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Abstract: This study aims to investigate the occurrence of surface displacements in the Canto do
Amaro (CAM) onshore oil field, situated in Rio Grande do Norte, Brazil, using Sentinel-1 data.
The persistent scatterer interferometry (PSI) technique was used to perform the analysis based on
42 Sentinel-1 images, acquired from 23 July 2020 to 21 December 2021. Moreover, information re-
garding the structural geology of the study area was collected by referencing existing literature
datasets. Additionally, a study of the water, gas, and oil production dynamics in the research site
was conducted, employing statistical analysis of publicly available well production data. The PSI
points results were geospatially correlated with the closest oil well production data and the struc-
tural geology information. The PSI results indicate displacement rates from −20.93 mm/year up to
14.63 mm/year in the CAM region. However, approximately 90% of the deformation remained in
the range of −5.50 mm/year to 4.95 mm/year, indicating low levels of ground displacement in the
designated research area. No geospatial correlation was found between the oil production data and
the zones of maximum deformation. In turn, ground displacement demonstrates geospatial corre-
lation with geological structures such as strike-slip and rift faults, suggesting a tectonic movement
processes. The PSI results provided a comprehensive overview of ground displacement in the Canto
do Amaro field, with millimeter-level accuracy and highlighting its potential as a complementary
tool to field investigations.

Keywords: ground deformation; PSI; SAR; Sentinel-1; onshore; oil field; persistent scatterer

1. Introduction

Oil and gas fields are conducive to the emergence of surface deformations due to the
processes associated with production and fluid injection into reservoirs. The production
activities can lead to the geological fault’s reactivation, potentially resulting in fluid mi-
gration and the emergence of surface instability processes [1,2]. Thus, it is appropriate
to implement quantitative analyses of deformational processes in oil and gas production
fields, with the objective of safeguarding wells and neighboring regions [3]. However, the
exclusive application of field techniques in extensive areas might not be feasible. In such
scenarios, a promising alternative lies in the usage of remote-sensing techniques [4].

Remote-sensing analysis provides significant advantages in terms of coverage area
when compared to conventional field-based methods. Techniques such as differential
interferometry synthetic aperture radar (DInSAR) allow the measurement of surface varia-
tions across vast areas, reducing the necessity for extensive field campaigns. The DInSAR
technique is based on the phase difference between two interferograms, providing the
displacement along the sensor line of sight (LOS). Consequently, this technique has the
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potential to identify surface displacements, serving as a complementary action for guiding
field activities and analyses [5,6].

Nevertheless, the phase difference between two interferograms does not exclusively
represent terrain displacement; it also includes artifacts from the atmospheric components,
SAR system noise, topographic influences, and errors in baseline estimation. In this manner,
the classic DInSAR cannot handle these errors because it requires a statistical analysis of a
time series of images to mitigate their influences [7].

Advanced differential interferometry (A-DInSAR) is one of the techniques employed
for assessing surface stability in onshore oil fields [8,9]. This technique represents an
advancement over classical DInSAR, because it analyzes the phase difference associated
with time-series SAR images, enabling the gradual measurement of deformation phenom-
ena over a given time interval. The method also enables an estimation of noise phase
components, thereby improving displacement measurements [7].

Persistent scatterer interferometry (PSI) is an A-DInSAR method distinguished by
its reliance on identifying persistent scatterers, which demonstrate stable backscattering
properties and minimal signal fluctuation across the temporal series of SAR images [10,11].
The PSI is widely used, being applied in deformation analyses with millimetric to centi-
metric precision [5,12–14], providing precise surface displacement data, facilitating the
measurement and monitoring of deformation events across large areas. Although the PSI
technique delivers deformation data with high accuracy, it faces constraints when measur-
ing deformation phenomena characterized by high deformation rates, being restricted from
measuring differential phases above π [6].

A study carried out in Cushing, Oklahoma, in 2018, considered the largest above-
ground crude oil installation in the world, in an arid region with sparse vegetation, used
the A-DInSAR technique [15], with the intention of monitoring surface deformations and
exploration processes. The results presented some intriguing questions regarding the
magnitude of the observed deformation yet the lack of seismicity in the area. This region
showed a clear area of uplift bounded by faults on the western and eastern sides of the
deformation, with a longer central fault. A horizontal profile highlights the variation in
an area of subsidence west of the fault (−8 mm) through an area of large deformation
(+27 mm).

The Tengiz oil field, located approximately 150 km southeast of the city of Atyrau
in western Kazakhstan, one of the largest world-class oil fields in the Pre-Caspian Basin,
was analyzed in 2019 using the A-DInSAR technique [16], being a dry steppe region
predominantly covered by bare soil. The results revealed a well-defined bowl subsiding
with a maximum rate of −15.7 mm/year, which was corroborated against and validated
against leveling data.

A-DInSAR analysis was applied to verify soil deformation in the Marun oil field,
located in southwestern Iran, a region characterized as desert with a lack of vegetation [17].
The results revealed maximum subsidence of the order of 13.5 mm per year over the three-
year period. The monthly production rate of the sampled wells was consistent with the
pace of oil production. The variation obtained from ground movements was influenced
by the combined effects of tectonic activity, reduced underground pressure, hydraulic
fractures, physical properties of reservoir rocks, and oil production rates.

The main goal of our research was analyzing the surface displacements in LOS geome-
try by PSI technique using Sentinel-1 data in the Canto do Amaro onshore oil fields, located
in the northeast of Brazil. The analyses considered the well production data, as well as the
structural geology dataset, to verify the capacity of PSI results to provide a comprehensive
understanding of the contribution of each variable to the surface movements’ processes.
The Canto do Amaro site differs from the other regions studied because it is semi-arid
region in Brazil with a dense shrubby Caatinga, with heavy rains during the summer and
autumn, where the oil extraction is carried out in small areas of vegetation clearings.



Remote Sens. 2024, 16, 1498 3 of 19

2. Study Area

The Canto do Amaro, located in the state of Rio Grande do Norte (RN), in northeastern
Brazil (Figure 1a), is a mature onshore field which has produced oil and gas since 1985 [18].
This area comprises numerous onshore hydrocarbon production wells that, during the
analysis period (July 2020 to December 2021), were managed by Petroleo Brasileiro S.A.
(Petrobras). The wells are strategically situated within clear-cut zones, with vegetation
suppression areas ranging from 3000 m2 to 3900 m2 (Figure 1b).
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Figure 1. (a) Google Satellite data showing the location of the Canto do Amaro oil field; (b) An
approximate overview of the CAM wells’ placements.

The oil and gas extraction in Canto do Amaro primarily utilizes wells employing
artificial lift methods such as electrical submersible pumping (Figure 2a); nevertheless,
there is also a minority application of the beam pumping method (Figure 2b). Furthermore,
there are water injection wells (Figure 3a) in which the water resources are delivered by
interconnected pipelines linking water distribution stations to the injection sites (Figure 3b).

The prevailing climate in the region is semi-arid, characterized by an average annual
temperature of 27.5 ◦C, a relative humidity of 68.9%, and an average precipitation of
673.9 mm [19]. Peak rainfall occurs in the initial months, from January to April, while the
drought period encompasses the months of August to November [20].

The vegetation cover in the area is part of the shrubby Caatinga biome, characterized
by flora well-suited to arid and semi-arid environments. Such vegetation is distinguished
by its thorny trees and shrubs that shed part of their leaves in the drought season. Moreover,
it encompasses spiny succulents, and herbaceous species, which experience substantial
growth during rainy periods [21].

The region is part of the Potiguar Basin (PB), a sedimentary basin extending across the
Rio Grande do Norte and Ceará States [22]. It covers an estimated 21,500 km2 in its emerged
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portion, and 26,500 km2 in the submerged region [23]. The basin carries notable regional
and national economic significance, due to the offshore and onshore discoveries [24]. This
oil field has mature oil and gas wells, positioning itself in the third place in the Brazilian
Onshore Oil Production ranking for the year 2020 [25].
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The PB forms part of the Cretaceous Rift System of northeastern Brazil; it is located
within the northern sector of the Borborema Province, controlled by a NE-SW rift system.
Its genesis is linked to the Gondwana break-up, which led to the opening process of the
Atlantic Ocean. This event is marked by three tectonics stages: syn-rift I (Late Jurassic),
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syn-rift II (Early Berriasian to Late Barremian) and syn-rift III (Late Barremian to Early
Aptian) [26,27].

The onshore rift segment of the Potiguar Basin is linked to the syn-rift phase II, which
is regarded as the main rifting stage of the northeast Brazilian rift system, characterized by
a prevailing NW-SE orientation [26]. The rift’s geometry is influenced by the Carnaubais,
Baixa Grande, Apodi, and Areia Branca fault systems. The Areia Branca fault system forms
a hinge line that delineates the Potiguar Rift to the west, and it is notable for its prevalence
of NE-SW oriented normal faults [28]. During the final stage of rifting (syn-rift III), there
was a transition to an E-W extension direction, changing the axis of the Potiguar Rift to the
offshore zone [26,29].

The stratigraphic sequence of the PB is defined by three tectonic stages: rift, occurring
in the Early Cretaceous; post-rift, spanning the Aptian–Albian; and drift, from Albian
to the present [23]. The rift stage is characterized by fluvio-deltaic and lacustrine de-
posits of the Pendência and Pescada Formations [23]. The post-rift phase includes the
Alagamar Formation, consisting of fluvio-deltaic sequences, with the earliest records of
marine ingression [30]. The drift supersequence comprises transgressive fluvio-marine
deposits, consisting of the Açu, Ponta do Mel, Quebradas, Jandaíra, and Ubarana Forma-
tions. These formations are overlain by regressive clastic and carbonate sequences known
as the Ubarana, Tibau, and Guamaré Formations [23,31]. The volcanic rocks linked to the
BP derive from the Macau Formation, Rio Ceará Mirim, and Cuó [23].

Oil production in the PB is sourced from siliciclastic reservoirs deposited during the
rift, transitional, and drift stages. Specific structural and reservoir styles are associated
with oil and gas within each sequence. During the drift sequence, which encompasses the
lithostratigraphy of the Canto do Amaro field, hydrocarbons were predominantly generate
in the Alagamar Formation, leasing to the establishment of the Alagamar-Açu Petroleum
System. Nevertheless, the shales from the rift phase have also made contributions in regions
where the Alagamar Formation is immature [24].

The structural geology of the area of interest comprises rift and transcurrent fault
structures, as evidenced in Figure 4.
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3. Materials and Methods

The processing of 42 Sentinel-1A Single Look Complex (SLC) images (Table 1) was
carried out using the PSI technique. These scenes cover the study area from 23 July 2020 up
to 21 December 2021. The SAR processing workflow was executed using SARScape 5.6.2,
that allowed importing the data, to do the deburst processing and clip the interest area.
The digital elevation model (DEM) employed to simulate the topographic phase in SAR
processing was sourced from a digital elevation model (DEM) LiDAR.

Table 1. Characteristics of the Sentinel-1 images used.

Sentinel-1A

Centre Frequency 5.405 GHz
Wavelength 5.6 cm (C Band)
Polarization VV

Incidence angle 20–45◦

Spatial Resolution 5 m (Range) × 20 m (Azimuth)
Temporal Resolution 12 days

Swath Width 250 km
Track Descending
Mode IW

Acquisition period 23 July 2020 to 21 December 2021
Product Single Look Complex (SLC)

Well production data are sourced from monthly spreadsheets on oil and natural
gas production, which are accessible on the website of the Brazilian National Agency of
Petroleum, Natural Gas, and Biofuels. Data mining of production data was executed using
Python 3, leveraging data analysis libraries such as Pandas, Numpy, and Seaborn.

The study area geological structures were acquired by vectorizing structural maps
available in the literature [32,33] and by extracting structural lineaments using the LiDAR
DEM. The structural data vectorization, production data analysis, and map creation were
conducted using the QGIS 3.22.4 and ArcMap 10.8.

3.1. SAR Processing

PSI processing (Figure 5) was performed in a stack of 42 Sentinel-1 images using
the SARscape 5.6.2 software package. Using a substantial image dataset, the technique
facilitates statistical analyses of phase errors associated with atmospheric conditions and/or
other noises. Within this stack of images is selected a reference image, typically positioned
at the center of the temporal series to enhance interferometric coherence between the
pairs. The choice of the reference image (master image) relies on minimizing the baseline
dispersion and temporal distance between images. This approach aims to mitigate the
temporal and spatial decorrelation [7,11].

At the beginning of the processing workflow, depicted in Figure 5, the orbit informa-
tion was corrected by acquiring precise orbit data for individual images. After that, the
images were clipped using a defined region of interest, with only VV polarization products
retained for further analysis. The stack coregistration process was conducted by using the
master image as the reference, entailing precise adjustment of the pixel grid to achieve
correspondence among pixels across all images. Afterwards, the master image, acting as
the reference SAR product, and auxiliary images were picked to construct interferometric
pairs (Figure 6).
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The phase information (∆ϕint) contained within each pixel of the interferogram is a
composite of various contributing variables, as depicted in Equation (1) [34].

∆ϕint = ϕtopo + ϕdef + ϕatm + ϕnoise (1)

where ϕtopo is the phase component linked to the topography, ϕdef denotes the phase
difference generated as result of the terrain deformation, ϕatm is the phase contribution
related to atmospheric components noise, and ϕnoise refers to the phase attributed to the
system noise.

The biggest phase component of Equation (1) is the topographic phase; hence, it is
essential to minimize it to ensure a more precise terrain deformation (ϕdef ) estimation.
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Consequently, the differential interferograms were obtained by subtracting the simulated
topographic phase, processed from the LiDAR elevation model. In addition, multi-looking
was conducted with a 12 × 3 window size in range and azimuth directions. The atmospheric
component was filtered using a low-pass window size of 1200 m and a low-pass window
size of 365 days for each pixel.

The selection of the reference point can be based on either the reflectivity map gener-
ated by the software or the identification of stable targets in optical sensor images, such
as buildings or rocky outcrops [35]. In this study, the selection of a reference point was
automated by SARScape, which selected an object demonstrating high stability across the
temporal series.

Persistent scatterer candidates are points characterized by a high signal-to-noise ratio,
identified through the analysis of amplitude variation. Therefore, a threshold range based
on the amplitude dispersion index of 0.4 is used for the selection of persistent scatterers [10].

In PSI processing, two principal assumptions are considered: (1) a linear correlation
exists between the phase representing topographic error and the components of perpendic-
ular baselines, and (2) it is assumed that there is a linear relationship between deformation
and time. It is further assumed that the residuals of the linear regression of deformation
over time are correlated with atmospheric phase components, noise, and the nonlinear
deformation phase [36]. Consequently, these residual phases may be estimated employing
relevant filters and statistical techniques.

After the PSI processing was completed, the persistent scatterer points obtained
were analyzed. When necessary, refinement of the model was carried out through the
updating of input parameters, followed by the subsequent reprocessing of these points.
The deformation map of the study area was generated, and the deformation points were
exported as shapefiles for later analysis.

3.2. Oil, Gas, and Water Production Data Mining

Brazil’s petroleum production data were obtained from the ANP (2021), which re-
ceives production wells reports from companies monthly, and whose data are released
2 months after validation by the ANP. However, these data encompass all Brazilian onshore
oil extraction wells, so the values of production wells related to the study area (Canto
do Amaro) were filtered by data mining, using Python 3.9, as well as Pandas, Seaborn,
and Numpy libraries. Originally, the production information was presented in comma-
separated values format spreadsheets, in a total of 18 files covering the study period of
July 2020 to December 2021. Following the filtration process, monthly information was
aggregated into a matrix comprising the summation of oil, gas, and water production
data. Finally, an exploratory examination of the production data was carried out using
Python 3.9 and the previously referenced data analysis modules.

3.3. Geospatial Correlation Analysis

Utilizing ArcMap 10.8 software within a geographic information system (GIS) envi-
ronment, the dataset was organized, consolidating structural, production, and deformation
data into geospatial vectors. Thus, interpretations of structural geology were undertaken,
with the objective of establishing geospatial correlations among deformational data, geolog-
ical structures, and production information within the geolocated well vectors. Moreover,
analyses were performed on 500 × 500 m grid zones, employing zonal statistics of pro-
duction and deformation data. Following this, correlation matrix analyses of statistical
data within each grid were conducted using Python 3. An assessment was conducted to
determine the presence of surface deformations and ascertain any correlation between
ground movements, geological structures, and/or the inherent methods of oil and gas
production in the Canto do Amaro oil field.
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4. Results
4.1. Interferometric Coherence

The statistical analysis of the data reveals that the average interferometric coherence
was 0.69, with a maximum value of 0.96. The 50th and 75th percentiles are 0.66 and
0.74, respectively, indicating that half of the data have coherence values close to the lower
threshold, and that a significant portion of persistent points (75%) have correlation measures
lower than or equal to 0.74.

The PSs showing the highest coherence values (0.8 or higher) are situated over areas
featuring oil storage tanks, metallic structures, residential areas, and exposed ground. The
persistent scatterer points with correlation values near the lower limit (0.6) are spatially
located near vegetated areas and surrounding regions with water resources. Aiming to
mitigate noisy deformational data, all persistent points with coherence values below 0.7
were excluded from the analysis.

Significant variations in target backscatter are observed over the temporal series,
attributed to both the sensor’s characteristics and the considerable seasonal fluctuations
in vegetation biomass content within the Caatinga biome [21]. The temporal analysis
of the soil-adjusted vegetation index (SAVI) using Sentinel-2 data, which minimizes soil
interference in vegetation assessment [37] and serves as an indicator of biomass content [38],
has enabled the identification of significant variation in the index values between rainy
and dry periods (Figure 7). The SAVI index ranges from −1 to 1, where negative values
mean water presence, values nearing 1 denote abundant vegetation, and those nearing
zero means minimal to no vegetation cover [38]. The data suggest the seasonal fluctuation
of Caatinga vegetation within the CAM, demonstrating substantial changes in vegetation
cover in between seasons, which may result in data coherence reduction and consequently
the number of PSs can decrease or even disappear. In Figure 7, data were employed from
outside the temporal range to illustrate the fluctuation in vegetation within the study area.
This decision-making was made due to the challenge of acquiring cloud-free Sentinel-2
images during the rainy periods (January to April) of 2020 and 2021.

4.2. Deformation Data Analysis

A low density of persistent points is observed within the polygon corresponding to the
study area, revealing a significant contrast between deformational data in the region and
the quantities of data generated in surrounding areas (Figure 8). These variations in point
density may be associated with differences in the stability of target backscattering in both
regions. Regions characterized by dense clusters of civil constructions, such as Mossoro
City, demonstrate targets with limited temporal variation in backscattering. Consequently,
these targets exhibit consistent and intense responses over time, contributing to increase
the persistent scatterer point density [7]. However, the opposite scenario occurs in the
Canto do Amaro area, which is covered by the Caatinga biome. In this area, the radar
sensor’s resolution and penetration capabilities lead to fluctuations in target scattering
across temporal series, resulting in a decreased presence of persistent scatterers (PSs).
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Persistent scatterer (PS) points exhibit deformation velocities along the satellite line-of-
sight direction ranging from −27 mm/year to 23 mm/year. According to the deformation
patterns observed in the Figure 8, some of the higher subsidence values are clustered in
two regions highlighted as red polygons, referred to as subsidence trend areas (STA).

In the STA1, situated in the northern region of Mossoro-RN municipality, PS values
demonstrate a geospatial correlation of this deformational locale with rift faults [32]. The
deformational data pertaining to STA2, and its adjacent areas are intrinsically linked to
surface modifications resulting from anthropogenic activities, as these regions are hubs for
shrimp farming and salt extraction practices.

The groupings of persistent points displaying the most substantial rates of uplift are
outlined as blue polygons in Figure 8 and are labeled as uplift trend areas (UTA). Positioned
near Mossoro-RN municipality, UTA1 exhibits a notable concentration of deformation
points nearing the upper boundary of uplift (23 mm/year). Correlation with structural
lineaments trending is observed in the area. Additionally, the PSs identified within UTA1
are positioned approximately 700 m away from the confluence of two rift faults [32].

UTA2 is located along a water resource margin, and the uplift rates in this region may
be governed by the erosional and sedimentary dynamics inherent to such environments.
The persistent scatterer points of UTA3 are geospatially situated within a region known
for its salt extraction operations. Therefore, the deformational data in this area might be
connected to the dynamics of surface changes driven by the activities of the establishments
located there.
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Canto do Amaro Deformation Analysis

The PSs encompassed within the study polygon (white polygon in Figure 8) ex-
hibit maximum rates of subsidence and uplift velocities in LOS of −20.93 mm/year and
14.63 mm/year, respectively. The distribution pattern of deformational data conforms to a
normal distribution, with its peak centered around the mean velocity of −0.191 mm/year.
The 5th and 95th percentiles are −5.50 mm/year and 4.95 mm/year, respectively, as de-
picted in Figure 9. In this manner, the values identified at persistent points suggest that,
overall, deformational velocities in Canto do Amaro were relatively low throughout the
analyzed period. This statement is founded on the observation that 90% of the data fall
within the subsidence and uplift range of −5.5 mm/year and 4.95 mm/year, respectively.
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Given the sparse distribution of persistent points within the study area’s polygon
(Figure 8), deformation analysis of the Canto do Amaro region was also performed based
on the mean velocity values of PS points inserted into 500 × 500 m grids. The zone-based
analysis provided a synoptic perspective of the data (Figure 10A), revealing variations
in deformation velocity, oscillating between −13.01 mm/year and 14.63 mm/year, with
an average velocity of −0.65 mm/year. The vertical accuracy of the data varies from
0.83 mm/year to 1.39 mm/year, with the least accurate measurements observed in ar-
eas characterized by dense vegetation cover and along the margins of water resources
(Figure 10B).

The upper boundaries of subsidence and uplift, highlighted in the Figure 10A as red
and blue grids, are respectively linked to areas bordering water resources. In this manner,
while there is a geospatial correlation between certain deformational areas and geological
structures, it is apparent that extreme deformation values are fundamentally associated
with sedimentation and erosion processes along water body margins.

Thus, upon excluding deformation points susceptible to influences from variations
in areas along water margins, there is an alteration in the deformation range within the
study area to −8.61 mm/year to 9.40 mm/year. Consequently, these results highlight low
deformation rates in Canto do Amaro between 23 July 2020 and 21 December 2021.

Considering the low deformation rates observed during the analyzed period, a qualita-
tive evaluation of deformation was undertaken, as areas with subsidence or uplift processes.
Based on the mean deformation value per grid, roughly 61.25% of the deformational dataset
relates to subsidence movements (Figure 11). In such manner, the study area was delimited
by subsidence (SUB) and uplift (UP) accumulation areas, represented in Figure 11 by red
and blue polygons, respectively.
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SUB1 is situated within the alluvial channel deposits (N4ac), marine-fluvial deposits
(N34fm), and the biomicrites from Jandaira Formation (K2jbm). This region is close to the
area marked as STA1 in Figure 8, indicating a zone where subsidence processes occur. These
surface subsidence processes could potentially be related to the movements across the rift
and transcurrent faults positioned nearby this area. SUB2 and SUB3 cover predominantly
the ancient alluvial deposits (N3a) and demonstrate a dense network of subsidence defor-
mation vectors, indicating a block-lowering trend in these areas. These two subsidence
areas are bordered by dextral strike-slip and rift faults, exhibiting a similarly structural
context as observed in SUB1.
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Regarding uplifting processes, UP1 displays a gathering of vectors characterized by
this phenomenon (Figure 11), positioning itself at the interface between the lithologies
of the Jandaíra Formation (K2jbm), alluvial channel deposits (N4ac), and the ancient
alluvial sedimentary deposits (N3a). The uplifting zone UP1 exhibits geospatial correlation
with geological structures; furthermore, this area lies adjacent to the uplifting UTA1 zone
(Figure 8), positioned within the eastern sector of Mossoro municipality. On the other
hand, UP2 is positioned near the margins of water resources. As a result, surface elevation
movements in UP2 can be affected by sedimentation dynamics, leading to potentially
ambiguous deformational data.

4.3. Geospatial Statistic Production Analysis

The surface deformation was also analyzed in accordance with the geospatial correla-
tion and the wells’ production data. Utilizing the quantitative data associated with each
analysis grid, the correlation between deformational averages, the mean and sum statistics
of water, gas, and oil production were derived, as highlighted in Tables 2 and 3. For this
purpose, the Pearson correlation matrix was applied, providing insights into the degree of
linear correlation between pairs of quantitative variables. In the Pearson correlation matrix,
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values of −1 and 1 indicate, respectively, a perfect negative correlation and perfect positive
correlation, while 0 suggests no correlation between the variables [39].

Table 2. Correlation matrix between the mean deformational values and the cumulative (sum)
production per grid.

Deformation
Mean

Oil Production
Sum

Water
Production Sum

Gas Production
Sum

Deformation mean 1.00 0.02 −0.09 0.06
Oil production sum 0.02 1.00 0.75 0.41

Water production sum −0.09 0.75 1.00 −0.04
Gas production sum 0.06 0.41 −0.04 1.00

Table 3. Correlation matrix illustrating the relationship between mean deformational and the mean
production values within each grid.

Deformation
Mean

Oil Production
Mean

Water Production
Mean

Gas Production
Mean

Deformation mean 1.00 0.04 −0.08 0.05
Oil production mean 0.04 1.00 0.27 0.89

Water production mean −0.08 0.27 1.00 −0.02
Gas production mean 0.05 0.89 −0.02 1.00

In this manner, as noted in Table 2, the average deformational velocity values and
the sum of oil, water, and gas production per grid demonstrate low correlation values.
The correlation coefficient between the mean deformational values of PS and the total oil
production per grid is 0.02. This result indicates that locally there is no interdependence
between the highest surface deformation velocities and the grids with the highest accumu-
lations of oil production. Similarly, the water and gas production sums do not exhibit linear
associations with the deformational means, considering the correlation values of −0.09
and 0.06, respectively.

There is a moderate positive correlation of 0.41 between the accumulation of gas and
oil production per grid. Furthermore, the correlation matrix of the Table 2 reveals a strong
positive association of 0.75 between the sums of oil and water productions per grid. This
outcome indicates a notable trend of simultaneous growth in the accumulated values of oil
and water production, suggesting a potential interdependence between these variables.

The correlations between the production and deformation mean values (Table 3)
demonstrate similar results to those obtained for the analyses regarding the sum of produc-
tions. Thus, there is no strong association between the zones with the highest production
means and the areas with the highest values of deformations mean. The linear decorrelation
between the parameters is evidenced by the low values obtained in the Pearson correlation
matrix. As demonstrated in Table 3, the correlation results are approximately 0.04, −0.08,
and 0.05 for oil, water, and gas production, respectively.

In contrast, there is a positive correlation of 0.89 between the gas and oil mean pro-
duction, suggesting a strong trend of simultaneous linear increase between the gas and
oil production mean values. There is a moderate positive correlation of 0.27 between
the average water and oil production, suggesting a moderate tendency for simultaneous
increase between the water and oil production mean values.

5. Discussion

The low values of interferometric coherence may be associated with the spatial resolu-
tion and the frequency of the Sentinel-1A sensor (C-band), which has low penetration in
canopies due to its wavelength [40]. Changes in surface and vegetation content negatively
influence the interferometric coherence value, causing temporal decorrelation [40,41], con-
sequently reducing the number of persistent points. Therefore, the presence of vegetation
from the Caatinga biome, which exhibits high seasonal variability of biomass [21], com-
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bined with the limited penetration and resolution of the Sentinel-1 sensor, has negatively
influenced the stability of backscattering over time.

The use of sensors with higher spatial resolutions in future works could enable the
acquisition of persistent points in the areas of suppressed vegetation where the producing
wells are installed. Moreover, the utilization of sensors with longer wavelengths, such as
those in L-bands, offers an alternative for analyses with increased PS density in the CAM,
given the superior response of this wavelength in vegetated areas [42].

The deformational data obtained for the CAM region demonstrate deformation ve-
locities ranging from −20.93 mm/year to 14.63 mm/year, with the maximum peaks of
uplift and subsidence, this behavior can be caused by erosion and sedimentation processes
along water resource margins associated to rainy season as well. (Figure 9). Furthermore,
the mean velocity per grid reveals deformation rates ranging from −8.61 mm/year to
9.40 mm/year if quadrants with noisy points (areas near water resources) are eliminated.
This deformation rate shows be lower when compared to deformational findings from
other studies conducted in oil fields areas [3,43,44].

Although oil and gas production processes might be the primary instigators of subsi-
dence and uplift events in petroleum fields [3]. However, the production data in CAM did
not exhibit geospatial association with surface deformation during the investigated period.
This finding was based on the analysis of correlation coefficients between grids containing
deformation and production information. Hence, the low correlation values depicted in
Tables 2 and 3 imply a negligible relationship between productive and deformational vari-
ables. Therefore, over the period from July 2020 to December 2021, production in the CAM
wells does not appear to be correlated with the occurrence of abrupt deformational events.

However, the deformation vectors indicate a geospatial correlation with geological
structures, with clusters of subsidence and uplift vectors occurring in regions covered by
rift fault and strike-slip faults (Figure 10). The Northeast of Brazil has one of the most
seismically active areas in South America, with most seismic activity occurrences near
the PB [45]. Thus, these findings suggest a relationship between surface movements
and tectonic mechanisms. Recent studies similarly correlate deformational events to
the movement or reactivation of geological structures in other oil and gas production
areas [46,47].

6. Conclusions

This study demonstrated the potentials and limitations of the PS technique using
Sentinel-1 data by applying it to the deformation monitoring of the onshore oil field of
Canto do Amaro—RN. Using 42 Sentinel-1 images captured between 23 July 2020 and
21 December 2021, the deformation velocity in the sensor’s line of sight within the study
area was accurately determined at the millimeter scale.

The PSI technique offered a comprehensive overview of surface movement processes
in the Canto do Amaro region. Nevertheless, the PSI processing result in a low deformation
point density in areas overlapped by Caatinga vegetation, due to volumetric decorrelation.
In this manner, the reduced quantity of persistent points stemmed from the low resolution
and signal penetration of the Sentinel-1 sensor.

The LOS deformation velocity maps predominantly depict the presence of low de-
formation velocities within the study area. The most significant deformation rates are
observed in the areas adjacent to water resources, suggesting that the highest deformations
are linked to the erosive and sedimentary processes typical of these environments.

The analysis of public data on water, gas, and oil production in the CAM did not reveal
direct geospatial associations with peak deformation zones. Statistical analysis of these
data highlights that there is no interdependence between the zones of highest production
in the CAM and the areas of pronounced deformation.

The structural geology data indicate a geospatial correlation between rift and transcur-
rent faults with the deformation vectors of subsidence and uplift. Thus, the deformational



Remote Sens. 2024, 16, 1498 17 of 19

data generated for the CAM area suggest geospatial correlations between certain uplift and
subsidence events driven by tectonic movements.

In future research endeavors, it is suggested to use SAR sensors with longer wave-
lengths, such as L-band radars, allowing for the increased penetration of microwave signals
in vegetated areas. Employing sensors with longer wavelengths could offer increased
point density in the shrubby Caatinga-covered regions, thereby enhancing deformation
analysis in these areas. The study analyzed two years of Sentinel-1; it would be interesting
to investigate a longer survey taking in account the oil exploitation data available. The
use of GNSS geodetic and/or topographic levelling data could be interesting for numeric
validation of the deformation measurements, which was not available in our test site during
this research. Moreover, the use of sensors with enhanced spatial resolution could provide
better densities of persistent points in clear-cut regions, where production wells are situated.
Additionally, it is suggested to analyze and correlate fluid injection data with deformational
information in the CAM.
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