SAM-Induced Pseudo Fully Supervised Learning for Weakly Supervised Object Detection in Remote Sensing Images
Abstract
:1. Introduction
- An SSIM module is proposed to address the issue of the SIs that are mined solely depending on the CS being unreliable. The SSIM module mines the SIs according to the OQS, which can indicate the comprehensive characteristic of the object category and the object completeness;
- An SPGTM strategy is proposed to break the bottleneck of object localization brought by the SS or EB. The SPGTM strategy is utilized to mine PGT instances, for which the localization is more accurate than traditional proposals by fully making use of the advantages of SAM, and then, the PFSOD head is trained by using the PGT instances;
- To our best knowledge, this is the first attempt to build a WSOD model by using the vision foundation model. It is worth noting that our SPFS model gives a unified solution of how to improve the localization capability of the WSOD model by using the segmentation technique; in other words, SAM is not the only choice for segmentation, and it can be replaced by better segmentation models in the future.
2. Related Works
3. Basic WSOD Framework
3.1. Weakly Supervised Deep Detection Network
3.2. Online Instance Classifier Refinement
3.3. Bounding Box Regression
4. Proposed Method
4.1. Overview
4.2. Segment Anything Model
4.3. SAM-Induced Seed Instance Mining
4.4. SAM-Based Pseudo-Ground Truth Mining
4.5. Pseudo-Fully Supervised Training of Object-Detection Head
Algorithm 1 SPGTM. |
Input: B and // B denotes the assemble of all SAMBs, and denotes the assemble of the SIs of all categories in the kth ICR branch. Output: Assemble the PGT instance in the kth PFSOD head ()
|
4.6. Overall Training Loss and Inference
5. Experiments
5.1. Experiment Setup
5.1.1. Datasets
5.1.2. Metrics
5.1.3. Implementation Details
5.2. Parameter Analysis
5.2.1. Parameter
5.2.2. Parameter K
5.3. Ablation Study
5.4. Comparisons with Other Methods
5.4.1. Comparisons in Terms of mAP
5.4.2. Comparisons in Terms of CorLoc
5.5. Subjective Evaluation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
WSOD | weakly supervised object detection |
RSI | remote sensing image |
SI | seed instance |
PGT | pseudo-ground truth |
SSIM | SAM-induced seed instance mining |
SPGTM | SAM-based pseudo-ground truth mining |
OCS | object completeness score |
OQS | object quality score |
PFSOD | pseudo-fully supervised object detection |
References
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Washington, DC, USA, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef]
- Qian, X.; Wu, B.; Cheng, G.; Yao, X.; Wang, W.; Han, J. Building a Bridge of Bounding Box Regression Between Oriented and Horizontal Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–9. [Google Scholar] [CrossRef]
- Li, L.; Yao, X.; Wang, X.; Hong, D.; Cheng, G.; Han, J. Robust Few-Shot Aerial Image Object Detection via Unbiased Proposals Filtration. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–11. [Google Scholar] [CrossRef]
- Cheng, G.; Li, Q.; Wang, G.; Xie, X.; Min, L.; Han, J. SFRNet: Fine-Grained Oriented Object Recognition via Separate Feature Refinement. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–10. [Google Scholar] [CrossRef]
- Xie, X.; Lang, C.; Miao, S.; Cheng, G.; Li, K.; Han, J. Mutual-Assistance Learning for Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 15171–15184. [Google Scholar] [CrossRef]
- Xie, X.; Cheng, G.; Li, Q.; Miao, S.; Li, K.; Han, J. Fewer is more: Efficient object detection in large aerial images. Sci. China Inf. Sci. 2024, 67, 112106. [Google Scholar] [CrossRef]
- Liang, Y.; Feng, J.; Zhang, X.; Zhang, J.; Jiao, L. MidNet: An anchor-and-angle-free detector for oriented ship detection in aerial images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–13. [Google Scholar] [CrossRef]
- Qian, X.; Huo, Y.; Cheng, G.; Gao, C.; Yao, X.; Wang, W. Mining High-Quality Pseudoinstance Soft Labels for Weakly Supervised Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [Google Scholar] [CrossRef]
- Qian, X.; Huo, Y.; Cheng, G.; Yao, X.; Li, K.; Ren, H.; Wang, W. Incorporating the completeness and difficulty of proposals into weakly supervised object detection in remote sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1902–1911. [Google Scholar] [CrossRef]
- Qian, X.; Li, C.; Wang, W.; Yao, X.; Cheng, G. Semantic segmentation guided pseudo label mining and instance re-detection for weakly supervised object detection in remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2023, 119, 103301. [Google Scholar] [CrossRef]
- Qian, X.; Wang, C.; Li, C.; Li, Z.; Zeng, L.; Wang, W.; Wu, Q. Multiscale Image Splitting Based Feature Enhancement and Instance Difficulty Aware Training for Weakly Supervised Object Detection in Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 7497–7506. [Google Scholar] [CrossRef]
- Xie, X.; Cheng, G.; Feng, X.; Yao, X.; Qian, X.; Han, J. Attention Erasing and Instance Sampling for Weakly Supervised Object Detection. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–10. [Google Scholar] [CrossRef]
- Wu, Z.; Wen, J.; Xu, Y.; Yang, J.; Li, X.; Zhang, D. Enhanced spatial feature learning for weakly supervised object detection. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 961–972. [Google Scholar] [CrossRef]
- Wu, Z.; Wen, J.; Xu, Y.; Yang, J.; Zhang, D. Multiple instance detection networks with adaptive instance refinement. IEEE Trans. Multimed. 2021, 25, 267–279. [Google Scholar] [CrossRef]
- Zhang, D.; Li, H.; Zeng, W.; Fang, C.; Cheng, L.; Cheng, M.M.; Han, J. Weakly Supervised Semantic Segmentation via Alternate Self-Dual Teaching. IEEE Trans. Image Process. 2023, 72, 1. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, G.; Zeng, W.; Li, L.; Han, J. Generalized weakly supervised object localization. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 5395–5406. [Google Scholar] [CrossRef]
- Tong, W.; Chen, W.; Han, W.; Li, X.; Wang, L. Channel-attention-based DenseNet network for remote sensing image scene classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 60, 4121–4132. [Google Scholar] [CrossRef]
- Chen, W.; Ouyang, S.; Tong, W.; Li, X.; Zheng, X.; Wang, L. GCSANet: A global context spatial attention deep learning network for remote sensing scene classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 60, 1150–1162. [Google Scholar] [CrossRef]
- Tekumalla, R.; Banda, J.M. TweetDIS: A large twitter dataset for natural disasters built using weak supervision. In Proceedings of the 2022 IEEE International Conference on Big Data (Big Data), Osaka, Japan, 17–20 December 2022; Volume 60, pp. 4816–4823. [Google Scholar] [CrossRef]
- Presa-Reyes, M.; Tao, Y.; Chen, S.C.; Shyu, M.L. Deep learning with weak supervision for disaster scene description in low-altitude imagery. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–10. [Google Scholar] [CrossRef]
- Tang, W.; Deng, C.; Han, Y.; Huang, Y.; Zhao, B. SRARNet: A unified framework for joint superresolution and aircraft recognition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 327–336. [Google Scholar] [CrossRef]
- He, Q.; Sun, X.; Yan, Z.; Li, B.; Fu, K. Multi-object tracking in satellite videos with graph-based multitask modeling. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, M.; Cheng, X.; Shi, L.; Gamba, P.; Wang, H. Dynamic Low-Rank and Sparse Priors Constrained Deep Autoencoders for Hyperspectral Anomaly Detection. IEEE Trans. Instrum. Meas. 2023, 73, 2500518. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, M.; Cheng, X.; Zhou, K.; Zhao, S.; Wang, H. Hyperspectral Anomaly Detection via Sparse Representation and Collaborative Representation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 946–961. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, M.; Cheng, X.; Zhou, K.; Zhao, S.; Wang, H. Dual Collaborative Constraints Regularized Low-Rank and Sparse Representation via Robust Dictionaries Construction for Hyperspectral Anomaly Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2009–2024. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, M.; Lin, S.; Li, Y.; Wang, H. Deep Self-Representation Learning Framework for Hyperspectral Anomaly Detection. IEEE Trans. Instrum. Meas. 2023, 73, 5002016. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, M.; Lin, S.; Zhou, K.; Zhao, S.; Wang, H. Two-Stream Isolation Forest Based on Deep Features for Hyperspectral Anomaly Detection. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Huo, Y.; Qian, X.; Li, C.; Wang, W. Multiple Instance Complementary Detection and Difficulty Evaluation for Weakly Supervised Object Detection in Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Bilen, H.; Vedaldi, A. Weakly supervised deep detection networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2846–2854. [Google Scholar]
- Tang, P.; Wang, X.; Bai, X.; Liu, W. Multiple instance detection network with online instance classifier refinement. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2843–2851. [Google Scholar]
- Ren, Z.; Yu, Z.; Yang, X.; Liu, M.Y.; Lee, Y.J.; Schwing, A.G.; Kautz, J. Instance-aware, context-focused, and memory-efficient weakly supervised object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10598–10607. [Google Scholar]
- Yin, Y.; Deng, J.; Zhou, W.; Li, L.; Li, H. Fi-wsod: Foreground information guided weakly supervised object detection. IEEE Trans. Multimed. 2022, 25, 1890–1902. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, Y.; Li, X. Multiple instance graph learning for weakly supervised remote sensing object detection. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–12. [Google Scholar] [CrossRef]
- Uijlings, J.R.; Van De Sande, K.E.; Gevers, T.; Smeulders, A.W. Selective search for object recognition. Int. J. Comput. Vis. 2013, 104, 154–171. [Google Scholar] [CrossRef]
- Wei, Y.; Shen, Z.; Cheng, B.; Shi, H.; Xiong, J.; Feng, J.; Huang, T. Ts2c: Tight box mining with surrounding segmentation context for weakly supervised object detection. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 434–450. [Google Scholar] [CrossRef]
- Tang, P.; Wang, X.; Bai, S.; Shen, W.; Bai, X.; Liu, W.; Yuille, A. PCL: Proposal Cluster Learning for Weakly Supervised Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 176–191. [Google Scholar] [CrossRef]
- Cheng, G.; Xie, X.; Chen, W.; Feng, X.; Yao, X.; Han, J. Self-guided proposal generation for weakly supervised object detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Xia, R.; Li, G.; Huang, Z.; Meng, H.; Pang, Y. CBASH: Combined backbone and advanced selection heads with object semantic proposals for weakly supervised object detection. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 6502–6514. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, C.; Wen, J.; Xu, Y.; Yang, J.; Li, X. Selecting high-quality proposals for weakly supervised object detection with bottom-up aggregated attention and phase-aware loss. IEEE Trans. Image Process. 2022, 32, 682–693. [Google Scholar] [CrossRef]
- Feng, X.; Han, J.; Yao, X.; Cheng, G. Progressive contextual instance refinement for weakly supervised object detection in remote sensing images. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8002–8012. [Google Scholar] [CrossRef]
- Feng, X.; Han, J.; Yao, X.; Cheng, G. TCANet: Triple context-aware network for weakly supervised object detection in remote sensing images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 6946–6955. [Google Scholar] [CrossRef]
- Zitnick, C.L.; Dollár, P. Edge boxes: Locating object proposals from edges. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part V 13, 2014. pp. 391–405. [Google Scholar] [CrossRef]
- Lin, C.; Wang, S.; Xu, D.; Lu, Y.; Zhang, W. Object instance mining for weakly supervised object detection. Proc. AAAI Conf. Artif. Intell. 2020, 34, 11482–11489. [Google Scholar] [CrossRef]
- Feng, J.; Liang, Y.; Zhang, X.; Zhang, J.; Jiao, L. SDANet: Semantic-embedded density adaptive network for moving vehicle detection in satellite videos. IEEE Trans. Image Process. 2023, 32, 1788–1801. [Google Scholar] [CrossRef]
- Feng, J.; Bai, G.; Li, D.; Zhang, X.; Shang, R.; Jiao, L. MR-selection: A meta-reinforcement learning approach for zero-shot hyperspectral band selection. IEEE Trans. Geosci. Remote Sens. 2022, 61, 1–20. [Google Scholar] [CrossRef]
- Qian, X.; Zeng, Y.; Wang, W.; Zhang, Q. Co-Saliency Detection Guided by Group Weakly Supervised Learning. IEEE Trans. Multimed. 2023, 25, 1810–1818. [Google Scholar] [CrossRef]
- Feng, J.; Gao, Z.; Shang, R.; Zhang, X.; Jiao, L. Multi-complementary generative adversarial networks with contrastive learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–18. [Google Scholar] [CrossRef]
- Qian, X.; Zhang, N.; Wang, W. Smooth giou loss for oriented object detection in remote sensing images. Remote Sens. 2023, 15, 1259. [Google Scholar] [CrossRef]
- Seo, J.; Bae, W.; Sutherland, D.J.; Noh, J.; Kim, D. Object Discovery via Contrastive Learning for Weakly Supervised Object Detection. In Proceedings of the Computer Vision—ECCV 2022; Springer Nature: Cham, Switzerland, 2022; pp. 312–329. [Google Scholar]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment anything. arXiv 2023, arXiv:2304.02643. [Google Scholar] [CrossRef]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 15–17 June 2016; pp. 2921–2929. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar] [CrossRef]
- Cheng, G.; Zhou, P.; Han, J. Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7405–7415. [Google Scholar] [CrossRef]
- Li, K.; Cheng, G.; Bu, S.; You, X. Rotation-Insensitive and Context-Augmented Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2337–2348. [Google Scholar] [CrossRef]
- Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [Google Scholar] [CrossRef]
- Deselaers, T.; Alexe, B.; Ferrari, V. Weakly supervised localization and learning with generic knowledge. Int. J. Comput. Vis. 2012, 100, 275–293. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Hosang, J.; Benenson, R.; Schiele, B. Learning non-maximum suppression. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4507–4515. [Google Scholar]
- Feng, X.; Yao, X.; Cheng, G.; Han, J. Weakly Supervised Rotation-Invariant Aerial Object Detection Network. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 14126–14135. [Google Scholar] [CrossRef]
- Chen, Z.; Fu, Z.; Jiang, R.; Chen, Y.; Hua, X.S. Slv: Spatial likelihood voting for weakly supervised object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 12995–13004. [Google Scholar] [CrossRef]
- Feng, X.; Yao, X.; Cheng, G.; Han, J.; Han, J. SAENet: Self-Supervised Adversarial and Equivariant Network for Weakly Supervised Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, P.; Qiao, P.; Wang, Z.; Dai, H.; Shen, T.; Li, D.; Dou, Y. Rethinking Segmentation Guidance for Weakly Supervised Object Detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 4069–4073. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, X.; Peng, Z.; Jia, X.; Tang, X.; Jiao, L. MOL: Towards accurate weakly supervised remote sensing object detection via Multi-view nOisy Learning. ISPRS J. Photogramm. Remote Sens. 2023, 196, 457–470. [Google Scholar] [CrossRef]
- Chen, M.; Tian, Y.; Li, Z.; Li, E.; Liang, Z. Online Progressive Instance-Balanced Sampling for Weakly Supervised Vibration Damper Detection. IEEE Trans. Instrum. Meas. 2023, 72, 1–14. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, X.; Peng, Z.; Tang, X.; Zhou, H.; Jiao, L. Absolute wrong makes better: Boosting weakly supervised object detection via negative deterministic information. arXiv 2022, arXiv:2204.10068. [Google Scholar] [CrossRef]
- Wan, F.; Wei, P.; Jiao, J.; Han, Z.; Ye, Q. Min-entropy latent model for weakly supervised object detection. In Proceedings of the IEEE Conference Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1297–1306. [Google Scholar]
- Yao, X.; Feng, X.; Han, J.; Cheng, G.; Guo, L. Automatic weakly supervised object detection from high spatial resolution remote sensing images via dynamic curriculum learning. IEEE Trans. Geosci. Remote Sens. 2020, 59, 675–685. [Google Scholar] [CrossRef]
Baseline | SSIM | SPGTM | mAP | CorLoc |
---|---|---|---|---|
✓ | 20.10 | 42.79 | ||
✓ | ✓ | 25.73 | 48.61 | |
✓ | ✓ | 26.81 | 49.89 | |
✓ | ✓ | ✓ | 30.90 | 56.41 |
Method | Airplane | Ship | Storage Tank | Baseball Diamond | Tennis Court | Basketball Court | Ground Track Field | Harbor | Bridge | Vehicle | mAP |
---|---|---|---|---|---|---|---|---|---|---|---|
Fast R-CNN [1] | 90.91 | 90.60 | 89.29 | 47.32 | 100.00 | 85.85 | 84.86 | 88.22 | 80.29 | 69.84 | 82.72 |
Faster R-CNN [2] | 90.90 | 86.30 | 90.53 | 98.24 | 89.72 | 69.64 | 100.00 | 80.11 | 61.49 | 78.14 | 84.51 |
WSDDN [30] | 30.08 | 41.72 | 35.98 | 88.90 | 12.86 | 23.85 | 99.43 | 13.94 | 1.92 | 3.60 | 35.12 |
OICR [31] | 13.66 | 67.35 | 57.16 | 55.16 | 13.64 | 39.66 | 92.80 | 0.23 | 1.84 | 3.73 | 34.52 |
PCL [37] | 26.00 | 63.76 | 2.50 | 89.80 | 64.45 | 76.07 | 77.94 | 0.00 | 1.30 | 15.67 | 39.41 |
MELM [69] | 80.86 | 69.30 | 10.48 | 90.17 | 12.84 | 20.14 | 99.17 | 17.10 | 14.17 | 8.68 | 42.29 |
MIST [32] | 69.69 | 49.16 | 48.55 | 80.91 | 27.08 | 79.85 | 91.34 | 46.99 | 8.29 | 13.36 | 51.52 |
DCL [70] | 72.70 | 74.25 | 37.05 | 82.64 | 36.88 | 42.27 | 83.95 | 39.57 | 16.82 | 35.00 | 52.11 |
PCIR [41] | 90.78 | 78.81 | 36.40 | 90.80 | 22.64 | 52.16 | 88.51 | 42.36 | 11.74 | 35.49 | 54.97 |
MIG [34] | 88.69 | 71.61 | 75.17 | 94.19 | 37.45 | 47.68 | 100.00 | 27.27 | 8.33 | 9.06 | 55.95 |
TCA [42] | 89.43 | 78.18 | 78.42 | 90.80 | 35.27 | 50.36 | 90.91 | 42.44 | 4.11 | 28.30 | 58.82 |
SAE [64] | 82.91 | 74.47 | 50.20 | 96.74 | 55.66 | 72.94 | 100.00 | 36.46 | 6.33 | 31.89 | 60.76 |
SPG [38] | 90.42 | 81.00 | 59.53 | 92.31 | 35.64 | 51.44 | 99.92 | 58.71 | 16.99 | 42.99 | 62.89 |
MHQ-PSL [9] | 87.60 | 81.00 | 57.30 | 94.00 | 36.40 | 80.40 | 100.00 | 56.90 | 9.80 | 35.60 | 63.80 |
SGPLM-IR [11] | 90.70 | 79.90 | 69.30 | 97.50 | 41.60 | 77.50 | 100.00 | 44.40 | 17.20 | 33.50 | 65.20 |
RINet [62] | 90.30 | 86.30 | 79.60 | 90.70 | 58.20 | 80.40 | 100.00 | 57.70 | 18.90 | 41.60 | 70.40 |
AE-IS [13] | 91.00 | 88.20 | 78.30 | 93.20 | 60.60 | 82.40 | 100.00 | 60.40 | 19.60 | 45.80 | 72.00 |
SPFS (ours) | 91.23 | 83.32 | 73.64 | 90.56 | 73.10 | 85.28 | 100.00 | 63.59 | 10.24 | 63.52 | 73.45 |
Method | Airplane | Airport | Baseball Field | Basketball Court | Bridge | Chimney | Dam | Expressway Service Area | Expressway Toll Station | Golf Field | |
---|---|---|---|---|---|---|---|---|---|---|---|
Fast R-CNN [1] | 44.17 | 66.79 | 66.96 | 60.49 | 15.56 | 72.28 | 51.95 | 65.87 | 44.76 | 72.11 | |
Faster R-CNN [2] | 50.28 | 62.60 | 66.04 | 80.88 | 28.80 | 68.17 | 47.26 | 58.51 | 48.06 | 60.44 | |
WSDDN [30] | 9.06 | 39.68 | 37.81 | 20.16 | 0.25 | 12.28 | 0.57 | 0.65 | 11.88 | 4.90 | |
OICR [31] | 8.70 | 28.26 | 44.05 | 18.22 | 1.30 | 20.15 | 0.09 | 0.65 | 29.89 | 13.80 | |
PCL [37] | 21.52 | 35.19 | 59.80 | 23.49 | 2.95 | 43.71 | 0.12 | 0.90 | 1.49 | 2.88 | |
MELM [69] | 28.14 | 3.23 | 62.51 | 28.72 | 0.06 | 62.51 | 0.21 | 28.39 | 13.09 | 15.15 | |
MIST [32] | 32.01 | 39.87 | 62.71 | 28.97 | 7.46 | 12.87 | 0.31 | 5.14 | 17.38 | 51.02 | |
DCL [70] | 20.89 | 22.70 | 54.21 | 11.50 | 6.03 | 61.01 | 0.09 | 1.07 | 31.01 | 30.87 | |
PCIR [41] | 30.37 | 36.06 | 54.22 | 26.60 | 9.09 | 58.59 | 0.22 | 9.65 | 36.18 | 32.59 | |
MIG [34] | 22.20 | 52.57 | 62.76 | 25.78 | 8.47 | 67.42 | 0.66 | 8.85 | 28.71 | 57.28 | |
TCA [42] | 25.13 | 30.84 | 62.92 | 40.00 | 4.13 | 67.78 | 8.07 | 23.80 | 29.89 | 22.34 | |
SAE [64] | 20.57 | 62.41 | 62.65 | 23.54 | 7.59 | 64.62 | 0.22 | 34.52 | 30.62 | 55.38 | |
SPG [38] | 31.32 | 36.66 | 62.79 | 29.10 | 6.08 | 62.66 | 0.31 | 15.00 | 30.10 | 35.00 | |
MHQ-PSL [9] | 29.10 | 49.80 | 70.90 | 41.40 | 7.20 | 45.50 | 0.20 | 35.40 | 36.80 | 60.80 | |
SGPLM-IR [11] | 39.10 | 64.60 | 64.40 | 26.90 | 6.30 | 62.30 | 0.90 | 12.20 | 26.30 | 55.30 | |
RINet [62] | 26.20 | 57.40 | 62.70 | 25.10 | 9.90 | 69.20 | 1.40 | 13.30 | 36.20 | 51.40 | |
AE-IS [13] | 31.80 | 50.90 | 63.20 | 29.40 | 8.90 | 68.70 | 1.30 | 15.10 | 35.50 | 51.60 | |
SPFS (ours) | 35.94 | 62.89 | 66.08 | 30.53 | 9.71 | 69.77 | 1.93 | 12.88 | 34.90 | 50.49 | |
Method | Ground Track Field | Harbor | Overpass | Ship | Stadium | Storage Tank | Tennis Court | Train Station | Vehicle | Windmill | mAP |
Fast R-CNN [1] | 62.93 | 46.18 | 38.03 | 32.13 | 70.98 | 35.04 | 58.27 | 37.91 | 19.20 | 38.10 | 49.98 |
Faster R-CNN [2] | 67.00 | 43.86 | 46.87 | 58.48 | 52.37 | 42.35 | 79.52 | 48.02 | 34.77 | 65.44 | 55.49 |
WSDDN [30] | 42.53 | 4.66 | 1.06 | 0.70 | 63.03 | 3.95 | 6.06 | 0.51 | 4.55 | 1.14 | 13.27 |
OICR [31] | 57.39 | 10.66 | 11.06 | 9.09 | 59.29 | 7.10 | 0.68 | 0.14 | 9.09 | 0.41 | 16.50 |
PCL [37] | 56.36 | 16.76 | 11.05 | 9.09 | 57.62 | 9.09 | 2.47 | 0.12 | 4.55 | 4.5 | 18.19 |
MELM [69] | 41.05 | 26.12 | 0.43 | 9.09 | 8.28 | 15.02 | 20.57 | 9.81 | 0.04 | 0.53 | 18.65 |
MIST [32] | 49.48 | 5.36 | 12.24 | 29.43 | 35.53 | 25.36 | 0.81 | 4.59 | 22.22 | 0.80 | 22.18 |
DCL [70] | 56.45 | 5.05 | 2.65 | 9.09 | 63.65 | 9.09 | 10.36 | 0.02 | 7.27 | 0.79 | 20.19 |
PCIR [41] | 58.51 | 8.60 | 21.63 | 12.09 | 64.28 | 9.09 | 13.62 | 0.30 | 9.09 | 7.52 | 24.92 |
MIG [34] | 47.73 | 23.77 | 0.77 | 6.42 | 54.13 | 13.15 | 4.12 | 14.76 | 0.23 | 2.43 | 25.11 |
TCA [42] | 53.85 | 24.84 | 11.06 | 9.09 | 46.40 | 13.74 | 30.98 | 1.47 | 9.09 | 1.00 | 25.82 |
SAE [64] | 52.70 | 17.57 | 6.85 | 9.09 | 51.59 | 15.43 | 1.69 | 14.44 | 1.41 | 9.16 | 27.10 |
SPG [38] | 48.02 | 27.11 | 12.00 | 10.02 | 60.04 | 15.10 | 21.00 | 9.92 | 3.15 | 0.06 | 25.77 |
MHQ-PSL [9] | 48.50 | 14.00 | 25.10 | 18.50 | 48.90 | 11.70 | 11.90 | 3.50 | 11.30 | 1.70 | 28.60 |
SGPLM-IR [11] | 60.60 | 9.40 | 23.10 | 13.40 | 57.40 | 17.70 | 1.50 | 14.00 | 11.50 | 3.50 | 28.50 |
RINet [62] | 53.90 | 28.60 | 4.80 | 9.10 | 52.70 | 15.80 | 20.60 | 12.90 | 9.10 | 4.70 | 28.30 |
AE-IS [13] | 52.30 | 28.80 | 13.30 | 11.20 | 56.90 | 16.30 | 22.40 | 14.00 | 8.00 | 2.60 | 29.10 |
SPFS (ours) | 56.92 | 25.29 | 26.30 | 15.18 | 52.29 | 12.62 | 25.81 | 13.88 | 11.61 | 3.10 | 30.90 |
Method | Airplane | Ship | Storage Tank | Baseball Diamond | Tennis Court | Basketball Court | Ground Track Field | Harbor | Bridge | Vehicle | mAP |
---|---|---|---|---|---|---|---|---|---|---|---|
WSDDN [30] | 22.32 | 36.81 | 39.95 | 92.48 | 17.96 | 24.24 | 99.26 | 14.83 | 1.69 | 2.89 | 35.24 |
OICR [31] | 29.41 | 83.33 | 20.51 | 81.76 | 40.85 | 32.08 | 86.60 | 7.41 | 3.70 | 14.44 | 40.01 |
PCL [37] | 11.76 | 50.00 | 12.82 | 98.65 | 84.51 | 77.36 | 90.72 | 0.00 | 9.26 | 15.56 | 45.06 |
MELM [69] | 85.96 | 77.42 | 21.43 | 98.33 | 10.71 | 43.48 | 95.00 | 40.00 | 11.76 | 14.63 | 49.87 |
MIST [32] | 90.20 | 82.50 | 80.30 | 98.60 | 48.50 | 87.40 | 98.30 | 66.50 | 14.60 | 35.80 | 70.30 |
PCIR [41] | 100.00 | 93.06 | 64.10 | 99.32 | 64.79 | 79.25 | 89.69 | 62.96 | 13.26 | 52.22 | 71.87 |
MIG [34] | 97.79 | 90.26 | 87.18 | 98.65 | 54.93 | 64.15 | 100.00 | 74.07 | 12.96 | 21.57 | 70.16 |
TCA [42] | 96.91 | 91.78 | 95.13 | 88.65 | 66.90 | 62.83 | 95.98 | 54.18 | 19.63 | 55.50 | 72.76 |
SAE [64] | 97.06 | 91.67 | 87.81 | 98.65 | 40.86 | 81.13 | 100.00 | 70.37 | 14.81 | 52.22 | 73.46 |
SPG [38] | 98.06 | 92.67 | 70.08 | 99.65 | 51.86 | 80.12 | 96.20 | 72.44 | 12.99 | 60.02 | 73.41 |
MHQ-PSL [9] | 94.40 | 86.60 | 68.50 | 97.80 | 69.80 | 87.50 | 100.00 | 68.60 | 16.00 | 56.60 | 74.60 |
SGPLM-IR [11] | 98.20 | 93.80 | 89.30 | 99.10 | 50.20 | 88.90 | 100.00 | 71.00 | 12.30 | 51.20 | 75.40 |
AE-IS [13] | 98.30 | 94.20 | 72.40 | 100.00 | 56.80 | 83.60 | 98.40 | 76.80 | 18.20 | 62.40 | 76.10 |
SPFS (ours) | 95.49 | 90.32 | 81.53 | 90.18 | 70.10 | 89.94 | 100.0 | 78.90 | 19.38 | 70.81 | 78.67 |
Method | Airplane | Airport | Baseball Field | Basketball Court | Bridge | Chimney | Dam | Expressway Service Area | Expressway Toll Station | Golf Field | |
---|---|---|---|---|---|---|---|---|---|---|---|
WSDDN [30] | 5.72 | 59.88 | 94.24 | 55.94 | 4.92 | 23.40 | 1.03 | 6.79 | 44.52 | 12.75 | |
OICR [31] | 15.98 | 51.45 | 94.77 | 55.79 | 2.63 | 23.89 | 0.00 | 4.82 | 56.68 | 22.42 | |
PCL [37] | 61.14 | 46.86 | 95.39 | 63.61 | 7.32 | 95.07 | 0.21 | 5.71 | 5.14 | 50.77 | |
MELM [69] | 76.98 | 28.94 | 92.66 | 63.01 | 13.00 | 90.09 | 0.21 | 37.88 | 16.96 | 44.62 | |
MIST [32] | 91.60 | 53.20 | 93.50 | 66.30 | 10.80 | 30.70 | 1.50 | 14.03 | 35.20 | 47.50 | |
PCIR [41] | 93.10 | 45.60 | 95.50 | 68.30 | 3.60 | 92.10 | 0.20 | 5.40 | 58.40 | 47.50 | |
MIG [34] | 76.98 | 46.86 | 95.39 | 63.61 | 23.00 | 95.07 | 0.21 | 16.96 | 57.88 | 50.77 | |
TCA [42] | 81.58 | 51.33 | 96.17 | 73.45 | 5.03 | 94.69 | 15.89 | 32.79 | 45.95 | 48.56 | |
SAE [64] | 91.20 | 69.37 | 95.48 | 67.52 | 18.88 | 97.78 | 0.21 | 70.54 | 54.32 | 51.43 | |
SPG [38] | 80.48 | 32.04 | 98.68 | 65.00 | 15.20 | 96.08 | 22.52 | 16.99 | 46.08 | 50.96 | |
MHQ-PSL [9] | 85.50 | 68.90 | 96.80 | 75.80 | 11.60 | 94.70 | 0.80 | 67.50 | 60.50 | 46.50 | |
SGPLM-IR [11] | 92.20 | 58.30 | 97.80 | 74.20 | 16.20 | 95.20 | 0.30 | 51.30 | 56.20 | 52.30 | |
RINet [62] | 92.70 | 80.90 | 92.70 | 69.50 | 8.60 | 90.10 | 0.20 | 71.30 | 62.00 | 65.50 | |
AE-IS [13] | 91.40 | 78.60 | 96.10 | 68.80 | 16.00 | 92.30 | 22.80 | 68.90 | 60.60 | 62.70 | |
SPFS (ours) | 90.82 | 80.13 | 98.59 | 65.50 | 19.45 | 90.38 | 2.35 | 70.61 | 62.24 | 66.51 | |
Method | Ground Track Field | Harbor | Overpass | Ship | Stadium | Storage Tank | Tennis Court | Train Station | Vehicle | Windmill | mAP |
WSDDN [30] | 89.90 | 5.45 | 10.00 | 22.96 | 98.54 | 79.61 | 15.06 | 3.45 | 11.56 | 3.22 | 32.44 |
OICR [31] | 91.41 | 18.18 | 18.70 | 31.80 | 98.28 | 81.29 | 7.45 | 1.22 | 15.83 | 1.98 | 34.77 |
PCL [37] | 89.39 | 42.12 | 19.78 | 37.94 | 97.93 | 80.65 | 13.77 | 0.20 | 10.50 | 6.94 | 41.52 |
MELM [69] | 88.08 | 49.39 | 15.65 | 28.19 | 98.28 | 82.97 | 22.75 | 10.34 | 4.62 | 2.23 | 43.34 |
MIST [32] | 87.10 | 38.60 | 23.40 | 50.70 | 80.50 | 89.20 | 22.40 | 11.50 | 22.20 | 2.40 | 43.60 |
PCIR [41] | 88.60 | 15.80 | 5.20 | 39.50 | 98.10 | 85.60 | 13.40 | 56.50 | 9.70 | 0.60 | 46.10 |
MIG [34] | 89.39 | 42.12 | 19.78 | 37.94 | 97.93 | 80.65 | 13.77 | 10.34 | 10.50 | 6.94 | 46.80 |
TCA [42] | 85.26 | 38.91 | 20.17 | 30.63 | 84.59 | 91.46 | 56.28 | 3.79 | 10.45 | 1.25 | 48.41 |
SAE [64] | 88.28 | 48.03 | 2.28 | 33.56 | 14.11 | 83.35 | 65.59 | 19.88 | 16.41 | 2.85 | 49.42 |
SPG [38] | 89.18 | 49.45 | 22.00 | 35.16 | 98.61 | 90.04 | 32.56 | 12.73 | 9.98 | 2.34 | 48.30 |
MHQ-PSL [9] | 75.20 | 50.50 | 28.30 | 39.70 | 92.60 | 77.00 | 55.10 | 10.10 | 20.90 | 5.60 | 53.20 |
SGPLM-IR [11] | 91.70 | 48.60 | 23.00 | 32.70 | 98.80 | 89.30 | 43.50 | 19.50 | 18.30 | 4.00 | 53.20 |
RINet [62] | 85.10 | 51.40 | 15.70 | 44.60 | 98.60 | 80.30 | 14.80 | 22.70 | 6.90 | 2.60 | 52.80 |
AE-IS [13] | 88.20 | 50.90 | 23.40 | 40.20 | 98.80 | 91.50 | 33.20 | 18.40 | 12.30 | 2.50 | 55.90 |
SPFS (ours) | 93.28 | 50.81 | 25.56 | 42.61 | 95.78 | 83.55 | 49.54 | 15.69 | 18.89 | 5.88 | 56.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, X.; Lin, C.; Chen, Z.; Wang, W. SAM-Induced Pseudo Fully Supervised Learning for Weakly Supervised Object Detection in Remote Sensing Images. Remote Sens. 2024, 16, 1532. https://doi.org/10.3390/rs16091532
Qian X, Lin C, Chen Z, Wang W. SAM-Induced Pseudo Fully Supervised Learning for Weakly Supervised Object Detection in Remote Sensing Images. Remote Sensing. 2024; 16(9):1532. https://doi.org/10.3390/rs16091532
Chicago/Turabian StyleQian, Xiaoliang, Chenyang Lin, Zhiwu Chen, and Wei Wang. 2024. "SAM-Induced Pseudo Fully Supervised Learning for Weakly Supervised Object Detection in Remote Sensing Images" Remote Sensing 16, no. 9: 1532. https://doi.org/10.3390/rs16091532
APA StyleQian, X., Lin, C., Chen, Z., & Wang, W. (2024). SAM-Induced Pseudo Fully Supervised Learning for Weakly Supervised Object Detection in Remote Sensing Images. Remote Sensing, 16(9), 1532. https://doi.org/10.3390/rs16091532