How Land Use Transitions Contribute to the Soil Organic Carbon Accumulation from 1990 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Field Data Measurements and Processes
2.3. SSA-RFR Model and Accuracy Evaluation
2.4. Satellite Data and Pre-Processing
3. Results
3.1. Statistical Analysis of SBD and SOC
3.2. Applicability of SSA-RFR Model
3.3. Spatial Distribution of SOCD in 2020
3.4. Characteristics of Temporal–Spatial Distribution of SOCD
3.5. Effects of LUC on SOCS during 1990–2020
4. Discussion
4.1. Impact of Land Management Practices on SOCS
4.2. Uncertainties and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Gaudaré, U.; Kuhnert, M.; Smith, P.; Martin, M.; Barbieri, P.; Pellerin, S.; Nesme, T. Soil organic carbon stocks potentially at risk of decline with organic farming expansion. Nat. Clim. Chang. 2023, 13, 719–725. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, G.; Wang, E. Global subsoil organic carbon turnover times dominantly controlled by soil properties rather than climate. Nat. Commun. 2019, 10, 3688. [Google Scholar] [CrossRef] [PubMed]
- Hartley, I.P.; Hill, T.C.; Chadburn, S.E.; Hugelius, G. Temperature effects on carbon storage are controlled by soil stabilisation capacities. Nat. Commun. 2021, 12, 6713. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, M.; Zhao, L.; Sun, X.; Gao, M.; Sheng, L.; Bian, H. Characteristics of soil carbon emissions and bacterial community composition in peatlands at different stages of vegetation succession. Sci. Total Environ. 2022, 839, 156242. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Fang, K.; Wei, B.; Qin, S.; Feng, X.; Hu, T.; Ji, C.; Yang, Y. Soil carbon persistence governed by plant input and mineral protection at regional and global scales. Ecol. Lett. 2021, 24, 1018–1028. [Google Scholar] [CrossRef] [PubMed]
- Reichenbach, M.; Fiener, P.; Hoyt, A.; Trumbore, S.; Six, J.; Doetterl, S. Soil carbon stocks in stable tropical landforms are dominated by geochemical controls and not by land use. Glob. Chang. Biol. 2023, 29, 2591–2607. [Google Scholar] [CrossRef]
- Beillouin, D.; Corbeels, M.; Demenois, J.; Berre, D.; Boyer, A.; Fallot, A.; Feder, F.; Cardinael, R. A global meta-analysis of soil organic carbon in the Anthropocene. Nat. Commun. 2023, 14, 3700. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Li, H.; Wu, Y.; Liu, S.; Xiao, J.; Zhao, W.; Chen, J.; Alexandrov, G.; Cao, Y. Decipher soil organic carbon dynamics and driving forces across China using machine learning. Glob. Chang. Biol. 2022, 28, 3394–3410. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Jing, X.; Flynn, D.F.B.; Shi, Y.; Kühn, P.; Scholten, T.; He, J.-S. Changes of carbon stocks in alpine grassland soils from 2002 to 2011 on the Tibetan Plateau and their climatic causes. Geoderma 2017, 288, 166–174. [Google Scholar] [CrossRef]
- Li, X.-Z.; Han, B.-S.; Yang, F.; Hu, C.-Y.; Han, G.-Z.; Huang, L.-M. Effects of land use change on soil carbon and nitrogen in purple paddy soil. J. Environ. Manag. 2022, 314, 115122. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Guo, X.; Zhang, S.; Xiao, L.; Mishra, U.; Yang, Y.; Zhu, B.; Wang, G.; Mao, X.; Qian, T.; et al. Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate. Nat. Commun. 2022, 13, 5514. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Huang, L.; Shao, M. Spatial variations and influencing factors of soil organic carbon under different land use types in the alpine region of Qinghai-Tibet Plateau. Catena 2023, 220, 106706. [Google Scholar] [CrossRef]
- Chen, F.; Feng, P.; Harrison, M.T.; Wang, B.; Liu, K.; Zhang, C.; Hu, K. Cropland carbon stocks driven by soil characteristics, rainfall and elevation. Sci. Total Environ. 2023, 862, 160602. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Hu, Z.; Wang, X.; Wang, T.; Chen, A.; Weng, Q.; Liang, M.; Zeng, X.; Cao, R.; Di, K.; et al. Shift in controlling factors of carbon stocks across biomes on the Qinghai-Tibetan Plateau. Environ. Res. Lett. 2022, 17, 074016. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, J.; Zhao, W.; Qu, Y.; Gou, Z.; Chen, H.; Tian, Y.; Wu, F. Digital mapping of soil organic carbon density in China using an ensemble model. Environ. Res. 2023, 231, 116131. [Google Scholar] [CrossRef] [PubMed]
- Taghizadeh-Mehrjardi, R.; Nabiollahi, K.; Kerry, R. Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma 2016, 266, 98–110. [Google Scholar] [CrossRef]
- Zhang, S.; Tian, J.; Lu, X.; Tian, Q. Temporal and spatial dynamics distribution of organic carbon content of surface soil in coastal wetlands of Yancheng, China from 2000 to 2022 based on Landsat images. Catena 2023, 223, 106961. [Google Scholar] [CrossRef]
- Terrer, C.; Phillips, R.P.; Hungate, B.A.; Rosende, J.; Pett-Ridge, J.; Craig, M.E.; Van Groenigen, K.J.; Keenan, T.F.; Sulman, B.N.; Stocker, B.D.; et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 2021, 591, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xiao, J.; Ma, Y.; Ding, J.; Chen, X.; Ding, Z.; Luo, Y. Persistent and enhanced carbon sequestration capacity of alpine grasslands on Earth’s Third Pole. Sci. Adv. 2023, 9, eade6875. [Google Scholar] [CrossRef] [PubMed]
- Soong, J.L.; Castanha, C.; Hicks Pries, C.E.; Ofiti, N.; Porras, R.C.; Riley, W.J.; Schmidt, M.W.I.; Torn, M.S. Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO2 efflux. Sci. Adv. 2021, 7, eabd1343. [Google Scholar] [CrossRef] [PubMed]
- Varney, R.M.; Chadburn, S.E.; Friedlingstein, P.; Burke, E.J.; Koven, C.D.; Hugelius, G.; Cox, P.M. A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming. Nat. Commun. 2020, 11, 5544. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ding, J.; Zhu, C.; Wang, J.; Ge, X.; Li, X.; Han, L.; Chen, X.; Wang, J. Historical and future variation of soil organic carbon in China. Geoderma 2023, 436, 116557. [Google Scholar] [CrossRef]
- Zhou, Y.; Webster, R.; Viscarra Rossel, R.A.; Shi, Z.; Chen, S. Baseline map of soil organic carbon in Tibet and its uncertainty in the 1980s. Geoderma 2019, 334, 124–133. [Google Scholar] [CrossRef]
- He, L.; Tang, Y. Soil development along primary succession sequences on moraines of Hailuogou Glacier, Gongga Mountain, Sichuan, China. Catena 2008, 72, 259–269. [Google Scholar] [CrossRef]
- Gao, X.; Xiao, Y.; Deng, L.; Li, Q.; Wang, C.; Li, B.; Deng, O.; Zeng, M. Spatial variability of soil total nitrogen, phosphorus and potassium in Renshou County of Sichuan Basin, China. J. Integr. Agric. 2019, 18, 279–289. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Van Der Hilst, R.D.; Li, Y.; Yao, H.J.; Chen, J.H.; Guo, B.; Qi, S.H.; Wang, J.; Huang, H.; Li, S.C. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nat. Geosci. 2014, 7, 361–365. [Google Scholar] [CrossRef]
- Azene, B.; Zhu, R.; Pan, K.; Sun, X.; Nigussie, Y.; Gruba, P.; Raza, A.; Guadie, A.; Wu, X.; Zhang, L. Land use change alters phosphatase enzyme activity and phosphatase-harboring microbial abundance in the subalpine ecosystem of southeastern Qinghai-Tibet Plateau, China. Ecol. Indic. 2023, 153, 110416. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, Y.; Xu, W.; Liu, M. Effects of warming on the stoichiometry of soil microbial biomass and extracellular enzymes in an alpine shrubland. Geoderma 2023, 430, 116329. [Google Scholar] [CrossRef]
- Wu, A.; You, C.; Yin, R.; Xu, Z.; Zhang, L.; Liu, Y.; Li, H.; Wang, L.; Xu, L.; Xu, H.; et al. Forest Gaps Slow the Humification Process of Fir (Abies faxoniana Rehder & E.H.Wilson) Twig Litter during Eight Years of Decomposition in an Alpine Forest. Forests 2023, 14, 868. [Google Scholar] [CrossRef]
- Li, Z.; Yang, W.; Yue, K.; Justine, M.F.; He, R.; Yang, K.; Zhuang, L.; Wu, F.; Tan, B.; Zhang, L.; et al. Effects of snow absence on winter soil nitrogen dynamics in a subalpine spruce forest of southwestern China. Geoderma 2017, 307, 107–113. [Google Scholar] [CrossRef]
- Ahirwal, J.; Nath, A.; Brahma, B.; Deb, S.; Sahoo, U.K.; Nath, A.J. Patterns and driving factors of biomass carbon and soil organic carbon stock in the Indian Himalayan region. Sci. Total Environ. 2021, 770, 145292. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, D.; Zhou, W.-J.; Ji, H.-L.; Grace, J.; Bai, X.-L.; Song, Q.-H.; Liu, Y.-T.; Sha, L.-Q.; Fei, X.-H.; Zhang, X.; et al. Environmental and management controls of soil carbon storage in grasslands of southwestern China. J. Environ. Manag. 2020, 254, 109810. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Zhang, Y.; Tang, S.; Liu, J. Spatial distribution of soil organic carbon in the Zoige alpine wetland, northeastern Qinghai–Tibet Plateau. Catena 2016, 144, 102–108. [Google Scholar] [CrossRef]
- Wang, H.J.; Ning, L.M.; Xu, L.X.; Huang, H.; Du, J. Vertical distribution characteristics of soil organic carbon content in an alpine-cold zone of Northwest Sichuan. Chin. J. Soil Sci. 2012, 43, 76–80. [Google Scholar]
- Chen, L.S.; Huang, X.Y.; Xue, D.; Chen, H.; Lin, B.; Liang, D. Distribution characteristics of soil organic carbon and its influencing factors in the peatlands of Western Sichuan Plateau, China. Chin. J. Appl. Environ. Bio. 2022, 28, 267–275. [Google Scholar]
- Luan, J.; Cui, L.; Xiang, C.; Wu, J.; Song, H.; Ma, Q.; Hu, Z. Different grazing removal exclosures effects on soil C stocks among alpine ecosystems in east Qinghai–Tibet Plateau. Ecol. Eng. 2014, 64, 262–268. [Google Scholar] [CrossRef]
- Xia, M.; Wang, H.; Liu, Z.Y.; Wang, N.; Liu, Y.S.; Wang, H.C.; Xiao, X.; Xiao, D.R. Carbon stock and its value for 3 types of wetland ecosystems on Zoige Plateau, Sichuan Province. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 2020, 49, 392–398. [Google Scholar]
- Chinilin, A.; Savin, I.Y. Combining machine learning and environmental covariates for mapping of organic carbon in soils of Russia. Egypt. J. Remote Sens. Space Sci. 2023, 26, 666–675. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, S.; Zhuang, Q.; Li, X.; Zeng, F.; Xie, C.; Hou, G.; Luo, G. Joint estimation of aboveground biomass using “Space-Air-Ground” data in the Qilian Mountains, China. Ecol. Indic. 2022, 138, 108866. [Google Scholar] [CrossRef]
- Van Der Westhuizen, S.; Heuvelink, G.B.M.; Hofmeyr, D.P. Multivariate random forest for digital soil mapping. Geoderma 2023, 431, 116365. [Google Scholar] [CrossRef]
- Wang, Q.; Yue, C.; Li, X.Q.; Liao, P.; Li, X.Y. Enhancing robustness of monthly streamflow forecasting model using embedded-feature selection algorithm based on improved gray wolf optimizer. J. Hydrol. 2023, 617, 128995. [Google Scholar] [CrossRef]
- Zhou, J.; Dai, Y.; Huang, S.; Armaghani, D.J.; Qiu, Y. Proposing several hybrid SSA—Machine learning techniques for estimating rock cuttability by conical pick with relieved cutting modes. Acta Geotech. 2023, 18, 1431–1446. [Google Scholar] [CrossRef]
- Gomes, L.C.; Faria, R.M.; De Souza, E.; Veloso, G.V.; Schaefer, C.E.G.R.; Filho, E.I.F. Modelling and mapping soil organic carbon stocks in Brazil. Geoderma 2019, 340, 337–350. [Google Scholar] [CrossRef]
- Sanderman, J.; Hengl, T.; Fiske, G.; Solvik, K.; Adame, M.F.; Benson, L.; Bukoski, J.J.; Carnell, P.; Cifuentes-Jara, M.; Donato, D.; et al. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett. 2018, 13, 055002. [Google Scholar] [CrossRef]
- Xiao, J.; Chevallier, F.; Gomez, C.; Guanter, L.; Hicke, J.A.; Huete, A.R.; Ichii, K.; Ni, W.; Pang, Y.; Rahman, A.F.; et al. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 2019, 233, 111383. [Google Scholar] [CrossRef]
- Yang, J.; Fan, J.; Lan, Z.; Mu, X.; Wu, Y.; Xin, Z.; Miping, P.; Zhao, G. Improved Surface Soil Organic Carbon Mapping of SoilGrids250m Using Sentinel-2 Spectral Images in the Qinghai–Tibetan Plateau. Remote Sens. 2022, 15, 114. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, Y.; Zhu, Y.G.; Tang, Z.; McGrath, S.P. Soil Contamination in China: Current Status and Mitigation Strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.F.; Jin, H.J.; Mu, C.C.; Wu, X.D.; Zhao, L.; Wu, Q.B. Non-climate environmental factors matter to Holocene dynamics of soil organic carbon and nitrogen in an alpine permafrost wetland, Qinghai–Tibet Plateau. Adv. Clim. Chang. Res. 2023, 14, 213–225. [Google Scholar] [CrossRef]
- Hunziker, M.; Arnalds, O.; Kuhn, N.J. Evaluating the carbon sequestration potential of volcanic soils in southern Iceland after birch afforestation. Soil 2019, 5, 223–238. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; Khorchani, M.; Gaspar, L.; Arnáez, J.; Cammeraat, E.; Navas, A.; Lasanta, T. How do land use and land cover changes after farmland abandonment affect soil properties and soil nutrients in Mediterranean mountain agroecosystems? Catena 2023, 226, 107062. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Hübner, R.; Spörlein, P.; Geuß, U.; Hangen, E.; Reischl, A.; Schilling, B.; Von Lützow, M.; Kögel-Knabner, I. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation. Glob. Chang. Biol. 2014, 20, 653–665. [Google Scholar] [CrossRef] [PubMed]
- Balesdent, J.; Basile-Doelsch, I.; Chadoeuf, J.; Cornu, S.; Derrien, D.; Fekiacova, Z.; Hatté, C. Atmosphere–soil carbon transfer as a function of soil depth. Nature 2018, 559, 599–602. [Google Scholar] [CrossRef] [PubMed]
- Eze, S.; Magilton, M.; Magnone, D.; Varga, S.; Gould, I.; Mercer, T.G.; Goddard, M.R. Meta-analysis of global soil data identifies robust indicators for short-term changes in soil organic carbon stock following land use change. Sci. Total Environ. 2023, 860, 160484. [Google Scholar] [CrossRef] [PubMed]
Region | Year | Quantity | References |
---|---|---|---|
Alpine-cold Zone of Northwest Sichuan | 2007 | 39 | [35] |
Western Sichuan Plateau | 2019–2020 | 87 | [36] |
Zoige National Wetland Reserve | 2010 | 3 | [37] |
Zoige Plateau, Sichuan Province | 2018–2019 | 48 | [38] |
Vegetation Indices | Equations | References |
---|---|---|
NDVI | [16] | |
EVI | [39] | |
CIg | [40] | |
SAVI | [47] |
SSA-RFR Model | R2 | MAE | RMSE | BIAS | Accuracy | |
---|---|---|---|---|---|---|
SBD | 0–5 cm | 0.79 | 0.09 | 0.13 | 0.14 | 94.38% |
5–10 cm | 0.76 | 0.08 | 0.09 | 0.02 | 92.13% | |
10–20 cm | 0.74 | 0.06 | 0.08 | 0.06 | 93.34% | |
20–30 cm | 0.78 | 0.06 | 0.08 | 0.05 | 93.79% | |
SOC | 0–5 cm | 0.62 | 18.09 | 21.63 | 0.06 | 82.43% |
5–10 cm | 0.67 | 10.31 | 12.92 | 0.17 | 82.69% | |
10–20 cm | 0.65 | 9.44 | 10.91 | 0.23 | 80.25% | |
20–30 cm | 0.62 | 10.38 | 12.68 | 0.36 | 82.28% |
Land Use Type | Area (km2) | SOCS (Tg C) | |||
---|---|---|---|---|---|
0–5 cm | 5–10 cm | 10–20 cm | 20–30 cm | ||
Cropland | 1562 | 0.24 | 0.19 | 0.41 | 0.34 |
Forest | 10.5251 | 18.11 | 15.60 | 29.31 | 25.39 |
Shrub | 3014 | 0.45 | 0.36 | 0.78 | 0.61 |
Grassland | 17.9529 | 27.20 | 21.70 | 49.21 | 40.21 |
Barren land | 5436 | 0.66 | 0.55 | 1.09 | 1.04 |
Wetland | 528 | 0.10 | 0.08 | 0.15 | 0.14 |
Others | 2330 | 0.0039 | 0.0029 | 0.0062 | 0.0056 |
All | 297,650 | 46.7639 | 37.4829 | 80.9562 | 67.7356 |
Land Use Type | SOCS (Tg C) | |||
---|---|---|---|---|
1990 | 2000 | 2010 | 2020 | |
Cropland | 0.91 | 1.32 | 1.21 | 1.18 |
Forest | 72.94 | 69.92 | 71.82 | 88.41 |
Shrub | 2.74 | 2.33 | 2.25 | 2.20 |
Grassland | 135.12 | 133.57 | 127.06 | 137.32 |
Barren | 2.69 | 2.85 | 2.54 | 3.34 |
Wetland | 0.50 | 0.39 | 0.17 | 0.47 |
Others | 0.0041 | 0.0061 | 0.0097 | 0.0186 |
All | 214.9041 | 210.3861 | 205.0597 | 232.9386 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Xia, L.; Zhao, Z.; Zhao, F.; Hou, G.; Wu, S.; Sun, X.; Wu, S.; Yang, P.; Zha, Y. How Land Use Transitions Contribute to the Soil Organic Carbon Accumulation from 1990 to 2020. Remote Sens. 2024, 16, 1308. https://doi.org/10.3390/rs16071308
Zhang Z, Xia L, Zhao Z, Zhao F, Hou G, Wu S, Sun X, Wu S, Yang P, Zha Y. How Land Use Transitions Contribute to the Soil Organic Carbon Accumulation from 1990 to 2020. Remote Sensing. 2024; 16(7):1308. https://doi.org/10.3390/rs16071308
Chicago/Turabian StyleZhang, Zihui, Lang Xia, Zifei Zhao, Fen Zhao, Guanyu Hou, Shixin Wu, Xiao Sun, Shangrong Wu, Peng Yang, and Yan Zha. 2024. "How Land Use Transitions Contribute to the Soil Organic Carbon Accumulation from 1990 to 2020" Remote Sensing 16, no. 7: 1308. https://doi.org/10.3390/rs16071308
APA StyleZhang, Z., Xia, L., Zhao, Z., Zhao, F., Hou, G., Wu, S., Sun, X., Wu, S., Yang, P., & Zha, Y. (2024). How Land Use Transitions Contribute to the Soil Organic Carbon Accumulation from 1990 to 2020. Remote Sensing, 16(7), 1308. https://doi.org/10.3390/rs16071308