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Abstract: Unmanned aerial vehicle (UAV) photogrammetry allows the generation of orthophoto
and digital surface model (DSM) rasters of terrain. However, DSMs of water bodies mapped using
this technique often reveal distortions in the water surface, thereby impeding the accurate sampling
of water surface elevation (WSE) from DSMs. This study investigates the capability of deep neural
networks to accommodate the aforementioned perturbations and effectively estimate WSE from
photogrammetric rasters. Convolutional neural networks (CNNs) were employed for this purpose.
Two regression approaches utilizing CNNs were explored: direct regression employing an encoder
and a solution based on prediction of the weight mask by an autoencoder architecture, subsequently
used to sample values from the photogrammetric DSM. The dataset employed in this study comprises
data collected from five case studies of small lowland streams in Poland and Denmark, consisting
of 322 DSM and orthophoto raster samples. A grid search was employed to identify the optimal
combination of encoder, mask generation architecture, and batch size among multiple candidates.
Solutions were evaluated using two cross-validation methods: stratified k-fold cross-validation,
where validation subsets maintained the same proportion of samples from all case studies, and
leave-one-case-out cross-validation, where the validation dataset originates entirely from a single
case study, and the training set consists of samples from other case studies. Depending on the case
study and the level of validation strictness, the proposed solution achieved a root mean square error
(RMSE) ranging between 2 cm and 16 cm. The proposed method outperforms methods based on the
straightforward sampling of photogrammetric DSM, achieving, on average, an 84% lower RMSE for
stratified cross-validation and a 62% lower RMSE for all-in-case-out cross-validation. By utilizing
data from other research, the proposed solution was compared on the same case study with other
UAV-based methods. For that benchmark case study, the proposed solution achieved an RMSE score
of 5.9 cm for all-in-case-out cross-validation and 3.5 cm for stratified cross-validation, which is close
to the result achieved by the radar-based method (RMSE of 3 cm), which is considered the most
accurate method available. The proposed solution is characterized by a high degree of explainability
and generalization.

Keywords: UAV; machine learning; deep learning; water surface elevation; photogrammetry

1. Introduction

The management of water resources constitutes one of central issues of the sustainable
development for the environment and human health. The responsible use of water re-
sources relies on understanding the complex and interrelated processes that affect the quan-
tity and quality of water available for human needs, economic activities, and ecosystems.
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Global demand for freshwater has continued to increase at a rate of 1% per year since 1980,
driven by population growth and socioeconomic changes. Simultaneously, the increase in
evaporation caused by rising temperatures has led to a decrease in streamflow volumes in
many areas of the world, which already suffer from water scarcity problems [1,2]. Achiev-
ing socioeconomic and environmental sustainability under such challenging conditions
will require the application of innovative technologies, capable of measuring hydrological
characteristics at a range of spatial and temporal scales [3].

Traditional surface water management practices are primarily based on data collected
from networks of in situ hydrometric gauges. However, they offer limited insights, suit-
able predominantly for scenarios where the flow is constrained by a well-defined channel
boundary. Point measurements do not provide sufficient spatial resolution to fully charac-
terize complex spatial intricacies of surface water extent, like floodplain flows and riparian
wetlands [4]. Moreover, access to river banks is often difficult or even dangerous. Spatially
distributed water surface elevation (WSE) is used for the validation and calibration of
hydrologic, hydraulic, or hydrodynamic models to make hydrological forecasts, includ-
ing predicting dangerous events such as floods and droughts [5–10]. Another important
aspect is the decline in existing measurement networks observed in many regions the
world [11,12]. The problem is particularly evident in non-industrialized areas, where the
density of hydrological measurement networks is many times lower than in developed
areas [4].

Remote sensing methods are considered a solution to cover data gaps specific to point
measurement networks [13]. For decades, a leading example of remote sensing has been
measurements made from satellites [14,15]. Radar altimetry techniques, as demonstrated by
measurements from the Envisat [16] and Sentinel 3 [17] satellites, were employed to measure
the WSE of rivers. However, due to spatial resolution limitations, these measurements are
primarily applicable to monitoring large rivers with a width exceeding 100 m. The root
mean square error (RMSE) scores of these solutions range widely, from 2.9 cm to 69 cm,
depending on the width of the examined river [18,19]. In addition to the general purpose
satellite missions mentioned above, more recently a new satellite mission called Surface
Water and Ocean Topography (SWOT) has been launched. This mission is specifically
designed for altimetry measurements of both oceanic and terrestrial water bodies. It
is anticipated that it will enable measurements of rivers wider than 100 m with a WSE
measurement accuracy of 10 cm [20,21].

Small surface streams of the first and second order (according to Strahler’s classifica-
tion [22]) constitute 70–80% of the length of all rivers in the world and play a significant
role in hydrological systems and provide an ecosystem for living organisms [23]. Satellite
measurements with limited spatial resolution lack the capability to offer useful WSE mea-
surements for small streams. In this regard, measurement techniques based on unmanned
aerial vehicles (UAVs) are promising in many key aspects, as they provide observations in
high spatial and temporal resolution, their deployment is simple and fast, and can be used
in inaccessible locations [24].

To date, remote sensing methods for measuring WSE in small streams mainly rely
on the use of UAVs with various types of sensors attached. A clear comparison in this
matter was made by Bandini et al. [25] where UAV based methods using radar, lidar and
photogrammetry were compared on the same case study. As a result, the method using
radar with an RMSE of 3 cm proved to be far superior to methods based on photogram-
metry and lidar with an RMSEs of 16 cm and 22 cm, respectively. In addition to its high
accuracy, the advantage of a radar-based solution is the short acquisition and processing
time. Nonetheless, this approach necessitates non-standard UAV instrumentation and the
requisite knowledge for its configuration. A radar-based solution requires the use of a
precise differential localization system such as real-time kinematic (RTK) or post-processing
kinematic (PPK) requiring a reference base station operating nearby.

In certain scenarios, photogrammetry presents itself as a preferable alternative to
radar. Photogrammetry utilizes a camera as its sensor, a component readily available on
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the majority of commercially accessible UAVs. Notably, unlike radar, photogrammetry
does not necessitate the use of a precise differential positioning system. Georeferencing in
photogrammetry can be achieved through pre-established ground control points, eliminat-
ing the ongoing need for a base station setup. Consequently, the absence of the necessity
to construct and configure a radar sensor and establish an RTK reference station renders
photogrammetry particularly advantageous in scenarios requiring cyclic measurements of
the spatial distribution of the WSE. Once ground control points are established, they can be
utilized repeatedly, enhancing the efficiency and effectiveness of the monitoring process.

Photogrammetric structure-from-motion (SFM) algorithms are able to generate or-
thophotos and digital surface models (DSMs) of terrain from multiple aerial photographs.
Photogrammetric DSMs are precise in determining the elevation of solid surfaces to within
a few centimeters [26,27], but water surfaces are usually falsely stated. This is related to
the fact that the general principle of SFM algorithms is based on the automatic search
for distinguishable and static terrain points that appear in several images showing these
points from different perspectives. The surface of water lacks such points as it is uni-
form, transparent, and in motion. The transparency of the water makes the surface level
of the stream depicted on the photogrammetric DSM lower than in reality. The stream
bottom is represented by photogrammetric DSMs for clear and shallow streams [28]. Pho-
togrammetric DSMs for opaque water bodies are affected by artifacts brought on by lack
of distinguishable key points [29]. The above factors make the measurement of WSE by
direct DSM sampling yield results with high uncertainty. Some studies report that it is
possible to read the WSE from a photogrammetric DSM near streambank where the stream
is shallow and there are no undesirable effects associated with light penetration below the
water surface [29–31]. However, this method gives satisfactory results only for unvegetated
and smoothly sloping streambanks where the boundary line between the water and the
land is easy to define [25]. For this reason, this method is not suitable for many streams
that do not meet these conditions.

The exponentially growing interest in [32] and the promising results of machine
learning algorithms in various fields offer prospects for the application of this technology
for estimation of stream WSE. The topic remains insufficiently explored. There are only
a few loosely related studies on the subject. Convolutional neural networks (CNNs)
were used to estimate water surface elevation in laboratory conditions using high-speed
camera recordings of water surface waves [33]. In another study, several machine learning
approaches were tested to extract flood water depth based on synthetic aperture radar
and DSM data [34]. In the context of using photogrammetric DSM to estimate river water
levels, artificial intelligence appears to be a promising tool. Thanks to its flexibility, it can
potentially take into account a number of the adverse factors mentioned above and make a
more accurate estimate of the WSE compared to direct DSM sampling.

The objective of this study is to assess the capability of CNNs in handling the distur-
bances in water areas present in photogrammetric DSMs of small streams, with the aim of
accurately estimating the WSE.

2. Materials and Methods
2.1. Case Study Site

Photogrammetric data and WSE observations were obtained for Kocinka—a small
lowland stream (length 40 km, catchment area 260 km2) located in the Odra River basin in
southern Poland. Data were collected on two stream stretches with similar hydromorpho-
logical characteristics and different water transparency:

• An approximately 700 m stretch of the Kocinka stream located near the village of
Grodzisko (50.8744◦N, 18.9711◦E). This stretch has a water surface width of about
2 m. There are no trees in close proximity to the stream. The streambed is made up
of dark silt and the water is opaque. The banks and the streambed are overgrown
with rushes that protrude above the water surface. The banks are steeply sloping at
angles of about 50◦ to 90◦ relative to the water surface. There are marshes nearby, with
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stream water flowing into them in places. Data from this stretch were collected on the
following days:

# 19 December 2020. Total cloud cover was present during the measurements.
Due to the winter season, the foliage was reduced. Samples obtained from this
survey are labeled with the identifier “GRO20”.

# 13 July 2021. There was no cloud cover during the measurements. The rushes
were high and the water surface was densely covered with Lemna plants.
Samples obtained from this survey are labeled with the identifier “GRO21”.

• An approximately 700 m stretch of the Kocinka stream located near the village of
Rybna (50.9376◦N, 19.1143◦E). This stretch has a water surface width of about 3 m and
is overhung by sparse deciduous trees. There is a pale, sandy streambed that is visible
through the clear water. There are no rushes that emerge from the streambed. The
banks slope at angles of about 20◦ to 90◦ relative to the water surface. Data from this
stretch were collected on the following days:

# 19 December 2020. Total cloud cover was present during the measurements.
Due to the winter season, the trees were devoid of leaves and the grasses
were reduced. Samples obtained from this survey are labeled with the identi-
fier “RYB20”.

# 13 July 2021. There was no cloud cover during the measurements. The stream-
bank grasses were high. With good lighting and exceptionally clear water, the
streambed was clearly visible through the water. The samples obtained from
this survey are labeled with the identifier “RYB21”.

The orthophotos of the Grodzisko and Rybna case studies are shown in Figure 1. The
photo of part of the Rybna case study is shown in Figure 2.
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Furthermore, the data set was supplemented with data from surveys conducted by
Bandini et al. [35] over approximately 2.3 km stretch of the stream Åmose Å (Denmark)
on 21 November 2018. The stream is channelized and well maintained. The banks are
overgrown with low grass and the neighboring few trees are devoid of leaves due to winter.
Further details about this case study can be found in a related study, where current state-of-
the-art methods to measure stream WSE with UAVs using radar, lidar, and photogrammetry
were tested [25]. The supplemented data is therefore a comparative benchmark to evaluate
the proposed method against existing ones. The samples obtained from this survey are
labeled in our data set with the identifier “AMO18”.

2.2. Field Surveys

During the survey campaigns, photogrammetric measurements were conducted over
the stream area. Aerial photos were taken from a DJI S900 (DJI, Shenzhen, China) UAV
using a Sony ILCE a6000 (Sony, Bangkok, Thailand) camera with a Voigtlander SUPER
WIDE HELIAR VM 15 mm f/4.5 (Voigtlander, Nagano, Japan) lens. The flight altitude
was approximately 77 m above ground level, resulting in a 20 mm terrain pixel. The front
overlap was 80%, and side overlap was 60%.

During the flights, the camera was oriented to nadir. Some studies propose conducting
multiple flights at various altitudes and camera position angles to effectively capture areas
obscured by inclined vegetation and steep terrain [25]. However, in this study, the adoption
of such techniques was omitted, considering time efficiency and the recognition that for the
objectives of the deep learning solution employed, the three-dimensional photogrammetric
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model is ultimately transformed into its two-dimensional representation in the form of an
orthographic DSM raster, effectively presenting view solely from the nadir perspective.

In addition to drone flights, ground control points (GCPs) were established homo-
geneously in the area of interest using a Leica GS 16 (Leica Geosystems AG, Heerbrugg,
Switzerland) real-time network (RTN) global navigation satellite system (GNSS) receiver.
Ground truth WSE point measurements were also made using an RTN GNSS receiver. They
were carried out along the stream approximately every 10–20 m on both banks.

2.3. Data Processing

Orthophoto and DSM raster files were generated using Agisoft Metashape (v1.5.0)
photogrammetric software. GCPs were used to embed rasters in a geographic reference
system of latitude, longitude, and elevation. Further data processing was performed using
ArcGIS ArcMap (v10.8.1) software. Each of the obtained rasters had a width and height of
several tens of thousands of pixels and represented a part of a basin area exceeding 30 ha.
For use in the machine learning algorithm, samples representing 10 m × 10 m areas of
the terrain were manually extracted from large-scale orthophoto and DSM rasters. Each
sample contains areas of water and adjacent land. The samples do not overlap.

The point measurements of ground truth WSE were interpolated using polynomial
regression as a function of chainage along the stream centerline. Where a beaver dam
caused an abrupt change in the WSE, regressions were made separately for the sections
upstream and downstream of a dam. The WSE values interpolated by regression analysis
were assigned to the raster samples according to the geospatial location (an average WSE
from a stream centerline segment located within the sample area was assigned to the sample
as ground truth WSE). The standard error of estimate metric [36] was used to determine
the accuracy of ground truth data. It was calculated using the formula:

Se =

√
1

n − 2

n

∑
i=1

(
WSEi − ŴSEi

)2
(1)

where n—number of WSE point measurements, WSEi—measured WSE value, ŴSEi—WSE
from regression analysis.

The results of the standard error of estimate examination are included in Table 1,
revealing that the ground truth WSE error extends up to 2 cm.

Table 1. Number of WSE point measurements, standard error of estimate for ground truth WSE, and
number of extracted data set samples for each case study.

Subset ID Number of WSE
Point Measurements

Standard Error of
Estimate for Ground

Truth WSE (m)

Number of Extracted
Data Set Samples

GRO21 36 0.012 64
RYB21 52 0.013 55
GRO20 84 0.020 72
RYB20 76 0.016 57

AMO18 7235 0.020 74

Figure 3 shows a data set preparation workflow that includes both fieldwork and
data processing.
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2.4. Machine Learning Data Set Structure

The machine learning data set comprises 322 samples. For details on the number of
samples in each subset, see Table 1. Every sample includes the data described below.

• Photogrammetric orthophoto. A square crop of an orthophoto representing 10 m× 10 m
area, containing the water body of a stream and adjacent land. A grayscale image is
represented as a 256 × 256 array of integer values from 0 to 255 (1-channel image of
256 × 256 pixels).

• Photogrammetric DSM. A square crop of the DSM representing the same area as
the orthophoto sample described above. Stored as 256 × 256 array of floating-point
numbers containing elevations of pixels expressed in m above MSL (height above
mean sea level).

• Water Surface Elevation. Ground truth WSE of the water body segment included
in the orthophoto and DSM sample. Represented as a single floating-point value
expressed in m above MSL.

• Metadata. The following additional information is stored for each sample:

# DSM statistics. Mean, standard deviation, minimum, and maximum values
of the photogrammetric DSM sample array, which can be used for standard-
ization or normalization. Represented as floating point values expressed in m
above MSL.

# Centroid latitude and longitude. World Geodetic System 8’4 (WGS-84) geo-
graphical coordinates of the centroid of the shape of the sample area. Repre-
sented as floating-point numbers.

# Chainage. Sample position expressed using a chainage relative for a given
stream section.

# Subset ID. Text value that identifies the survey subset to which the sample
belongs. Available values: “GRO21”, “RYB21”, “GRO20”, “RYB20, “AMO18”.
For additional information about case studies, see Section 2.1.
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2.5. DSM-WSE Relationship

Figure 4 shows example dataset samples with marked areas where the DSM equals the
actual WSE ± 5 cm. It can be seen that the patterns are not straightforward and in places
do not meet the rule saying that the water level read from the DSM at the streambank
corresponds to the WSE.
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2.6. Deep Learning Framework

In this study, a deep learning (DL) convolutional neural network (CNN) is utilized
to estimate a WSE from a DSM and an orthophoto. Two approaches are tested: direct
regression of WSE using an encoder and a solution based on the weighted average of the
DSM using a weight mask predicted by an autoencoder network. Note that the proposed
approaches will be referred to hereafter as “direct regression” and “mask averaging”.
Figures 5 and 6 depict schematic representations of the proposed approaches. A third
framework, which combines elements from the two mentioned ones, was also tested.
However, it did not yield significantly improved results. Further details can be found in
Appendix B.
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All CNN models used in this study were configured to incorporate two input channels
(DSM and grayscale orthophoto). In all approaches, training is conducted using mean
squared error (MSE) loss. This implies that in the mask-averaging approach, no ground
truth masks were employed for training. Instead, the network autonomously learns to
determine the optimal weight mask through the optimization of the MSE loss. CNN
architectures originally designed for semantic segmentation were employed to generate
weight masks. They were configured to generate single-channel predictions. By employing
the sigmoid activation function at the output of the model, the model generates weight
masks with values ranging between 0 and 1. All of the autoencoder architectures used in
this study were sourced from the Segmentation Models Pytorch library [37].
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All the training was performed with a learning rate of 10−5 using the Adam optimizer.
Training was undertaken until the RMSE on the validation subset showed no further
reduction for the next 20 learning epochs. Given that batch size has a notable impact on
accuracy, various values of it were tested during the exploration for the optimal model
during grid search (refer to Section 2.10).

2.7. Standardization

As the DSM and orthophoto arrays have values from different ranges and distributions,
they are subjected to feature scaling before they are fed into the CNN model in order to
ensure proper convergence of the gradient iterative algorithm during training [38]. The
DSMs were standardized according to the equation:

DSM′ =
DSM − DSM

2σ
(2)

where:

DSM′—standardized sample DSM two-dimensional (2D) array with values centered
around 0;
DSM—raw sample DSM 2D array with values expressed in m MSL;
DSM—mean DSM value of a sample;
σ = 1.197 [m]—standard deviation of DSM arrays pixel values for the entire data set.

This method of standardization has two advantages. Firstly, by subtracting the average
value of a sample, standardized DSMs are always centered around zero, so the algorithm is
insensitive to absolute altitude differences between case studies. Actual WSE relative to
mean sea level can be recovered by inverse standardization. Secondly, dividing all samples
by the same σ value of the entire data set ensures that all standardized samples are scaled
equally. It was experimentally found during preliminary model tests that multiplying the
denominator by 2 results in better model accuracy compared to standardization that does
not include this factor.

Orthophotos were standardized using ImageNet [39] data set mean and standard
deviation according to the equation:

ORT′ =
ORT − µ

σ
(3)

where:

ORT′—standardized 1-channel orthophoto gray-scale image (2D array) with values cen-
tered around 0;
ORT—1-channel orthophoto gray-scale image (2D array) represented with values from the
range [0, 1];
µ = 0.449—mean value of ImageNet data set red, green and blue channel values means
(0.485, 0.456, 0.406);
σ = 0.226—mean value of ImageNet data set red, green, and blue channel values standard
deviations (0.229, 0.224, 0.225).

2.8. Augmentation

In order to increase the size of the training data set and therefore improve prediction
generalization, each sample array used to train the model was subjected to the following
augmentation operations: (i) rotation of 0◦, 90◦, 180◦, or 270◦ and (ii) no inversion, inversion
in the x-axis, inversion in the y-axis, or inversion both in the x-axis and the y-axis. This
gives a total of 16 permutations, which makes the training data set 16 times larger.
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2.9. Cross Validation

Two variants of the k-fold cross-validation method were employed: one with stratified
folds of mixed samples from each case study and another with all-in-case-out folds of
isolated samples for each case study.

Stratified folds were generated by selecting for validation samples at intervals of every
fifth element from the entire dataset. A total of 5 folds were created. The validation subset
in each fold contained a comparable number of samples representing each of the case
studies. The illustration in Figure 7 highlights the selection of validation subsets for each of
the 5 folds.
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In the all-in-case-out variant of k-fold cross-validation, 5 folds were also created.
However, in this scenario, a validation subset for each fold contained samples exclusively
from one case study, while the remaining samples from the other 4 case studies were utilized
for training. This method of cross-validation assesses the model’s ability to generalize, i.e.,
its capacity to predict from data outside the training data distribution.

2.10. Grid Search

The search for the best configuration of the proposed solutions was carried out using
grid search in which all possible combinations of proposed parameters were tested. Propo-
sitions of configurations depended on the approach variant. The combinations included
different types of encoders, architectures, and batch sizes. The architectures tested were:
U-Net [40], MA-Net [41] and PSP-Net [42]. Encoders tested were various depths of the
VGG [43] and ResNet [44] encoders. Details on configurations used for each approach are
presented in Table 2.

Table 2. Propositions of architecture, encoder, and batch size used in grid search.

Approach Architectures Encoder Batch Size

Direct regression - ResNet18, ResNet50, VGG11,
VGG13, VGG16, VGG19 1, 2, 4, 8, 16

Mask averaging U-Net, MA-Net,
PSP-Net VGG13, VGG16, VGG19 1, 2, 4, 8, 16

2.11. Centerline and Streambank Sampling

The data acquired in this study allow for the use of straightforward methods for deter-
mining WSE through sampling from photogrammetric DSM along the stream centerline
and at the streambank [25]. These readings will be used for baseline comparison with the
proposed method. The polylines used for sampling were determined manually, without
employing any algorithm. Sampling was performed with care, especially in the water-edge
method, where attention was given to ensuring that samples were consistently taken from
the water area, albeit possibly close to the streambank.
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3. Results
3.1. Grid Search Results

During the grid search of optimal parameters, multiple trainings were performed,
taking into account various parameters and validation subsets. Detailed statistics of the
grid search results are presented in Appendix A. The set of parameters (batch size, encoder,
architecture) for which the RMSE achieved on the validation set averaged over all folds
(both with stratified and leave-one-case-out cross-validation) was the lowest was chosen as
the best configuration. Parameters combinations that achieved the best accuracy as well as
their validation RMSEs averaged over all cross-validation folds are shown in Table 3.

Table 3. Best parameters configurations and achieved validation RMSEs averaged over all cross-
validation folds.

Direct Mask

encoder VGG16 VGG19
architecture - PSPNet
batch size 1 4

Mean RMSE 0.170 0.077

3.2. Accuracy Metrics

Accuracy metrics were calculated for all cross-validation methods, case studies, and
approach variants. The root mean square error (RMSE), mean absolute error (MAE), and
mean bias error (MBE) metrics were used. As a comparison with existing methods using
photogrammetric DSM to read WSE in a small stream, the same set of metrics was calculated
for values sampled from DSM near the streambank and at the centerline. The results are
shown in Tables 4–6.

Table 4. RMSEs (m) achieved by proposed direct-regression and mask-averaging approaches and
by straightforward sampling of DSM over centerline and near streambank. Both stratified and
all-in-case-out cross-validation techniques results are given. Provided mean and sample standard
deviation are calculated over all case studies.

Cross-Validation Stratified All-In-Case-Out -

Method Direct Mask Direct Mask Centerline Wateredge

AMO18 0.099 0.035 0.170 0.059 0.219 0.308

GRO20 0.076 0.021 0.124 0.072 0.185 0.228

GRO21 0.107 0.058 0.243 0.117 0.27 0.277

RYB20 0.095 0.048 0.176 0.156 0.449 0.259

RYB21 0.274 0.063 0.337 0.142 0.282 0.404

Mean 0.130 0.045 0.210 0.109 0.281 0.295

Sample St. Dev. 0.081 0.017 0.083 0.043 0.102 0.067

Table 5. MAEs (m) achieved by proposed-direct regression and mask-averaging approaches and
by straightforward sampling of DSM over centerline and near streambank. Both stratified and
all-in-case-out cross-validation techniques results are given. Provided mean and sample standard
deviation are calculated over all case studies.

Cross-Validation Stratified All-In-Case-Out -

Method Direct Mask Direct Mask Centerline Wateredge

AMO18 0.078 0.026 0.121 0.045 0.179 0.176

GRO20 0.059 0.015 0.091 0.06 0.139 0.104

GRO21 0.082 0.028 0.195 0.072 0.117 0.138

RYB20 0.074 0.037 0.127 0.111 0.373 0.157

RYB21 0.169 0.045 0.154 0.096 0.249 0.276
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Table 5. Cont.

Cross-Validation Stratified All-In-Case-Out -

Method Direct Mask Direct Mask Centerline Wateredge

Mean 0.092 0.030 0.138 0.077 0.211 0.17

Sample St. Dev. 0.044 0.011 0.039 0.027 0.103 0.065

Table 6. MBEs (m) achieved by proposed direct-regression and mask-averaging approaches and
by straightforward sampling of DSM over centerline and near streambank. Both stratified and
all-in-case-out cross-validation techniques results are given. Provided mean and sample standard
deviation are calculated over all case studies.

Cross-Validation Stratified All-In-Case-Out -

Method Direct Mask Direct Mask Centerline Wateredge

AMO18 0.008 −0.007 −0.084 −0.015 −0.149 0.161

GRO20 −0.024 −0.007 −0.076 −0.057 −0.071 0.042

GRO21 0.004 −0.018 0.069 −0.064 0.058 0.116

RYB20 −0.013 0.002 0.042 0.059 −0.277 0.036

RYB21 −0.076 0.006 −0.034 −0.004 −0.225 0.102

Mean −0.020 −0.005 −0.017 −0.016 −0.133 0.091

Sample St. Dev. 0.034 0.009 0.069 0.049 0.132 0.053

3.3. Plots against Chainage

Figures 8 and 9 show WSE predictions as a function of chainage made on validation
sets for both stratified and all-in-case-out cross-validation. Predictions are compared with
actual WSEs and those obtained from sampling the DSM raster near streambank and at the
stream centerline.
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(orange points), and DSM sampled at stream centerline (blue points). Columns denote different
approaches and rows correspond to distinct case studies.
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Figure 9. Predictions of validation subsets from all-in-case-out cross-validation plotted against
chainage (dark-green points). Compared with ground truth WSE (black line), DSM sampled near
streambank (orange points), and DSM sampled at stream centerline (blue points). Columns denote
different approaches and rows correspond to distinct case studies.

Figure 10 shows the residuals (the difference between ground truth and predicted
WSE). Residuals are shown as a function of chainage for each case study and method
separately. Residuals obtained both during stratified and all-in-case-out cross-validation
are included.
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Figure 10. Residuals (ground truth WSE minus predicted WSE) obtained during stratified and all-in-
case-out cross-validations for each case study (rows) and method (columns) plotted against chainage.

3.4. Weight Masks Visualization

In mask averaging solution predicted weight mask is used to sample WSE value from
DSM. In this approach no ground truth masks were used during training and the network
autonomously learned to determine the optimal weight mask through the optimization
of the MSE loss. It is possible to visualize the mask used to calculate the WSE in mask
averaging solution, which contributes enhanced value to the solution, particularly with
respect to its explainability.
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To depict the nature of the samples that were successfully addressed by mask averag-
ing solution, three samples characterized by the smallest residuals are showcased for each
case study. The orthophoto and DSM samples, alongside weight masks predicted in mask
averaging solution, are graphically represented. The results are shown in Figures 11–15.
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Figure 11. Orthophoto, DSM, and weight masks obtained in stratified and all-in-case-out cross val-
idations for the three best performing samples from the AMO18 case study. 𝑥 , 𝑒௦௧௧,  and 𝑒 
correspond to chainage and residuals obtained using stratified and all-in-case-out cross-validation, 
respectively. Areas where the DSM equals the actual WSE ± 5 cm are marked in red on the ortho-
photo and DSM. (A–C) samples ordered from most to least performing. 

  

Figure 11. Orthophoto, DSM, and weight masks obtained in stratified and all-in-case-out cross
validations for the three best performing samples from the AMO18 case study. x, estrat, and eaico

correspond to chainage and residuals obtained using stratified and all-in-case-out cross-validation,
respectively. Areas where the DSM equals the actual WSE ± 5 cm are marked in red on the orthophoto
and DSM. (A–C) samples ordered from most to least performing.

To observe the factors contributing to the reduced accuracy of the proposed solution
in specific samples, further analyses were undertaken. For each case study, graphical
representations akin to Figures 11–15 were generated, featuring the orthophoto and DSM
samples, along with the weight masks predicted in the mask-averaging solution. However,
in this iteration, the visualizations concentrated on the three samples manifesting the largest
residuals for each case study. The outcomes of these analyses are depicted in Figures 16–20.
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Figure 12. Orthophoto, DSM, and masks obtained in stratified and all-in-case-out cross validations
for the three best performing samples from the GRO20 case study. x, estrat, and eaico correspond to
chainage and residuals obtained using stratified and all-in-case-out cross-validation, respectively.
Areas where the DSM equals the actual WSE ± 5 cm are marked in red on the orthophoto and DSM.
(A–C) samples ordered from most to least performing.
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Figure 13. Orthophoto, DSM, and masks obtained in stratified and all-in-case-out cross validations
for the three best performing samples from the GRO21 case study. x, estrat, and eaico correspond to
chainage and residuals obtained using stratified and all-in-case-out cross-validation, respectively.
Areas where the DSM equals the actual WSE ± 5 cm are marked in red on the orthophoto and DSM.
(A–C) samples ordered from most to least performing.
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Figure 14. Orthophoto, DSM, and masks obtained in stratified and all-in-case-out cross validations
for the three best performing samples from the RYB20 case study. x, estrat and eaico correspond to
chainage and residuals obtained using stratified and all-in-case-out cross-validation, respectively.
Areas where the DSM equals the actual WSE ± 5 cm are marked in red on the orthophoto and DSM.
(A–C) samples ordered from most to least performing.
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Figure 15. Orthophoto, DSM, and masks obtained in stratified and all-in-case-out cross validations for
the three best performing samples from the RYB21 case study. estrat and eaico correspond to chainage
and residuals obtained using stratified and all-in-case-out cross-validation, respectively. Areas where
the DSM equals the actual WSE ± 5 cm are marked in red on the orthophoto and DSM. (A–C) samples
ordered from most to least performing.
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Figure 16. Orthophoto, DSM, and masks obtained in stratified and all-in-case-out cross validations
for the three worst performing samples from the AMO18 case study. x, estrat, and eaico correspond
to chainage and residuals obtained using stratified and all-in-case-out cross-validation, respectively.
Areas where the DSM equals the actual WSE ± 5 cm are marked in red on the orthophoto and DSM.
(A–C) samples ordered from least to most performing.
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Figure 18. Orthophoto, DSM, and masks obtained in stratified and all-in-case-out cross validations 
for the three worst performing samples from the GRO21 case study. 𝑥, 𝑒௦௧௧, and 𝑒 correspond 
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Figure 17. Orthophoto, DSM, and masks obtained in stratified and all-in-case-out cross validations
for the three worst performing samples from the GRO20 case study. x, estrat, and eaico correspond
to chainage and residuals obtained using stratified and all-in-case-out cross-validation, respectively.
Areas where the DSM equals the actual WSE ± 5 cm are marked in red on the orthophoto and DSM.
(A–C) samples ordered from least to most performing.
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Figure 18. Orthophoto, DSM, and masks obtained in stratified and all-in-case-out cross validations
for the three worst performing samples from the GRO21 case study. x, estrat, and eaico correspond
to chainage and residuals obtained using stratified and all-in-case-out cross-validation, respectively.
Areas where the DSM equals the actual WSE ± 5 cm are marked in red color on the orthophoto and
DSM. (A–C) samples ordered from least to most performing.
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Figure 19. Orthophoto, DSM, and masks obtained in stratified and all-in-case-out cross validations
for the three worst performing samples from the RYB20 case study. x, estrat, and eaico correspond to
chainage and residuals obtained using stratified and all-in-case-out cross-validation, respectively.
Areas where the DSM equals the actual WSE ± 5 cm are marked in red on the orthophoto and DSM.
(A–C) samples ordered from least to most performing.
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Figure 20. Orthophoto, DSM, and masks obtained in stratified and all-in-case-out cross validations
for the three worst performing samples from the RYB21 case study. x, estrat, and eaico correspond to
chainage and residuals obtained using stratified and all-in-case-out cross-validation, respectively.
Areas where the DSM equals the actual WSE ± 5 cm are marked in red on the orthophoto and DSM.
(A–C) samples ordered from least to most performing.

4. Discussion
4.1. Discussion of Straightforward Sampling of DSM

In comparing methods based on straightforward DSM sampling along the centerline
and near streambank, the RMSE obtained by the centerline method is better than that
obtained by the streambank method (Table 4). Conversely, regarding MAE, the situation
is reversed: the MAE obtained by the centerline method is worse than that obtained by
the streambank method (Table 5). As RMSE, in contrast to MAE, emphasizes outliers, it
suggests that the streambank method is more likely to exhibit measurement outliers. This
could be attributed to sampling DSM values near the bank vegetation that can influence
the measurement. This aligns with the introduction’s assertion that the streambank method
is suitable only for gently sloping banks without vegetation.

Both the streambank and centerline methods exhibit bias, as indicated by the MBE
metric (Table 6). The centerline method shows an average negative bias of approximately
13 cm, implying an underestimation of water levels compared to the actual levels. Con-
versely, the streambank method demonstrates an average positive bias of about 9 cm,
indicating an overestimation of water levels. The centerline method’s underestimation
might be attributed to light penetrating below the water table, causing the DSM to register
a lower level than the actual water table. The overestimation in the streambank method
further supports the impact of steep streambanks and tall plants near the points where
water levels were sampled.

4.2. Impact of Cross-Validation Method

The evaluation of the proposed methods involves the utilization of two distinct cross-
validation approaches, each serving a specific purpose. Stratified cross-validation provides
insights into the model’s capacity to learn from data across all available case studies
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and apply this acquired knowledge to predict samples not included in the training set
but originating from the same case studies used during training. In contrast, the all-in-
case-out cross-validation method offers a comprehensive understanding of the model’s
generalization capabilities. In this approach, the samples used for training are entirely
sourced from different case studies than those used for validation. For instance, in all-
in-case-out cross-validation, predictions regarding the Danish Åmose Å case study were
made using a model trained exclusively on data from Polish case studies. Accuracy metrics
obtained through stratified cross-validation are better than those acquired via the all-in-
case-out cross-validation method. This outcome is not surprising considering the nature of
each cross-validation method.

4.3. Comparison between Proposed Deep Learning Approaches

The comparison between the approaches proposed in this study, the direct-regression
and mask-averaging methods, reveals that the latter decisively outperforms in all cross-
validation methods and across all case studies in terms of the RMSE and MAE metrics
(Tables 4 and 5). Regarding the MBE metric, both methods exhibit a low average bias,
up to 2 cm, and neither mask averaging nor direct regression demonstrates a significant
superiority (Table 6).

The direct-regression and mask-averaging methods differ significantly in terms of the
general concept and architectures used. These differences have implications in terms of
the network’s propensity for overtraining. In the mask-averaging solution, a mask that
considers the unique stream shape is predicted for each sample. This compels the network
to treat each sample individually and forces it to sample water levels from the DSM instead
of guessing WSE values remembered by the network during training. This does not apply
to the direct-regression solution, as it is not known to what extent the solution samples
values from the DSM and to what extent it guesses the WSE based on other features.

Given the significantly better accuracy of the mask-averaging solution over direct regres-
sion, and to enhance the clarity of the subsequent analysis, only the mask-averaging method
will be compared with the existing methods in the remainder of this discussion section.

4.4. Explainability in the Mask-Averaging Approach

A significant advantage of the mask-averaging solution over direct regression lies in
its explainability, as the weight mask used for sampling WSE from DSM can be previewed
in this method. Visible in Figures 11–15, the masks generated have high weight values for
areas near the streambanks. This supports the claim that the DSM represents the value of
the WSE near the edges. Nevertheless, the mask-averaging method performs significantly
better than manually sampling DSM along the streambank. Several factors contribute to
this. First, the generated masks do not have high weights along the entire streambank,
presumably ignoring DSM artifacts that could generate outliers. This is particularly evident
in the weights generated in stratified cross-validation, where the network had a chance
to specialize in the validated case study. In addition, the weights averaging solution does
not treat both sides of the river equally. For some cases, we see that the streams bank on
the one side of the sample is more favored by the weight mask. The third aspect is that in
the mask-averaging method, the samples collected and averaged from wide strips of DSM
pixels. In manual sampling, DSM values were collected along a single line and no averaging
was performed. Another aspect is that the weighting masks in the mask-averaging method
have floating-point values ranging from 0 to 1 so that the network could give different
levels of importance to the DSM pixels. All the mentioned features of the mask-averaging
method can be encapsulated in the statement that the method is flexible and adapts to the
characteristics of a given sample.

Based on an analysis of Figures 16–20, one can find reasons for the poor performance
of the solution for some samples. The first is the presence of dense vegetation covering
the water. Its effect is mainly seen in Figure 18 for case study GRO21. The second reason
is the presence of trees in the sample area. Many of the samples for which a poor result
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was obtained contain trees, as can be seen particularly in Figures 19 and 20 for the case
studies RYB20 and RYB21. It is essential to acknowledge, however, that the outcomes
derived from the samples depicted in Figures 16–20 represent uncommon outliers, and the
provided explanations are not universally applicable. Numerous samples exhibit similar
characteristics, such as water surfaces obscured by vegetation and the presence of tree
crowns, yet the proposed solution has proficiently determined the WSE for these instances.

4.5. Comparison of Deep Learning Approach with Direct Sampling of DSM

Regardless of the cross-validation method employed, the proposed method consis-
tently outperforms the straightforward sampling of WSE from DSMs at the centerline or
streambank (Tables 4–6). This applies to all RMSE, MAE, and MBE metrics. Thus, the
proposed method unequivocally enhances the potential of using photogrammetric DSMs
to determine WSE in small streams.

4.6. Comparison with Other Methods

Table 7 compares the results obtained in this study with those of other UAV-based
methods reported by Bandini et al. [25]. All the results presented for comparison use data
from the same case study of the Åmose Å stream in Denmark, collected on 21 November
2018. In this comparison, similarly to the results described in Section 4.5, the proposed
method significantly outperforms methods using photogrammetry. The proposed method
also outperforms the lidar-based method. Compared to the method using radar, the
proposed method, validated with the more rigorous all-in-case-out method, is inferior.
However, when we consider results from the stratified cross-validation, the proposed
method achieves similar results to the radar measurement, with a slightly worse RMSE but
surpassing it in the MAE and MBE metrics.

Table 7. RMSE, MAE, and MBE from this study (using the mask-averaging method with both stratified
and all-in-case-out cross-validations) compared with Bandini et al. [25] (using radar, photogrammetry,
and lidar), arranged by RMSE. All data are from the same case study of the Åmose Å stream in
Denmark, collected on 21 November 2018.

Method Source RMSE MAE MBE

UAV radar [25] 0.030 0.033 0.033
DL photogrammetry (stratified) This study 0.035 0.026 −0.007

DL photogrammetry (all-in-case-out) This study 0.059 0.045 −0.015
UAV photogrammetry DSM centerline [25] 0.164 0.150 −0.151

UAV photogrammetry point cloud [25] 0.180 0.160 −0.160
UAV lidar point cloud [25] 0.222 0.159 0.033

UAV lidar DSM centerline [25] 0.358 0.238 0.076
UAV photogrammetry DSM “water-edge” [25] 0.450 0.385 0.385

5. Conclusions

In this study, the feasibility of employing deep learning to extract the WSE of a small
stream from photogrammetric DSM and orthophoto was investigated. The task proved to
be non-trivial, as the most obvious solution of direct regression using an encoder proved to
be ineffective. Only a properly adapted architecture, which involved predicting the mask
of the weights and then using this for sampling the DSM, obtained a satisfactory result.

The principal steps of the proposed solution encompass the following: (i) Acquiring a
photogrammetric survey over the river area and incorporating it into a geographic reference
system, for instance, by utilizing ground control points. (ii) Extracting DSM and orthophoto
raster samples that encompass the stream area and adjacent land. (iii) Employing a trained
model for prediction. Improving accuracy can be achieved by finetuning for a specific case.

The solution was validated using two cross-validation methods: stratified and all-in-
case-out. These methods differ in the degree of strictness associated with validation using
samples from case studies unavailable to the model during training. Depending on the case
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study and the level of validation strictness, the proposed solution achieves a RMSE ranging
between 2 cm and 16 cm. Compared to methods based on straightforward sampling of
photogrammetric DSM, the proposed solution achieves, on average, an 84% lower RMSE
for stratified cross-validation and a 62% lower RMSE for all-in-case-out cross-validation.
By outperforming current methods based on UAV photogrammetry, the proposed solution
substantially amplifies the potential of utilizing UAV photogrammetry for WSE estimation.

By utilizing data from another study, the proposed solution was compared on the
same case study with other UAV-based methods. For that case study, the proposed solution
achieved an RMSE score of 5.9 cm for all-in-case-out cross-validation and 3.5 cm for
stratified cross-validation, which is close to the result achieved by the radar-based method
(RMSE of 3 cm), which is considered the most accurate method available. The proposed
solution has a high level of flexibility and generalizability, making satisfactory predictions
for data from case studies not available during training. Another feature of the solution is
its explainability, as the masks serving an intermediate function in the prediction process
provide interesting information about the areas of the DSM that correctly represent the WSE.

Despite the advantages of using UAVs for WSE surveys such as the ability to operate
in inaccessible terrain and obtain spatially distributed measurements, one must be aware
of some limitations hindering the use of UAVs related to adverse weather conditions
(strong winds, precipitation, or fog), flight restrictions over certain zones due to aviation
regulations, or the greater complexity of data processing.
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2D two-dimensional
AMO18 Åmose Å 2018 case study
CNN convolutional neural network
DL deep learning
DSM digital surface model
GCP ground control point
GNSS global navigation satellite system
GRO20 Grodzisko 2020 case study
GRO21 Grodzisko 2021 case study
MAE mean absolute error
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MBE mean bias error
ML machine learning
MSL height above mean sea level
RMSE root mean square error
RTN real-time network
RYB20 Rybna 2020 case study
RYB21 Rybna 2021 case study
SFM structure from motion
St. Dev. standard deviation
UAV unmanned aerial vehicle
WGS-84 World Geodetic System 8’4
WS water surface
WSE water surface elevation

Appendix A. Grid Search Statistics

Detailed statistics on the RMSE results that the various configurations tested achieved
on the validation set during the grid search are shown in Figures A1–A5.
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Appendix B. Unsuccessful Approach

A third solution aimed at further improving the mask-averaging approach has been
tested. It was a fusion of the two solutions proposed in the main text. Although it was
more complex, it achieved a worse result than the weighted-averaging approach.

In the fusion solution, the encoder predicts a correction in the form of an offset added
to the weighted average of DSM calculated using the predicted weight mask. Figure A6
depict schematic representations of this approach.

Remote Sens. 2024, 16, x FOR PEER REVIEW 30 of 32 
 

 

Appendix B. Unsuccessful Approach 
A third solution aimed at further improving the mask-averaging approach has been 

tested. It was a fusion of the two solutions proposed in the main text. Although it was 
more complex, it achieved a worse result than the weighted-averaging approach. 

In the fusion solution, the encoder predicts a correction in the form of an offset added 
to the weighted average of DSM calculated using the predicted weight mask. Figure A6 
depict schematic representations of this approach. 

 
Figure A6. Fusion approach—schematic representation. Numbers near the arrows provide infor-
mation about the dimensions of the flowing data. 

During grid search, the same propositions of configurations as in the mask-averaging 
approach were tested, i.e., U-Net, MA-Net, PSP-Net architectures, VGG13, VGG16, 
VGG19 encoders, and the batch sizes 1, 2, 4, 8, and 16. The best combination was the PSP-
Net architecture with a VGG19 encoder trained using a batch size of 2. It achieved a vali-
dation RMSE averaged over all cross-validation folds equal to 0.079 m. As a reminder, the 
mask-averaging approach achieved an analogous result equal to 0.070 m. 

References 
1. IPCC. Climate Change 2014 : Synthesis Report; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2015; ISBN 978-

92-9169-143-2. 
2. UNESCO. The United Nations World Water Development Report 2020: Water and Climate Change; United Nations Educational, 

Scientific and Cultural Organization: Paris, France, 2020; ISBN 978-92-3-100371-4. 
3. Blöschl, G.; Bierkens, M.F.P.; Chambel, A.; Cudennec, C.; Destouni, G.; Fiori, A.; Kirchner, J.W.; McDonnell, J.J.; Savenije, H.H.G.; 

Sivapalan, M.; et al. Twenty-Three Unsolved Problems in Hydrology (UPH)—A Community Perspective. Hydrol. Sci. J. 2019, 
64, 1141–1158. https://doi.org/10.1080/02626667.2019.1620507. 

4. Alsdorf, D.E.; Rodríguez, E.; Lettenmaier, D.P. Measuring Surface Water from Space. Rev. Geophys. 2007, 45, 2006RG000197. 
https://doi.org/10.1029/2006RG000197. 

5. Jarihani, A.A.; Callow, J.N.; Johansen, K.; Gouweleeuw, B. Evaluation of Multiple Satellite Altimetry Data for Studying Inland 
Water Bodies and River Floods. J. Hydrol. 2013, 505, 78–90. https://doi.org/10.1016/J.JHYDROL.2013.09.010. 

6. Domeneghetti, A. On the Use of SRTM and Altimetry Data for Flood Modeling in Data-Sparse Regions. Water Resour. Res. 2016, 
52, 2901–2918. https://doi.org/10.1002/2015WR017967. 

7. Langhammer, J.; Bernsteinová, J.; Miřijovský, J. Building a High-Precision 2D Hydrodynamic Flood Model Using UAV 
Photogrammetry and Sensor Network Monitoring. Water 2017, 9, 861. https://doi.org/10.3390/W9110861. 

8. Montesarchio, V.; Napolitano, F.; Rianna, M.; Ridolfi, E.; Russo, F.; Sebastianelli, S. Comparison of Methodologies for Flood 
Rainfall Thresholds Estimation. Nat. Hazards 2014, 75, 909–934. https://doi.org/10.1007/S11069-014-1357-3. 

9. Tarpanelli, A.; Barbetta, S.; Brocca, L.; Moramarco, T. River Discharge Estimation by Using Altimetry Data and Simplified Flood 
Routing Modeling. Remote Sens. 2013, 5, 4145–4162. https://doi.org/10.3390/RS5094145. 

Figure A6. Fusion approach—schematic representation. Numbers near the arrows provide informa-
tion about the dimensions of the flowing data.

During grid search, the same propositions of configurations as in the mask-averaging
approach were tested, i.e., U-Net, MA-Net, PSP-Net architectures, VGG13, VGG16, VGG19
encoders, and the batch sizes 1, 2, 4, 8, and 16. The best combination was the PSP-Net
architecture with a VGG19 encoder trained using a batch size of 2. It achieved a validation
RMSE averaged over all cross-validation folds equal to 0.079 m. As a reminder, the mask-
averaging approach achieved an analogous result equal to 0.070 m.
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