Ozone Profile Retrieval Algorithm Based on GEOS-Chem Model in the Middle and Upper Atmosphere
Abstract
:1. Introduction
2. Data and Model
2.1. MLS
2.2. OMPS_LP
2.3. TROPOMI
2.4. GEOS-Chem
2.5. Ozonesonde and Ozone Lidar
3. Retrieval Method
4. Construction of the a Priori Ozone Profile
5. Results and Validations
5.1. Validations with the Ozonesonde and Ozone Lidar Measurements
5.2. Validations with the Data of MLS and OMPS_LP
5.3. Effects on UV Radiation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, D.J. Microbes in the upper atmosphere and unique opportunities for astrobiology research. Astrobiology 2013, 13, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Joly, M.; Attard, E.; Sancelme, M.; Deguillaume, L.; Guilbaud, C.; Morris, C.E.; Amato, P.; Delort, A. Ice nucleation activity of bacteria isolated from cloud wate. Atmos. Environ. 2013, 70, 392–400. [Google Scholar] [CrossRef]
- Tiquia, S.M.; Mormile, M.R. Extremophiles-A source of innovation for industrial and environmental application. Environ. Technol. 2010, 31, 823. [Google Scholar] [CrossRef] [PubMed]
- Van Peet, J.C.A.; Van Der A, R.J.; Wolfram, E.; Salvador, J.; Levelt, P.F.; Kelder, H.M. Ozone ProfilE Retrieval Algorithm (OPERA) for nadir-looking satellite instruments in the UV–VIS. Atmos. Meas. Tech. 2014, 7, 859–876. [Google Scholar] [CrossRef]
- Flittner, D.E.; Bhartia, P.K.; Herman, B.M. O3 profiles retrieved from limb scatter measurements: Theory. Geophys. Res. Lett. 2000, 27, 2601–2604. [Google Scholar] [CrossRef]
- Mettig, N.; Weber, M.; Rozanov, A.; Burrows, J.P.; Veefkind, P.; Thompson, A.M.; Stauffer, R.M.; Leblanc, T.; Ancellet, G.; Newchurch, M.J.; et al. Combined UV and IR ozone profile retrieval from TROPOMI and CrIS measurements. Atmos. Meas. Tech. 2022, 15, 2955–2978. [Google Scholar] [CrossRef]
- Singer, S.F.; Wentworth, R.C. A method for the determination of the vertical ozone distribution from a satellite. J. Geophys. Res. 1957, 62, 299–308. [Google Scholar] [CrossRef]
- Yang, K.; Liu, X. Ozone profile climatology for remote sensing retrieval algorithms. Atmos. Meas. Tech. 2019, 12, 4745–4778. [Google Scholar] [CrossRef]
- Cooper, M.J.; Martin, R.V.; Henze, D.K.; Jones, D.B.A. Effects of a priori profile shape assumptions on comparisons between satellite NO2 columns and model simulations. Atmos. Chem. Phys. 2020, 20, 7231–7241. [Google Scholar] [CrossRef]
- Barret, B.; Emili, E.; Flochmoen, E.L. A tropopause-related climatological a priori profile for IASI-SOFRID ozone retrievals: Improvements and validation. Atmos. Meas. Tech. 2020, 13, 5237–5257. [Google Scholar] [CrossRef]
- Bhartia, P.K.; McPeters, R.D.; Mateer, C.L.; Flynn, L.E.; Wellemeyer, C. Algorithm for the estimation of vertical ozone profiles from the backscattered ultraviolet technique. J. Geophys. Res. 1996, 101, 18793–18806. [Google Scholar] [CrossRef]
- Munro, R.; Siddans, R.; Reburn, W.J.; Kerridge, B.J. Direct measurement of tropospheric ozone distributions from space. Nature 1998, 392, 168–171. [Google Scholar] [CrossRef]
- Burrows, J.P. The global ozone monitoring experiment (GOME): Mission concept and first scientific results. J. Atmos. Sci. 1999, 56, 151–175. [Google Scholar] [CrossRef]
- Hoogen, R.; Rozanov, V.V.; Burrows, J.P. Ozone profiles from GOME satellite data: Algorithm description and first validation. J. Geophys. Res. 1999, 104, 8263–8280. [Google Scholar] [CrossRef]
- Liu, X.; Chance, K.; Sioris, C.E.; Spurr, R.J.D.; Kurosu, T.P.; Martin, R.V.; Newchurch, M.J. Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: Algorithm description and validation. J. Geophys. Res. 2005, 110, D20. [Google Scholar] [CrossRef]
- Miles, G.M.; Siddans, R.; Kerridge, B.J.; Latter, B.G.; Richards, N.A.D. Tropospheric ozone and ozone profiles retrieved from GOME-2 and their validation. Atmos. Meas. Tech. 2015, 8, 385–398. [Google Scholar] [CrossRef]
- Liu, X.; Bharita, P.K.; Chance, K.; Suprr, R.J.D.; Kurosu, T.P. Ozone profile retrievals from the Ozone Monitoring Instrument. Atmos. Chem. Phys. 2010, 10, 2521–2537. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, C.; Cai, Z.; Liu, X.; Bak, J.; Kim, J.; Hu, Q.; Xia, C.; Zhang, C.; Sun, Y.; et al. Ozone profile retrievals from TROPOMI: Implication for the variation of tropospheric ozone during the outbreak of COVID-19 in China. Sci. Total. Environ. 2021, 764, 142886. [Google Scholar] [CrossRef]
- Mettig, N.; Weber, M.; Rozanov, A.; Arosio, C.; Burrows, J.P.; Veefkind, P.; Thompson, A.M.; Querel, R.; Leblanc, T.; Godin-Beekmann, S.; et al. Ozone profile retrieval from nadir TROPOMI measurements in the UV range. Atmos. Meas. Tech. 2021, 14, 6057–6082. [Google Scholar] [CrossRef]
- Wang, S.; Streets, D.G.; Zhang, Q.; He, K.; Chen, D.; Kang, S.; Lu, Z.; Wang, Y. Satellite detection and model verification of NOx emissions from power plants in Northern China. Environ. Res. Lett. 2010, 5, 044007. [Google Scholar] [CrossRef]
- Johnson, M.S.; Liu, X.; Zoogman, P.; Sullivan, J.; Newchurch, M.J.; Kuang, S.; Leblanc, T.; McGee, T. Evaluation of potential sources of a priori ozone profiles for TEMPO tropospheric ozone retrievals. Atmos. Meas. Tech. 2018, 11, 3457–3477. [Google Scholar] [CrossRef]
- Livesey, N.J.; Read, W.G.; Wagner, P.A.; Froidevaux, L.; Santee, M.L.; Schwartz, M.J.; Lambert, A.; Valle, L.F.M.; Pumphrey, H.C.; Manney, G.L.; et al. Aura Microwave Limb Sounder (MLS): Version 5.0x Level 2 and 3 Data Quality and Description Document, JPL D-105336 Rev. B, Jet Propulsion Laboratory; California Institute of Technology: Pasadena, CA, USA, 2022. [Google Scholar]
- Sheese, P.E.; Walker, K.A.; Boone, C.D.; Bourassa, A.E.; Degenstein, D.A.; Froidevaux, L.; McElroy, C.T.; Murtagh, D.; Russell, J.M., III; Zou, J. Assessment of the quality of ACE-FTS stratospheric ozone data. Atmos. Meas. Tech. 2022, 15, 1233–1249. [Google Scholar] [CrossRef]
- Kristof, B.; Tegtmeier, S.; Bourassa, A.; Roth, C.; Warnock, T.; Zawada, D.; Degenstein, D. Stratospheric ozone trends for 1984–2021 in the SAGE Ⅱ-OSRIS-SAGE Ⅲ/ISS composite dataset. Atmos. Chem. Phys. 2022, 22, 9553–9569. [Google Scholar]
- Huang, G.; Liu, X.; Chance, K.; Yang, K.; Cai, Z. Validation of 10-year SAO OMI ozone profile (PROFOZ) product using Aura MLS measurements. Atmos. Meas. Tech. 2018, 11, 17–23. [Google Scholar] [CrossRef]
- Arosio, C.; Rozanov, A.; Malinina, E.; Eichmann, K.-U.; Clarmann, T.V.; Burrows, J.P. Retrieval of ozone profiles from OMPS limb scattering observations. Atmos. Meas. Tech. 2018, 11, 2135–2149. [Google Scholar] [CrossRef]
- Kramarova, N.A.; Bhartia, P.K.; Jaross, G.; Moy, L.; Xu, P.; Chen, Z.; DeLand, M.; Froidevaux, L.; Livesey, N.; Degenstein, D.; et al. Validation of ozone profile retrievals derived from the OMPS LP version 2.5 algorithm against correlative satellite measurements. Atmos. Meas. Tech. 2018, 11, 2837–2861. [Google Scholar] [CrossRef]
- Xiao, W.; Fu, Y.; Gao, T.; Du, X.; Xue, Z.; Guo, Y. Deriving atmospheric zonal mean winds from refractive index data. J. Appl. Meteor Sci. 2011, 22, 346–355. [Google Scholar]
- Wang, Z.; Chen, S.; Lv, H.; Han, N. Conversion on different dimensions of atmospheric ozone. J. Appl. Meteor Environ. 2010, 26, 63–67. [Google Scholar]
- McPeters, R.D.; Janz, S.J.; Hilsenrath, E.; Brown, T.L.; Flittner, D.E.; Heath, D.F. The retrieval of O3 profiles from limb scatter measurements: Results from the Shuttle Ozone Limb Sounding Experiment. Geophys. Res. Lett. 2000, 27, 2597–2600. [Google Scholar] [CrossRef]
- Johnson, J.; Kramarova, N.; DeLand, M. Readme Document for the Suomi-NPP OMPS LP L2 O3 Daily Product Version 2.6; Goddard Earth Sciences Data and Information Services Center: Greenbelt, MD, USA, 2023. [Google Scholar]
- Sullivan, J.T.; Apituley, A.; Mettig, N.; Kreher, K.; Knowland, K.E.; Allaart, M.; Piters, A.; Roozendael, M.V.; Veefkind, P.; Ziemke, J.R.; et al. Tropospheric and stratospheric ozone profiles during the 2019 TROpomi vaLIdation eXperiment (TROLIX-19). Atmos. Chem. Phys. 2022, 22, 11137–11153. [Google Scholar] [CrossRef]
- Kuttippurath, J.; Feng, W.; Müller, R.; Kumar, P.; Raj, S.; Gopikrishnan, G.P.; Roy, R. Exceptional loss in ozone in the Arctic winter/spring of 2019/2020. Atmos. Chem. Phys. 2021, 21, 14019–14037. [Google Scholar] [CrossRef]
- Ludewig, A.; Kleipool, Q.; Bartstra, R.; Landzaat, R.; Leloux, J.; Loots, E.; Meijering, P.; Plas, E.V.D.; Rozemeijer, N.; Vonk, F.; et al. In-flight calibration results of the TROPOMI payload on board the Sentinel-5 Precursor satellite. Atmos. Meas. Tech. 2020, 13, 3561–3580. [Google Scholar] [CrossRef]
- David, L.M.; Ravishankara, A.R.; Brewer, J.F.; Sauvage, B.; Thouret, V.; Venkataramani, S.; Sinha, V. Tropospheric ozone over the Indian subcontinent from 2000 to 2015: Data set and simulation using GEOS-Chem chemical transport model. Atmos. Environ. 2019, 219, 117039. [Google Scholar] [CrossRef]
- Zhang, L.; Jacob, D.J.; Downey, N.V.; Wood, D.A.; Blewitt, D.; Carouge, C.C.; Donkelaar, A.V.; Jones, D.B.A.; Murray, L.T.; Wang, Y. Improved estimate of the policy-relevant background ozone in the United States using the GEOS-Chem global model with 1/2° × 2/3° horizontal resolution over North America. Atmos. Environ. 2011, 45, 6769–6776. [Google Scholar] [CrossRef]
- Bernier, C.; Wang, Y.; Gronoff, G.; Berkoff, T.; Knowland, K.E.; Sullivan, J.T.; Delgado, R.; Caicedo, V.; Carroll, B. Cluster-based characterization of multi-dimensional tropospheric ozone variability in coastal regions: An analysis of lidar measurements and model results. Atmos. Chem. Phys. 2022, 22, 15313–15331. [Google Scholar] [CrossRef]
- Eastham, S.D.; Weisenestein, D.K.; Barrett, S.R.H. Development and evaluation of the unified tropospheric–stratospheric chemistry extension (UCX) for the global chemistry-transport model GEOS-Chem. Atmos. Environ. 2014, 89, 52–63. [Google Scholar] [CrossRef]
- McLinden, C.A.; Olsen, S.C.; Hannegan, B.; Wild, O.; Prather, M.J.; Sundet, J. Stratospheric ozone in 3-D models: A simple chemistry and the cross-tropopause flux. J. Geophys. Res. 2000, 105, 14653–14665. [Google Scholar] [CrossRef]
- Damian, V.; Sandu, A.; Damian, M.; Potra, F.; Carmichael, G.R. The kinetic preprocessor KPP—A software environment for solving chemical kinetics. Comput. Chem. Eng. 2002, 26, 1567–1579. [Google Scholar] [CrossRef]
- Lin, H.; Jacob, D.J.; Lundgren, E.W.; Sulprizio, M.P.; Keller, C.A.; Fritz, T.M.; Eastham, S.D.; Emmons, L.K.; Campbell, P.C.; Baker, B.; et al. Harmonized Emissions Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: Application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS models. Geosci. Model Dev. 2021, 14, 5487–5506. [Google Scholar]
- Deshler, T.; Mercer, J.L.; Smit, H.G.J.; Stubi, R.; Levrat, G.; Johnson, B.J.; Oltmans, S.J.; Kivi, R.; Thompson, A.M.; Witte, J.; et al. Atmospheric comparison of electrochemical cell ozonesondes from different manufactures, and with different cathode solution strengths: The Balloon Experiment on Standards for Ozonesondes. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Smit, H.G.J.; Straeter, W.; Johnson, B.J.; Oltmans, S.J.; Davies, J.; Tarasick, D.W.; Hoegger, B.; Stubi, R.; Schmidlin, F.J.; Northam, T.; et al. Assessment of the performance of ECC-ozonsondes under quasi-flight conditions in the environmental simulation chamber: Insights from the Juelich Ozone Sonde Intercomparison Experiment (JOSIE). J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Leblanc, T.; Sica, R.J.; Gijsel, J.A.E.V.; Godin-Beekmann, S.; Haefele, A.; Trickl, T.; Payen, G.; Liberti, G. Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithm—Part 2: Ozone DIAL uncertainty budget. Atmos. Meas. Tech. 2016, 9, 4051–4078. [Google Scholar] [CrossRef]
- Huang, G.; Liu, X.; Chance, K.; Yanag, K.; Bhartia, P.K.; Cai, Z.; Allaart, M.; Ancellet, G.; Calpini, B.; Coetzee, G.J.; et al. Validation of 10-year SAO OMI Ozone Profile (PROFOZ) product using ozonesonde observations. Atmos. Meas. Tech. 2017, 10, 2455–2475. [Google Scholar] [CrossRef]
- Lee, H.; Choi, T.; Kim, S.-J.; Bak, J.; Ahn, D.H.; Kramarov, N.A.; Park, S.S.; Kim, J.; Koo, J.-H. Validations of satellite ozone profiles in austral spring using ozonesonde measurements. Environ. Res. 2022, 214, 114087. [Google Scholar] [CrossRef]
- Liao, Z.; Ling, Z.; Gao, M.; Sun, J.; Zhao, W.; Ma, P.; Quan, J.; Fan, S. Tropospheric ozone variability over Hong Kong based on recent 20 years (2000–2019) ozonesonde observation. J. Geophys. Res. 2021, 126, e2020JD033054. [Google Scholar] [CrossRef]
- Huber, D.; Lambert, J.-C.; Verhoelst, T.; Granville, J.; Keppens, A.; Baray, J.-L.; Bourassa, A.E.; Cortesi, U.; Degenstein, D.A.; Froidevaux, L.; et al. Ground-based assessment of the bias and long-term stability of 14 limb and occultation ozone profile data records. Atmos. Meas. Tech. 2016, 9, 2497–2534. [Google Scholar] [CrossRef]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice; Series on Atmospheric Oceanic and Planetary; World Scientific: Singapore, 2000; Volume 2. [Google Scholar]
- Hou, W.; Wang, J.; Xu, X.; Reid, J.S.; Han, D. An algorithm for hyperspectral remote sensing fo aerosols: 1. Development of theoretical framwork. J. Quant. Spectrosc. Radiat. Transf. 2016, 178, 400–415. [Google Scholar] [CrossRef]
- Hou, W.; Wang, J.; Xu, X.; Reid, J.S.; Janz, S.J.; Leitch, J.W. An algorithm for hyperspectral remote sesing of aerosols: 3. Application to the GEO-TASO data in KORUS-AQ field campaign. J. Quant. Spectrosc. Radiat. Transf. 2020, 253, 107161. [Google Scholar] [CrossRef]
- Franco, B.; Roozendael, F.H.M.V.; Müller, J.-F.; Stavrakou, T.; Marais, E.A.; Bovy, B.; Bader, W.; Fayt, C.; Hermans, C.; Lejeune, B.; et al. Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations. Atmos. Meas. Tech. 2015, 8, 1733–1756. [Google Scholar] [CrossRef]
- Ye, H.; Wang, X.; Wu, J.; Fang, Y. Error matrix construction method for atmospheric carbon dioxide Bayesian retrieval. Infrared Laser Eng. 2014, 43, 249–253. [Google Scholar]
- Mijling, B.; van Oss, R.F.; van der A, R.J. Improving ozone profile retrieval from spaceborne UV backscatter spectrometers using convergence behavior diagnostics. Atmos. Meas. Tech. 2010, 3, 1555–1568. [Google Scholar] [CrossRef]
- Fahrin, F.; Jones, D.C.; Wu, Y.; Keeble, J.; Archibald, A.T. Unsupervised classification of ozone profiles in UKESM1. Atmos. Chem. Phys. 2023, 23, 3609–3627. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, T.; Qian, Y.; Si, Q. Analysis of vertical distribution differences of global stratospheric ozone based on weighted multiplication algebraic algorithm. Acta Phys. Sin. 2023, 72, 014209. [Google Scholar] [CrossRef]
- Verronen, P.T.; Kyrölä, E.; Tamminen, J.; Funke, B.; Gil-López, S.; Kaufmann, M.; López-Puertas, M.; Clarmann, T.V.; Stiller, G.; Grabowski, U.; et al. A comparison of night-time GOMOS and MIPAS ozone profiles in the stratosphere and mesosphere. Adv. Space Res. 2005, 36, 958–966. [Google Scholar] [CrossRef]
- Christian, K.E.; Brune, W.H.; Mao, J. Global sensitivity analysis of the GEOS-Chem chemical transport model: Ozone and hydrogen oxides during ARCTAS (2008). Atmos. Chem. Phys. 2017, 17, 3769–3784. [Google Scholar] [CrossRef]
- An, Y.; Ma, J.; Gao, Y.; Xiong, W.; Wang, X. Tomographic retrieval algorithm of OH concentration profiles using double spatial heterodyne spectrometers. Atmos. Meas. Tech. 2020, 13, 6521–6542. [Google Scholar] [CrossRef]
- Sofieva, V.F.; Tamminen, J.; Kyrölä, E.; Mielonen, T.; Veefkind, P.; Hassler, B.; Bodeker, G.E. A novel tropopause-related climatology of ozone profile. Atmos. Chem. Phys. 2014, 14, 283–299. [Google Scholar] [CrossRef]
- Palancar, G.G.; Lefer, B.L.; Hall, S.R.; Shaw, W.J.; Corr, C.A.; Herndon, S.C.; Slusser, J.R.; Madronich, S. Effect of aerosols and NO2 concentration on ultraviolet actinic flux near Mexico City during MILAGRO: Measurements and model calculations. Atmos. Chem. Phys. 2013, 13, 1011–1022. [Google Scholar] [CrossRef]
- Zhao, S.; Hu, B.; Du, C.; Liu, H.; Li, M.; Liu, J.; Wang, Q.; Xia, X.; Wang, Y. Photolysis rate in the Beijing-Tianjin-Hebei region: Reconstruction and long-term trend. Atmos. Res. 2021, 256, 105568. [Google Scholar] [CrossRef]
Filenames | Characterization Parameters | Time Resolution |
---|---|---|
MERRA2.yyyymmdd.A1.res.nc4 | Various surface field | 1 h |
MERRA2.yyyymmdd.A3cld. res.nc4 | Cloud | 3 h |
MERRA2.yyyymmdd.A3dyn. res.nc4 | Dynamic field | 3 h |
MERRA2.yyyymmdd.A3mstC. res.nc4 | Precipitation and sublimation field | 3 h |
MERRA2.yyyymmdd.A3mstE. res.nc4 | Precipitation and convection field | 3 h |
MERRA2.yyyymmdd.I3. res.nc4 | Pressure, temperature, and humidity | 3 h |
Ozonesonde Station | Latitude, Longitude | Number of Profiles Used |
---|---|---|
Churchill | (53.30°N, 60.37°W) | 10 |
Legionowo | (52.41°N, 20.96°E) | 12 |
Hohenpeissenberg | (47.80°N, 11.07°E) | 12 |
Lindenberg | (52.21°N, 14.12°E) | 12 |
Madrid | (40.47°N, 3.58°W) | 12 |
Tateno | (36.06°N, 140.13°E) | 11 |
King’s park | (22.31°N, 114.17°E) | 12 |
Paramaribo | (5.81°N, 55.21°W) | 12 |
Broadmeadows | (37.69°S, 144.95°E) | 12 |
Ozone Lidar station | Latitude, Longitude | Number of Profiles Used |
Hohenpeissenberg | (47.80°N, 11.07°E) | 47 |
Observatoire de Haute Provence | (43.94°N, 5.71°E) | 46 |
Parameters | Setting |
---|---|
Radiative transfer model | SCIATRAN V 4.5.5 |
Spectral characteristics | Spectral resolution: 0.5 nm; Spectral sampling: 0.065 nm |
Spectral range | 270–329 nm |
Altitude grid | 15–60 km, 1 km steps |
Temperature and pressure | ECMWF ERA5 reanalysis data |
Cloud fraction | Offline total ozone S5P product |
Surface information | Offline total ozone S5P product |
Season | Differences between GEOS-Chem Inversion Results and Ozonesonde Measurements | Differences between TpO3 Inversion Results and Ozonesonde Measurements |
---|---|---|
Spring | −11.90–9.73% | −21.23–17.99% |
Summer | −12.97–14.98% | −25.57–20.81% |
Autumn | −10.11–14.18% | −26.93–25.46% |
Winter | −11.34–14.94% | −23.52–18.44% |
Season | Differences between GEOS-Chem Inversion Results and Ozone Lidar Measurements | Differences between TpO3 Inversion Results and Ozone Lidar Measurements |
---|---|---|
Spring | −19.92–10.21% | −36.46–16.12% |
Summer | −4.20–23.75% | −18.87–24.47% |
Autumn | −9.89–18.95% | −15.04–34.51% |
Winter | −24.07–15.00% | −33.42–23.99% |
Season | Maximum | Minimum | Means | Standard Deviation | ||||
---|---|---|---|---|---|---|---|---|
GEOS-Chem | TpO3 | GEOS-Chem | TpO3 | GEOS-Chem | TpO3 | GEOS-Chem | TpO3 | |
Spring | 28.52 | 34.04 | −20.83 | −28.11 | 0.18 | −2.42 | 15.25 | 21.03 |
Summer | 17.04 | 25.04 | −11.43 | −17.85 | −2.42 | −5.41 | 6.91 | 11.18 |
Autumn | 10.42 | 14.98 | −22.25 | −30.72 | −9.86 | −13.53 | 8.83 | 13.10 |
Winter | 26.10 | 31.21 | −24.03 | −31.04 | −7.47 | −10.38 | 10.90 | 14.26 |
Season | Maximum | Minimum | Means | Standard Deviation | ||||
---|---|---|---|---|---|---|---|---|
GEOS-Chem | TpO3 | GEOS-Chem | TpO3 | GEOS-Chem | TpO3 | GEOS-Chem | TpO3 | |
Spring | 18.89 | 23.76 | −10.69 | −21.35 | 2.25 | −1.18 | 7.46 | 12.22 |
Summer | 17.15 | 21.93 | −11.43 | −19.90 | −0.13 | −3.57 | 6.05 | 8.22 |
Autumn | 26.71 | 31.07 | −21.32 | −24.94 | 9.28 | 5.62 | 14.06 | 18.80 |
Winter | 10.27 | 11.23 | −28.37 | −34.82 | −1.64 | −5.41 | 9.35 | 10.17 |
Altitude (km) | (W/m2) | (W/m2) | |
---|---|---|---|
55 | 16.34 | 16.36 | 0.12 |
45 | 15.31 | 15.52 | 1.37 |
35 | 10.54 | 11.26 | 6.83 |
25 | 5.38 | 6.09 | 13.13 |
15 | 2.90 | 3.48 | 19.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, Y.; Wang, X.; Ye, H.; Shi, H.; Wu, S.; Li, C.; Sun, E. Ozone Profile Retrieval Algorithm Based on GEOS-Chem Model in the Middle and Upper Atmosphere. Remote Sens. 2024, 16, 1335. https://doi.org/10.3390/rs16081335
An Y, Wang X, Ye H, Shi H, Wu S, Li C, Sun E. Ozone Profile Retrieval Algorithm Based on GEOS-Chem Model in the Middle and Upper Atmosphere. Remote Sensing. 2024; 16(8):1335. https://doi.org/10.3390/rs16081335
Chicago/Turabian StyleAn, Yuan, Xianhua Wang, Hanhan Ye, Hailiang Shi, Shichao Wu, Chao Li, and Erchang Sun. 2024. "Ozone Profile Retrieval Algorithm Based on GEOS-Chem Model in the Middle and Upper Atmosphere" Remote Sensing 16, no. 8: 1335. https://doi.org/10.3390/rs16081335
APA StyleAn, Y., Wang, X., Ye, H., Shi, H., Wu, S., Li, C., & Sun, E. (2024). Ozone Profile Retrieval Algorithm Based on GEOS-Chem Model in the Middle and Upper Atmosphere. Remote Sensing, 16(8), 1335. https://doi.org/10.3390/rs16081335