growth in alpine areas, whereas it inhibited vegetation growth in nearly 70% of the vege-
tated areas, notably in the arid and semi-arid areas (Figure 5d). In summary, PRE was the
most influential factor on vegetation growth in the YRB, representing a climate-dominant
factor for 41.9% of vegetation changes, particularly in the arid zone. TEM, as the second
most dominant climate factor, manifested 35.4% of climate-related vegetation variation,
especially in the alpine and semi-humid zones. SR caused 13% of vegetation variations,
especially in the alpine zone. The influence of PET on vegetation dynamics was limited
and was spatially dispersed (Figure 5e,f).
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3.4. Climatic and Anthropogenic Effect on kNDVI

Furthermore, we quantitatively distinguished the relative contributions of CC and HA
to vegetation dynamics in the YRB, based on the residual analysis method. As illustrated
in Figure 6, clear spatial heterogeneity was observed in the effects of CC and HA on kNDVI
changes in the basin. Overall, 66.5% of the vegetated areas in the YRB demonstrated
insignificant effects of CC on the kNDVI changes, dominated by a slight facilitating effect.
Climate change contributed to an increase in kNDVI in 73.8% of the areas of the YRB, of
which 31.9% showed moderate and significant effects, primarily distributed in the eastern
basin. In contrast, climate change suppressed kNDVI in 8.4% of the vegetated areas, with
moderate and significant suppression in less than 2% of the vegetated areas, mainly located
in urban areas (Figure 6a). Anthropogenic activities contributed to the increase in kNDVI in
about 65% of vegetated areas, of which 22.3% were moderate and significant contributions,
especially in the southeastern basin (Figure 6b). However, the area where HA clearly
inhibited the increase in kNDVI accounted for 6.8% and was mostly located in the alpine
zone and large cities (e.g., Xi’an, Yinchuan, etc.).
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Figure 7 reveals that the combined effect of CC and HA primarily drove the vegetation
dynamics in the YRB, dominating the kNDVI variations in 92% of the vegetated areas.
The increase in kNDVI that was independently caused by climate change affected 3% of
the area of the YRB, mostly in alpine areas, while the increase independently affected
by anthropogenic activities was seen in 5% of the vegetated area, mainly in urban areas.
Additionally, 10.5% of the vegetated areas in the YRB featured the combined effects of CC
and HA as the drivers of a reduction in kNDVI during the growing season, which was
mainly concentrated in the alpine zone. Vegetation degradation caused by CC alone and
HA alone accounted for 2% and 3%, respectively, in a scattered distribution.
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Based on a contribution analysis framework (Table 3), we calculated and accounted
for the relative contributions of CC and HA to vegetation dynamics in the YRB. Overall,
the relative contributions of CC and HA to kNDVI variations were 55.8% and 44.2% in the
YRB, respectively (Figure 8). Specifically, CC contributed positively to vegetation dynamics
in 83.3% of the area of the YRB. Among them, there were larger areas with climate change-
related contributions in the ranges of 40% to 60% and 60% to 80%, accounting for 34.7%
and 33.3% of the total area, respectively. The area with a contribution rate of greater than
80% accounted for 6.1%, mostly being concentrated in the semi-arid zone. Approximately
17% of the area was negatively affected by CC as regards the kNDVI change in the YRB, of
which 7.8% saw a contribution greater than 60%, predominantly in alpine and urban areas
(Figure 8a). In contrast, HA contributed positively to kNDVI variations in over 82.1% of
the area of the YRB, among which more than 65% of the area was affected in the ranges of
20% to 40% and 40% to 60%, while the area showing a contribution rate of more than 80%
was concentrated in the LP. HA contributed negatively to the kNDVI changes in 18% of
vegetated areas, with similar spatial distributions to those regarding the effects of climate
change (Figure 8b).
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4. Discussion
4.1. Spatiotemporal Trends of Vegetation Dynamics

From 1982 to 2022, the YRB underwent a significant vegetation greening process,
with a tendency toward significant increases in kNDVI in over 80% of its vegetated areas.
Compared with previous studies, a consistent and significant trend of vegetation greening
was found in the basin, although there were differences in the rate and degree of increase
in the vegetation index [48,64,65]. The reason for this difference may be attributed to the
types and time periods of the vegetation indices adopted. Furthermore, the changes in
kNDVI in the YRB were characterized by obvious phases [66,67]. Compared with the period
before the GTGP was implemented, the vegetation condition of LP improved significantly,
with the slope of change in kNDVI increasing from 0.0009 yr−1 (p < 0.05) to 0.0029 yr−1

(p < 0.001). This suggests that the implementation of the GTGP program has effectively
improved the vegetation condition of LP, especially in semi-arid and semi-humid zones. In
contrast, rapid urbanization has exacerbated vegetation degradation in urban areas (e.g.,
Xi’an, Yinchuan, etc.), emphasizing the need to harmonize the relationship between social
development and ecological protection [68].

4.2. Impact of Climate Change on Vegetation Dynamics

Quantitatively identifying the primary drivers and their relative contributions to
vegetation change is essential for comprehending the mechanisms underlying ecological
shifts and for optimizing and adjusting ecological conservation strategies. Residual analysis
revealed that a combination of CC and HA dominated vegetation dynamics in the YRB,
with CC being the primary driver accounting for 55.8% of the vegetated areas of kNDVI
variations. Consistent with some previous studies [69,70], we all found that long-term
climate change dominated vegetation changes in the YRB, albeit with differences in the
impact degree and extent. Possible explanations may include differences in the number
of key climate factors employed (most studies only accounted for PRE and TEM) and the
types and lengths of vegetation indices used (most studies utilized an NDVI from 1982 to
2015).

Different conditions of water, heat, and light have shaped the spatial variability of
vegetation landscapes in the YRB [71]. Water availability is the primary limit to vegetation
growth in the YRB since most of it features arid and semi-arid climates [72,73]. As shown in
Figure 5a, 60.3% of the vegetated areas in the YRB showed a significant positive correlation
between kNDVI and precipitation, indicating that the vegetation in the YRB is susceptible
to water variability, which finding is consistent with other studies in the region [42,74,75].
Conversely, only 9.3% of the vegetated areas displayed a significant negative correlation
between kNDVI and precipitation, primarily concentrated in the alpine areas of the upper
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basin and in irrigation areas such as the Hetao and the Fenwei Plain. In the alpine region,
the climate is mainly characterized by cold and humidity, with low temperatures and low
evapotranspiration, and vegetation growth is limited by temperature and radiation, while
the cooling effect of precipitation also inhibits vegetation growth [65,76,77]. Anthropogenic
irrigation ensures the water supply to irrigated areas in the YRB, while cloudy and rainy
days often lead to increased cloud cover, reducing radiation and thereby inhibiting vegeta-
tion photosynthesis [67,78]. Temperature largely controls vegetation growth in the upper
alpine regions of the watershed and in non-water-limited areas, such as irrigation districts,
and warming may promote vegetation growth, influencing vegetation phenology by length-
ening the growing season and providing the necessary heat for vegetation growth [79,80].
However, increased temperatures may enhance evapotranspiration in water-limited zones
(especially in arid zones), resulting in reduced water availability and, thus, inhibiting vege-
tation growth [81]. Increased solar radiation benefits vegetation greening in alpine regions
but leads to increased evapotranspiration, which is detrimental to vegetation growth in
arid and semi-arid regions [8]. In contrast to the spatial pattern of precipitation effects on
vegetation, potential evapotranspiration had a significant negative effect on most of the
vegetated zones, except for alpine and non-moisture-limited zones, where it promoted
vegetation growth. Of note, although vegetation restoration will improve regional warming
and humidification, the increased evapotranspiration (especially vegetation transpiration)
caused by large-scale vegetation growth may lead the YRB into a more severe state of water
shortage. Feng et al. [82] identified that the current vegetation restoration in the LP is close
to the threshold of the water resources’ carrying capacity. Therefore, comprehensive con-
sideration should be given to the integrated demand for water production, consumption,
and use in the YRB, and ecological protection strategies should be adjusted to balance the
relationship between vegetation growth and available water resources.

4.3. Effects of Human Activities on Vegetation Dynamics

We found that anthropogenic activities contributed 44.2% to vegetation dynamics
in the YRB, with significant contributions being concentrated in three regions: the LP
in the southeastern YRB, the areas surrounding large and medium-sized cities, and the
alpine region. Various anthropogenic impact zones feature distinct mechanisms that drive
vegetation growth. Specifically, the GTGP, which was initiated in 1999, has been the primary
driver of vegetation recovery in the YRB since the beginning of the 20th century [70,83,84].
Figure 9 illustrates that prior to the implementation of the GTGP (1980–2000), the main
land-use conversion mode involved transforming forest land and grassland into cropland,
totaling a net area of 2387 km2. Following the implementation of the GTGP (2000–2020), the
predominant land-use change shifted from cropland to forest land and grassland, resulting
in a net conversion area of 3954 km2. The conversion of land-use types between cropland,
forest land, and grassland reveals the impact of ecological protection projects on regional
vegetation restoration [85].

Moreover, rapid urbanization in the YRB has resulted in vegetation degradation within
urban areas and in their surroundings over the past four decades [86,87]. Throughout
this period, substantial areas of cropland have been converted into construction land to
facilitate urbanization. Significant trends of vegetation degradation have been observed in
major large and medium-sized cities, spanning from upstream to downstream, including
Xining, Lanzhou, Yinchuan, Hohhot, Xi’an, and Luoyang (Figure 10). Furthermore, non-
land use conversion-related human activities (e.g., grazing) constitute the primary cause of
vegetation degradation, particularly in grassland ecosystems within the alpine areas of the
upper watershed [88,89]. Therefore, the positive and negative effects of HA on vegetation
growth should be correctly grasped in order to create an environment in which humans
and nature coexist harmoniously.
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4.4. Limitations and Uncertainties

Although we used the longest continuous kNDVI series that were available for vege-
tation detection and attribution in the YRB and improved the saturation phenomenon of
traditional vegetation indices, some uncertainties and limitations are still present. Firstly,
additional potential influences (e.g., atmospheric CO2, nitrogen deposition, etc.) should
be considered beyond the four key climate drivers emphasized in this study. Secondly,
we focused on the response of vegetation to contemporaneous climate change, ignoring
possible climate time-lag and cumulative effects. Moreover, climate change commonly
affects vegetation growth in a nonlinear manner, and the attribution of vegetation dynamics
based on residual analysis presents limitations when considering such nonlinear correla-
tions. Therefore, a comprehensive analytical framework that integrates the temporal and
nonlinear effects of climate, as well as incorporating more potential influencing factors,
represents a direction for future research.

5. Conclusions

In this study, based on the kNDVI and key climate variables (PRE, TEM, SR, and PET),
using data spanning from 1982 to 2022, we utilized the multivariate statistical approach
to analyze the spatiotemporal patterns of vegetation dynamics, identified the key climate
variables driving vegetation change, and separated the relative contributions of climatic
and anthropogenic effects on vegetation variations. The main findings are summarized
below.

The YRB has experienced extensive vegetation greening over the past four decades,
with 83.2% of the vegetated areas demonstrating a significant increase in kNDVI, and the
slope of kNDVI being 0.029 yr−1 (p < 0.001) from 2000 to 2022, which contrasts with 0.009
yr−1 (p < 0.05) from 1982 to 1999. The Hurst index of kNDVI suggests a continued extensive
greening trend, with approximately 83% of vegetated areas expected to continue greening
in the future. The PRE had the greatest effects on kNDVI, driving 41.9% of the vegetation
changes, especially in the arid zones. The TEM, as the second most dominant climate
factor, caused 35.4% of the climate-related vegetation variation seen, most notably in the
source and semi-humid zones. The SR accounted for 13% of the vegetation variations,
particularly in the alpine zone. The PET had limited and scattered effects on vegetation
dynamics. The combined effects of CC and HA primarily drove the vegetation dynamics in
the YRB, representing the dominant cause of kNDVI variations in 92% of the vegetated areas.
Overall, the relative contributions of CC and HA to kNDVI variations were 55.8% and 44.2%,
respectively. Areas with high contributions of CC were primarily situated in alpine regions
and arid to semi-arid areas of the southeastern YRB. Conversely, anthropogenic factors
contributed significantly to vegetation variations in the LP, urban areas, and specific alpine
zones. The findings provide valuable insights and offer a comprehensive understanding of
the relationship between vegetation dynamics and climatic or anthropogenic factors in the
YRB while providing a theoretical reference for adapting ecological protection strategies to
mitigate the impacts of changing external environments.
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