Overview of High-Power and Wideband Radar Technology Development at MIT Lincoln Laboratory
Abstract
:1. Introduction
2. Progress in High-Power and Wideband Radar Technology at MIT Lincoln Laboratory
2.1. The Millstone Hill Radar (MHR; Constructed in 1956, Reconfigured in 1965)
2.2. The Haystack Planetary Radar (Constructed in 1964, Antenna Replaced in 2014)
2.3. The ARPA-Lincoln C-Band Observables Radar (ALCOR; 1970)
2.4. The Long-Range Imaging Radar (LRIR (1978)/HUSIR-X (2014))
2.5. The Millimeter-Wave Radar (MMW; Constructed in 1983, Upgraded in 1993 and 2012)
2.6. The Haystack Auxiliary Radar (HAX; 1993)
2.7. The Cobra Gemini Radar (1996) and the XTR-1 Radar (2012)
2.8. Haystack Ultra-Wideband Satellite Imaging Radar (HUSIR-W; 2014)
3. Upgrades in Progress and Future Plans
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Massachusetts Institute of Technology. Radiation Laboratory Series (28 Volumes); Ridenour, L., Collins, G., Eds.; McGraw-Hill: New York, NY, USA, 2020; pp. 1948–1951. Available online: https://archive.org/details/mit-rad-lab-series-version-2 (accessed on 9 March 2024).
- Technology in Support of National Security; Grometstein, A. (Ed.) MIT Lincoln Laboratory: Lexington, MA, USA, 2011; Available online: https://www.ll.mit.edu/sites/default/files/other/doc/2018-04/MIT_Lincoln_Laboratory_history_book.pdf (accessed on 9 March 2024).
- Ricardi, L.; Niro, L. Design of a 12-horn monopulse feed. In Proceedings of the 1958 IRE International Convention Record, New York, NY, USA, 21–25 March 1966; pp. 49–56. [Google Scholar] [CrossRef]
- Millstone Hill Incoherent Scatter Radar. Available online: https://www.haystack.mit.edu/about/haystack-telescopes-and-facilities/millstone-hill-incoherent-scatter-radar/ (accessed on 9 March 2024).
- Evans, J. Theory and practice of ionosphere study by Thomson scatter radar. Proc. IEEE 1969, 57, 496–530. [Google Scholar] [CrossRef]
- Pensa, A. Historical Perspective. In Perspectives in Space Surveillance; Sridharan, R., Pensa, A., Eds.; MIT Press: Cambridge, MA, USA, 2017; pp. 1–13. [Google Scholar]
- Sridharan, R.; Kupiec, I. Technology Development for Space Surveillance with Narrow-beam Radars. In Perspectives in Space Surveillance; Sridharan, R., Pensa, A., Eds.; MIT Press: Cambridge, MA, USA, 2017; pp. 15–73. [Google Scholar]
- Welch, S.; Hogan, G.; Morrison, R.; Bassa, C.; Pisano, T. Long baseline radar bistatic measurements of geostationary satellites. In Proceedings of the 2022 19th European Radar Conference (EuRAD), Milan, Italy, 28–30 September 2022; pp. 17–20. [Google Scholar] [CrossRef]
- Ruze, J. Antenna tolerance theory-a review. Proc. IEEE 1965, 54, 633–640. [Google Scholar] [CrossRef]
- Weiss, H. The Millstone and Haystack radars. IEEE Trans. Aerosp. Elect. Syst. 2001, 37, 365–379. [Google Scholar] [CrossRef]
- Whitney, A.; Lonsdale, C.; Fish, V. Insights into the Universe: Astronomy with Haystack’s radio telescope. Linc. Lab. J. 2014, 21, 8–27. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol21_no1/21_1_2_Whitney.pdf (accessed on 9 March 2024).
- Shapiro, I.; Pettengill, G.; Ash, M.; Stone, M.; Smith, W.; Ingalls, R.; Brockelman, R. Fourth test of General Relativity: Preliminary results. Phys. Rev. Lett. 1968, 20, 1265–1269. [Google Scholar] [CrossRef]
- Delaney, W.; Ward, W. Radar development at Lincoln Laboratory: An overview of the first fifty years. Linc. Lab. J. 2000, 12, 147–166. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2radardevelopment.pdf (accessed on 9 March 2024).
- Roth, K.; Austin, M.; Frediani DKnittel, G.; Mrstik, A. The Kiernan re-entry measurements system at Kwajalein Atoll. Linc. Lab. J. 1989, 2, 247–276. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol02_no2/2.2.7.kiernanreentry.pdf (accessed on 9 March 2024).
- Avent, R.; Shelton, J.; Brown, P. The ALCOR C-band imaging radar. IEEE Antennas Prop. Mag. 1996, 38, 16–27. [Google Scholar] [CrossRef]
- Skolnik, M. (Ed.) Introduction to Radar Systems, 2nd ed.; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Axelbank, M.; Camp, W.; Lynn, V.; Margolin, J. ALCOR: A high-sensitivity radar with one-half meter range resolution. In Proceedings of the 1971 IEEE International Convention Digest, New York, NY, USA, 22–25 March 1971; pp. 112–113. [Google Scholar]
- Purdy, R.; Blankenship, P.; Muehe, C.; Rader, C.; Stern, E.; Williamson, R. Radar signal processing. Linc. Lab. J. 2000, 12, 297–320. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2radarsignalprocessing.pdf (accessed on 9 March 2024).
- Camp, W.; Mayhan, J.; O’Donnell, R. Wideband Radar for Ballistic Missile Defense and Range-Doppler Imaging of Satellites. Linc. Lab. J. 2000, 12, 267–280. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2widebandradar.pdf (accessed on 9 March 2024).
- Solodyna, C. Overview of Wideband Imaging Radar Technology. In Perspectives in Space Surveillance; Sridharan, R., Pensa., A., Eds.; MIT Press: Cambridge, MA, USA, 2017; pp. 75–117. [Google Scholar]
- Brown, W.; Pensa, A. History of Haystack. Linc. Lab. J. 2014, 21, 4–7. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol21_no1/21_1_1_Brown.pdf (accessed on 9 March 2024).
- James, B.; Zitelli, L. A 100 kW peak 50 kW average coupled cavity TWT with 10% bandwidth centered at 10 GHz. In Proceedings of the IEEE Electron Devices Meeting, Washington, DC, USA, 1–2 December 1975; p. 133. [Google Scholar] [CrossRef]
- Goudey, K.; Sciambi, A. High power X-band monopulse tracking feed for the Lincoln Laboratory Long Range Imaging Radar. IEEE Trans. Microw. Theory Tech. 1978, 26, 326–332. [Google Scholar] [CrossRef]
- Goldie, H. A 2-kilowatt average power X-band receiver protector. IEEE Trans. Electron. Dev. 1977, 24, 53–55. [Google Scholar] [CrossRef]
- Bromaghim, D.; Perry, J. A wideband FM linear ramp generator for the Long-Range Imaging Radar. IEEE Trans. Microw. Theory Tech. 1978, 26, 322–325. [Google Scholar] [CrossRef]
- Sangiolo, T.; Spence, L. PACS: A processing and control system for the Haystack Long-range Imaging Radar. In Proceedings of the 1990 IEEE International Conference on Radar, Arlington, VA, USA, 7–10 May 1990; pp. 480–485. [Google Scholar] [CrossRef]
- Abouzahra, M.; Avent, R. The 100-kW millimeter wave radar at the Kwajalein Atoll. IEEE Antennas Prop. Mag. 1994, 36, 7–19. [Google Scholar] [CrossRef]
- Ingwersen, P.; Lemnios, W. Radars for ballistic missile defense research. Linc. Lab. J. 2000, 12, 245–266. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2ballisticmissiledefense.pdf (accessed on 9 March 2024).
- Hall, T.; Duff, G.; Maciel, L. The space mission at Kwajalein. Linc. Lab. J. 2012, 19, 48–63. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol19_no2/19_2_3_Hall.pdf (accessed on 9 March 2024).
- Fitzgerald, W. A 35 GHz beam waveguide system for the Millimeter Wave Radar. Linc. Lab. J. 1992, 5, 245–272. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol05_no2/5.2.4.35ghzwaveguide.pdf (accessed on 9 March 2024).
- Dionne, G. Laboratory-scale mirrors for submillimeter wavelengths. Int. J. Infrared Millim. Waves 1982, 3, 417–423. [Google Scholar] [CrossRef]
- Goldsmith, P. Quasioptical Systems; IEEE Press: New York, NY, USA, 1998. [Google Scholar]
- Dionne, G.; Weiss, A.; Allen, G. Non-reciprocal magneto-optics for millimeter waves. IEEE Trans. Magn. 1988, 24, 2817–2819. [Google Scholar] [CrossRef]
- McHarg, J.; Abouzahra, M.; Lucey, R. 95-GHz Millimeter-wave Radar. In Millimeter and Submillimeter Waves Appl. III, Proceedings of the 1996 SPIE International Symposium on Optical Science, Engineering and Instrumentation, Denver, CO, USA, 5–9 August 1996; SPIE: Denver, CO, USA, 1996; Volume 2842, pp. 494–500. [Google Scholar] [CrossRef]
- Linde, G.; Ngo, M.; Danly, B.; Cheung, W.; Gregers-Hansen, V. WARLOC: A high-power coherent 94 GHz radar. IEEE Trans. Aerosp. Elect. Sys. 2008, 44, 1102–1117. [Google Scholar] [CrossRef]
- Stambaugh, J.; Lee, R.; Cantrell, W. The 4 GHz bandwidth Millimeter Wave Radar. Linc. Lab. J. 2012, 19, 64–76. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol19_no2/19_2_4_Stambaugh.pdf (accessed on 9 March 2024).
- Jones, G.; Abouzahra, M. Major improvements at the KREMS Millimeter Wave Radar. In Proceedings of the 1992 Space Surveillance Workshop, Lexington, MA, USA, 7–9 April 1992; pp. 239–244. [Google Scholar]
- Ingalls, R.; Antebi, J.; Ball, J.; Barvainis, R.; Cannon, J.; Carter, J.; Charpentier, P.; Corey, B.; Crowley, J.; Dudevoir, K.; et al. Upgrading the Haystack radio telescope for operation at 115 GHz. Proc. IEEE 1994, 82, 742–755. [Google Scholar] [CrossRef]
- Stansbery, E.; Settecerri, T. A Comparison of Haystack and HAX measurements of the orbital debris environment. In Proceedings of the Second European Conference on Space Debris, Organised by ESA, Darmstadt, Germany, 17–19 March 1997; ESOC: Darmstadt, Germany, 1997. ESA-SP 393. p. 59. [Google Scholar]
- Robinson, P.; North, W. Compact floating-deck modulator for the HAX transmitter. In Proceedings of the Twentieth Conference Record on Power Modulator Symposium, Myrtle Beach, SC, USA, 23–25 June 1992; pp. 41–44. [Google Scholar] [CrossRef]
- James, B. Re-Entrant Double-Staggered Ladder Circuit. U.S. Patent 4866343A, 12 September 1989. [Google Scholar]
- Corbett, E.; Rossini, P.; Gallon, D.; Hotz, A. Pointing and tracking servo for the Haystack Auxiliary antenna (HAX). In Proceedings of the First IEEE Conference on Control Applications, Dayton, OH, USA, 13–16 September 1992; Volume 2, pp. 1134–1139. [Google Scholar] [CrossRef]
- Available online: https://orbitaldebris.jsc.nasa.gov/measurements/radar.html (accessed on 9 March 2024).
- Ruiz, G.; Patzelt, T.; Leuschake, L.; Loffeld, O. Autonomous tracking of space objects with the FGAN tracking and imaging radar. In Proceedings of the Informatik 2006—Informatik fur Menschen, Band 1, Bonn: Gesellschaft fur Informatik e.V., Dresden, Germany, 2–6 October 2006; pp. 349–353. Available online: https://dl.gi.de/handle/20.500.12116/23700 (accessed on 9 March 2024).
- Karamanavis, V.; Dirks, H.; Fuhrmann, L.; Schlichthaber, F.; Egli, N.; Patzelt, T.; Klare, J. Characterization of deorbiting satellites and space debris with radar. Adv. Sp. Res. 2023, 72, 3269–3281. [Google Scholar] [CrossRef]
- Mayhan, J.; O’Donnell, W.; Willner, D. The Cobra Gemini radar. In Proceedings of the 1996 IEEE National Radar Conference, Ann Arbor, MI, USA, 13–16 May 1996; pp. 380–385. [Google Scholar] [CrossRef]
- Rejto, S. Radar open systems architecture and applications. In Proceedings of the IEEE 2000 International Radar Conference, Alexandria, VA, USA, 12 May 2000; pp. 654–659. [Google Scholar] [CrossRef]
- Nelson, J. Radar open system architecture provides net centricity. IEEE Aerosp. Elect. Syst. Mag. 2010, 25, 17–20. [Google Scholar] [CrossRef]
- MIT Lincoln Laboratory. 2012 Annual Report, Page 17. Available online: https://archive.ll.mit.edu/publications/Annual_Report_2012.pdf (accessed on 9 March 2024).
- Missile Defense Agency. Flight Test Infrastructure Data Sheet, SS Pacific Tracker, 16-MDA-8889, Attachment 5. 14 October 2016. Available online: https://govtribe.com/file/government-file/mda17dtrfi01-attachment-5-xtr-1-tts-2-fact-sheet-dot-pdf (accessed on 9 March 2024).
- Czerwinski, M.; Usoff, J. Development of the Haystack Ultrawideband Satellite Imaging Radar. Linc. Lab. J. 2014, 21, 28–44. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol21_no1/21_1_3_Czerwinski.pdf (accessed on 9 March 2024).
- Waggener, N. Construction of the HUSIR antenna. Linc. Lab. J. 2014, 21, 45–82. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol21_no1/21_1_5_Waggener.pdf (accessed on 9 March 2024).
- Usoff, J.; Clarke, M.; Liu, C.; Silver, M. Optimizing the HUSIR antenna surface. Linc. Lab. J. 2014, 21, 83–105. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol21_no1/21_1_6_Usoff.pdf (accessed on 9 March 2024).
- MacDonald, M.; Anderson, J.; Lee, R.; Gordon, D.; McGrew, G. The HUSIR W-band transmitter. Linc. Lab. J. 2014, 21, 106–114. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol21_no1/21_1_4_MacDonald.pdf (accessed on 9 March 2024).
- Eshbaugh, J.; Morrison, R.; Hoen, E.; Hiett, T.; Benitz, G. HUSIR signal processing. Linc. Lab. J. 2014, 21, 115–133. Available online: https://archive.ll.mit.edu/publications/journal/pdf/vol21_no1/21_1_7_Eshbaugh.pdf (accessed on 9 March 2024).
- Kauffman, J.; Rajagopalan, G.; Akiyama, K.; Fish, V.; Lonsdale, C.; Matthews, L.; Pillai, T. The Haystack telescope as an astronomical instrument. Galaxies 2023, 11, 9. [Google Scholar] [CrossRef]
- Jacobs, J.; Kennedy, T. Haystack Ultra-Wideband Satellite Imaging Radar Measurements of the Orbital Debris Environment: 2018; NASA/TP-2020-5006606; National Aeronautics and Space Administration: Washington, DC, USA, 2018.
- Rodenbeck, C.; Tierney, B.; Park, J.; Parent, M.; Depuma, C.; Bauder, C.; Pizzillo, T.; Jaffe, P.; Simakauskas, B.; Mayhan, T. Terrestrial microwave power beaming. IEEE J. Microw. 2021, 2, 28–43. [Google Scholar] [CrossRef]
- Blank, M.; Borchard, P.; Cauffman, S.; Felch, K. Design and demonstration of W-band gyrotron amplifiers for radar applications. In Proceedings of the 2007 Joint 32nd International Conference on Infrared and Millimeter Waves, Cardiff, UK, 2–9 September 2007; pp. 358–361. [Google Scholar] [CrossRef]
- Doane, J. Propagation and Mode Coupling in Corrugated and Smooth-wall Circular Waveguides, Ch. 5. In Infrared and Millimeter Waves, Vol. 13, Millimeter Components and Techniques, Part IV; Button, K., Ed.; Academic Press: Orlando, FL, USA, 1985. [Google Scholar]
- Kempkes, M.; Hawkey, T.; Gaudreau, M.; Phillips, R. W-band transmitter upgrade for the Haystack Ultra-wideband Satellite Imaging Radar. In Proceedings of the 2006 IEEE International Vacuum Electronics Conference held Jointly with 2006 IEEE International Vacuum Electron Sources, Monterey, CA, USA, 25–27 April 2006; pp. 551–552. [Google Scholar] [CrossRef]
- Maiwald, F.; Lin, R.; Dengler, R.; Smith, S.; Pearson, J.; Mehdi, I.; Gaier, T.; Crowley, J. High output power low noise amplifier chains at 100 GHz. In Proceedings of the 18th International Symposium on Space Terahertz Technology, Pasadena, CA, USA, 21–23 March 2007; pp. 131–134. [Google Scholar]
- MacDonald, M. Measured thermal dynamics of the HUSIR antenna and Haystack Radome. IEEE Trans. Antennas Prop. 2013, 61, 2441–2448. [Google Scholar] [CrossRef]
- Antebi, J.; Kan, F. Replacement of elevation structure to upgrade Haystack 37-m radio telescope. In Proceedings of the Astronomical Structures and Mechanisms Technology, Glasgow, UK, 21–22 June 2004; Volume 5495. [Google Scholar] [CrossRef]
- Doyle, K.; Brenner, M.; Antebi, J.; Kan, F.; Valentine, D. RF-mechanical performance for the Haystack radio telescope. In Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 24 September 2011; Volume 8125. [Google Scholar] [CrossRef]
- Eshbaugh, J.; Clarke, M.; Maglathlin, G. Haystack Antenna Control System Design Document. Project Report HUSIR-8, MIT Lincoln Laboratory, Defense Technical Information Center Report ESC-TR-2010-071. 7 December 2010. Available online: https://apps.dtic.mil/sti/tr/pdf/ADA533478.pdf (accessed on 9 March 2024).
- MacDonald, M. An overview of radomes for large ground-based antennas. IEEE Aerosp. Elect. Syst. Mag. 2019, 34, 36–43. [Google Scholar] [CrossRef]
- Beals, D.; Abouzahra, M.; Schoenfeld, M.; MacGibbon, P. Millstone Hill Radar L-band sensitivity upgrade. In Proceedings of the 2023 International Applied Computational Electromagnetics Society Symposium (ACES), Monterey/Seaside, CA, USA, 26–30 March 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Grimes, D.; MacDonald, M. Enabling deep space radar with EM simulation. In Proceedings of the 2023 International Applied Computational Electromagnetics Society Symposium (ACES), Monterey/Seaside CA, USA, 26–30 March 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Abouzahra, M.; MacDonald, M.; Lee, R.; Grimes, D.; Simakauskas, B.; Lopez, N.; Eckert, C.; Usoff, J. Upgrading the HUSIR radar for deep-space satellite imaging. In Proceedings of the 2022 IEEE/MTT-S International Microwave Symposium—IMS 2022, Denver, CO, USA, 19–24 June 2022; pp. 429–432. [Google Scholar] [CrossRef]
- Lee, R.; Simakauskas, B.; Eckert, C.; Abouzahra, M. Development of the HUSIR dual-band feed. In Proceedings of the 2022 19th European Radar Conference (EuRAD), Milan, Italy, 28–30 September 2022; pp. 29–32. [Google Scholar] [CrossRef]
- Lopez, N.; MacDonald, M.; Abouzahra, M. LSSC Solid-state high-power amplifiers. In Proceedings of the 2022 19th European Radar Conference (EuRAD), Milan, Italy, 28–30 September 2022; pp. 25–28. [Google Scholar] [CrossRef]
- Soric, J.; Kolias, N.; Saunders, J.; Kotce, J.; Brown, A.; Rodenbeck, C.; Gyurcsik, R. A 100-Watt GaN SSPA. IEEE Microw. Wirel. Comp. Lett. 2022, 32, 712–715. [Google Scholar] [CrossRef]
- Soric, J.; Kolias, N.; Saunders, J.; Kotce, J.; Gyurcsik, R.; Abouzhara, M.; MacDonald, M. A 92-100 GHz 100 W SSPA for the HUSIR Deep-Space Upgrade. In Proceedings of the 54th European Microwave Conference (EuMC), Paris, France, 22–27 September 2024. (In press). [Google Scholar]
- Available online: https://orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/odqnv26i1.pdf (accessed on 9 March 2024).
- Available online: https://spacenews.com/space-surveillance-telescope-developed-by-the-u-s-begins-operations-in-australia/ (accessed on 9 March 2024).
- Available online: https://www.jhuapl.edu/work/projects/deep-space-advanced-radar-capability-darc-technology-demonstration (accessed on 9 March 2024).
- Available online: https://www.spaceforce.mil/News/Article-Display/Article/3604036/ (accessed on 9 March 2024).
- Lee, C.; Rodriguez-Alvarez, N.; Giorgini, J.D.; Jao, J.S.; Majid, W.; Naudet, C.J.; Oudrhiri, K.; Yang, Y.-M. Cis-lunar space debris radar capability and feasibility. In Proceedings of the 2023 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2023. [Google Scholar] [CrossRef]
- Available online: http://echo.jpl.nasa.gov/ (accessed on 9 March 2024).
Radar * | Construction | RF Parameters | Observation Parameters |
---|---|---|---|
MHR | 25.6 m dia. antenna aperture 12-horn monopulse feed | 1.3 GHz center freq. 20 MHz bandwidth | |
3.0 MW peak power | 50 dB reference SNR ** | ||
42.6°N, 71.4°W | 300 kW average power * | Deep space capable | |
Cobra Gemini-S | 4.5 m dia. antenna aperture Compatible with radome Transportable | S band 300 MHz bandwidth 50 kW avg. power | 0.8 m range accuracy |
ALCOR | 12.2 m dia. antenna aperture 4-horn monopulse feed 20.7 m dia. radome 9.4°N, 167.5°E | 5.67 GHz center freq. 512 MHz bandwidth 3 MW peak power 6.0 kW average power | 0.4 m range accuracy 100 urad angle accuracy 50 cm image resolution 23 dB reference SNR ** |
Cobra Gemini-X | 4.5 m dia. antenna aperture | X band | 0.25 m range accuracy |
Compatible with radome Transportable | 1 GHz bandwidth 35 kW avg. power | ||
LRIR/HUSIR-X | 36.6 m dia. antenna aperture 4-horn monopulse feed | 10.0 GHz center freq. 1 GHz bandwidth | 25 cm image resolution |
45.7 m dia. radome | 400 kW peak power | 53 dB reference SNR ** | |
42.6°N, 71.4°W | 120 kW average power | Deep space capable | |
HAX | 12.2 m dia. antenna aperture 4 horn monopulse feed | 16.7 GHz center freq. 2 GHz bandwidth | |
20.7 m dia. radome 42.6°N, 71.4°W | 40 kW peak power | 12 cm image resolution 36 dB reference SNR ** | |
MMW | 13.7 m dia. antenna aperture 4 horn monopulse feed 20.7 m dia. radome 9.4°N, 167.5°E | 35 GHz center freq. 4 GHz bandwidth 60 kW peak power | 40 urad angle accuracy 6 cm image resolution 26 dB reference SNR ** |
HUSIR-W | 36.6 m dia. antenna aperture 4-horn monopulse feed 45.7 m dia. radome 42.6°N, 71.4°W | 96 GHz center freq. 8 GHz bandwidth 1 kW peak power 400 W average power (50 kW Ppk in future *) | 3 cm image resolution 34 dB reference SNR ** (Deep space cap. in future *) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
MacDonald, M.; Abouzahra, M.; Stambaugh, J. Overview of High-Power and Wideband Radar Technology Development at MIT Lincoln Laboratory. Remote Sens. 2024, 16, 1530. https://doi.org/10.3390/rs16091530
MacDonald M, Abouzahra M, Stambaugh J. Overview of High-Power and Wideband Radar Technology Development at MIT Lincoln Laboratory. Remote Sensing. 2024; 16(9):1530. https://doi.org/10.3390/rs16091530
Chicago/Turabian StyleMacDonald, Michael, Mohamed Abouzahra, and Justin Stambaugh. 2024. "Overview of High-Power and Wideband Radar Technology Development at MIT Lincoln Laboratory" Remote Sensing 16, no. 9: 1530. https://doi.org/10.3390/rs16091530
APA StyleMacDonald, M., Abouzahra, M., & Stambaugh, J. (2024). Overview of High-Power and Wideband Radar Technology Development at MIT Lincoln Laboratory. Remote Sensing, 16(9), 1530. https://doi.org/10.3390/rs16091530