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Abstract: Flash droughts tend to cause severe damage to agriculture due to their characteristics of
sudden onset and rapid intensification. Early detection of the response of vegetation to flash droughts
is of utmost importance in mitigating the effects of flash droughts, as it can provide a scientific basis
for establishing an early warning system. The commonly used method of determining the response
time of vegetation to flash drought, based on the response time index or the correlation between the
precipitation anomaly and vegetation growth anomaly, leads to the late detection of irreversible drought
effects on vegetation, which may not be sufficient for use in analyzing the response of vegetation to flash
drought for early earning. The evapotranspiration-based (ET-based) drought indices are an effective
indicator for identifying and monitoring flash drought. This study proposes a novel approach that
applies cross-spectral analysis to an ET-based drought index, i.e., Evaporative Stress Anomaly Index
(ESAI), as the forcing and a vegetation-based drought index, i.e., Normalized Vegetation Anomaly
Index (NVAI), as the response, both from medium-resolution remote sensing data, to estimate the
time lag of the response of vegetation vitality status to flash drought. An experiment on the novel
method was carried out in North China during March–September for the period of 2001–2020 using
remote sensing products at 1 km spatial resolution. The results show that the average time lag of
the response of vegetation to water availability during flash droughts estimated by the cross-spectral
analysis over North China in 2001–2020 was 5.9 days, which is shorter than the results measured by
the widely used response time index (26.5 days). The main difference between the phase lag from the
cross-spectral analysis method and the response time from the response time index method lies in the
fundamental processes behind the definitions of the vegetation response in the two methods, i.e., a
subtle and dynamic fluctuation signature in the response signal (vegetation-based drought index) that
correlates with the fluctuation in the forcing signal (ET-based drought index) versus an irreversible
impact indicated by a negative NDVI anomaly. The time lag of the response of vegetation to flash
droughts varied with vegetation types and irrigation conditions. The average time lag for rainfed
cropland, irrigated cropland, grassland, and forest in North China was 5.4, 5.8, 6.1, and 6.9 days,
respectively. Forests have a longer response time to flash droughts than grasses and crops due to their
deeper root systems, and irrigation can mitigate the impacts of flash droughts. Our method, based
on cross-spectral analysis and the ET-based drought index, is innovative and can provide an earlier
warning of impending drought impacts, rather than waiting for the irreversible impacts to occur. The
information detected at an earlier stage of flash droughts can help decision makers in developing more
effective and timely strategies to mitigate the impact of flash droughts on ecosystems.

Keywords: flash drought; cross-spectral analysis; ET-based drought index; vegetation response;
time lag
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1. Introduction

Traditionally, drought is often seen as a slowly evolving natural phenomenon caused
by a lack of precipitation over some period [1]. Recently, flash drought, characterized by
a sudden onset and rapid intensification with destructive impact, has drawn significant
attention [2–6]. In addition to precipitation deficits, flash droughts are often accompanied
by abnormally high air temperature, low humidity, strong solar radiation, and sometimes
strong winds that intensify the rapid depletion of soil moisture [7–9]. The rapid onset
of flash droughts leaves insufficient time to deal with their impacts, which can be more
destructive to vegetation, especially agricultural crops, than a more slowly developing
drought [10]. In recent decades, with global warming, flash droughts are becoming more
frequent, and their impacts are becoming more severe [11–14]. For example, the flash
drought that occurred in 2010 in southwestern Russia resulted in a grain harvest dropping
to less than half the previous year [15]. The 2017 flash drought in the northern Great
Plains of the US destroyed major field crops, leading to significant yield losses in corn and
soybeans [16]. The flash drought that occurred in the Yangtze River basin in China during
August–October 2022 destroyed crop growth and caused billions of dollars in economic
losses [17]. Although the damage caused by flash droughts has increased over the last
decade, there is still a lack of understanding of how vegetation responds to flash droughts.
Quantifying the response of vegetation to flash droughts is crucial for the development
and implementation of drought early warning systems.

In past decades, several remote sensing-based methods for monitoring droughts have
been developed, including methods based on vegetation indices, canopy temperature,
evapotranspiration, and microwave signals, and widely applied worldwide [18–27]. The
vegetation indices (VIs), such as the Normalized Difference Vegetation Index (NDVI) and
the Enhanced Vegetation Index (EVI), have been widely used to develop drought indices
or indicators to monitor vegetation health and assess the effect of water stress on veg-
etation [20–22]. Drought indicators based on vegetation index measure the stress and
the damage to vegetation vitality caused by drought after a period of drought develop-
ment [28]. In most previous studies, the time-lagged correlation analysis was widely used
to explore the response time of vegetation to drought by identifying the lagged time with
the maximum correlation coefficient between the NDVI anomaly and precipitation anomaly
or precipitation-based drought indices [29–33]. However, correlation analysis does not
provide accurate estimates of time lags, due to the complex non-linear relationship between
the vegetation activity and the environmental factors that caused droughts [34–36].

The response time index can determine the timing of the initial occurrence of the
negative anomaly in the vegetation growth condition affected by flash drought, which has
been widely used to explore the impact of flash drought on the ecosystem [37–42]. Zhang
and Yuan [37] assessed the response of ecosystems to flash drought using the response time
index based on observations at FLUXNET stations, demonstrating that there is a significant
difference in response time between savanna and forest. Zhang et al. [38] examined the
response of ecosystems to flash droughts in China using the response time index based on
MODIS satellite observations, showing that the net primary productivity (NPP) is more
sensitive to the occurrence of flash drought than the gross primary productivity (GPP)
and leaf area index (LAI), which is attributed to the vegetation respiratory process and
physiological process of photosynthesis.

Previous studies show that the response time of vegetation to drought, as measured by
methods based on time-lagged correlation analysis or the response time index, ranges from
a dozen days to a few months [29,31,32,37–39,43–45]. Although these methods are easy to
apply, they provide a response time when the ecosystem has experienced the destruction
of plant vitality. Such information on response time may not be useful in planning and
deploying appropriate interventions for drought, due to the irreversibility of the impact. It
is essential to understand the dynamic response of vegetation to water availability during
the course of a flash drought so that vegetation stress can be detected in time for appropriate
intervention before the ecosystem reaches irreversible damage; this is particularly crucial
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for mitigating the impact of flash droughts on agricultural yields. Previous studies have
proved that spectral analysis can quantify the time lag of the response of vegetation to
droughts [46–48]. van Hoek et al. [47] successfully applied cross-spectral analysis to long-
term satellite precipitation and NDVI data in northeastern China to investigate the temporal
response of the vegetation growth anomaly determined by the Normalized Vegetation
Anomaly Index (NVAI) to the precipitation anomaly. Therefore, an alternative method is to
use cross-spectral analysis, which simultaneously provides the strength of the relationship
and the phase lag for all significant periodic components of the forcing and response
signals, and is thus an effective method for quantifying the dynamic response of vegetation
ecosystems to flash droughts.

Several studies have investigated the relationship between satellite-derived vegetation
indices and flash drought identified by the rapid change in root-zone soil moisture [37–39,42].
The root-zone soil moisture data, however, have typically been derived from coarse spa-
tial datasets (e.g., 0.125◦ to 0.5◦) based on land surface models, which limits the ability
to provide fine-scale spatial patterns of flash droughts at the ecosystem scale. Drought
indices based on the ET fraction—the ratio of actual evapotranspiration (AET) to potential
evapotranspiration (PET) and related to available soil water, atmospheric water demand,
and available energy—are sensitive to rapidly changing soil moisture and have been consid-
ered an appropriate alternative to drought indicators based on root-zone soil moisture for
monitoring flash droughts [8,27,49–51]. ET-based drought indices, such as ESI (Evaporative
Stress Index), are metrics of anomalies in the ET fraction and can effectively characterize
soil moisture availability [27,52]. In addition, studies suggest that ET-based drought indices,
such as ESI and ESP [27,53], may provide better early warnings of drought than NDVI
anomalies, which may be used as metrics of water availability during droughts [8,28,53].

In recent decades, many regional and global-scale evapotranspiration data products
with the advantage of much higher spatial resolution (e.g., up to 1 km or even higher)
have been developed based on satellite observations and are more easily accessible, such
as the MODIS ET products [54] and the ETMonitor product [55,56]. Such data can be easily
applied to any ET-based drought indicator and will certainly benefit the identification
of the response of vegetation to flash drought at higher spatial resolution compared
to that based on root-zone soil moisture datasets with coarse spatial resolution. The
ETMonitor model has been developed based on a multi-process parameterization scheme
to estimate the evapotranspiration components of evapotranspiration (i.e., vegetation
transpiration, canopy rainfall interception loss, soil evaporation, water surface evaporation,
snow and ice sublimation), taking into account the simulation of the energy balance,
water balance, and plant physiological processes that control the water flux exchange
at the land surface–atmosphere interface [55,56]. The ETMonitor product provides a
spatiotemporal continuous distribution of actual evapotranspiration at moderate spatial
resolution (i.e., 1 km), which can describe the consistent spatiotemporal variability in
actual ET. Studies have shown that the ETMonitor products have good agreement with
in situ measurements from global flux tower sites, and perform better particularly in
presenting the spatial variation in ET in irrigated croplands and mountainous regions with
complex terrain [57,58]. Comparison studies over Africa and Thailand also showed the
good quality of the ETMonitor product [57,58].

Therefore, in this study, we proposed a novel algorithm that applies the cross-spectral
analysis to the ET-based index as an indicator of water availability (forcing signal) and
the vegetation anomaly index as an indicator of the response signal, both based on remote
sensing observations at moderate spatial resolution (i.e., 1 km), to investigate the dynamic
response of vegetation vigor to water availability during flash droughts. Specifically,
this research includes (1) applying the ESP-based method to identify flash drought in
North China over 2001–2020; (2) proposing a novel method that applies cross-spectral
analysis to an ET-based drought index and vegetation-based drought index from remote
sensing data to quantify the response time lag of vegetation to flash droughts; (3) assessing
the response time lag from the cross-spectral analysis and the response time from the
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previously established response time index method for further understanding the response
of vegetation to flash droughts; and (4) investigating the difference in the response of
different vegetation types to flash droughts.

The innovation of our study is twofold: (a) the use of ET-based indicators to identify
flash drought events and to characterize water availability during drought events, and
(b) the use of cross-spectral analysis to quantify the dynamic response of vegetation vigor
condition to water availability during drought events. Our method provides a finer insight
into the variability in the response of vegetation to water availability during a flash drought,
i.e., how much time do fluctuations in vegetation vigor conditions (i.e., NDVI anomaly) lag
behind fluctuations in water availability (i.e., ET-based drought index), which can capture
the response of vegetation to water stress much earlier than using the widely used method
(i.e., response time index).

2. Study Area and Materials
2.1. Study Area

The North China area was selected for this study because it is prone to drought. It
includes Hebei province, northern Henan province, Shandong province, Shanxi province,
Beijing, and Tianjin (Figure 1a,b). It belongs to the semi-humid and semi-arid continental
monsoon climate zone, with an annual mean temperature of 10.0–14.2 ◦C and an annual
mean precipitation of 500–1000 mm (Figure 1b). About 70% of the precipitation in the study
area occurs during the summer months (June–September) due to the monsoon climate.
The elevation provided by SRTM 90 m digital elevation data in the study area ranges from
0 to 2882 m (Figure 1c). The western part of the study area mainly included the Shanxi
province and western part of Hebei province, with significantly higher altitudes than the
eastern part. Future climate change is expected to amplify the risk, severity, and frequency
of droughts in North China, thereby exacerbating the impacts on local ecosystems and crop
production [59]. Consequently, there is an urgent need to investigate the characteristics of
flash droughts over North China.

North China is the major grain-producing area in China, mainly producing maize,
wheat, cotton, soybean, etc. This region produces 61% of wheat, 45% of corn, and 35% of
cotton in China. From an agricultural perspective, drought occurs when soil moisture is
insufficient in meeting the crop water requirements, resulting in yield losses. Crop water
requirements vary according to weather conditions and crop growth stages. The prevailing
irrigation schedule is designed to meet the water requirements of the double cropping
system with winter wheat and summer maize. The growing season for winter wheat is
typically from November to May, while the growing period for summer maize is from
June to August. In rainfed agriculture, it is common to cultivate only one crop per year,
such as spring maize or cotton. The growing period for spring maize is typically from
April to August.

2.2. ET Dataset

To identify and monitor flash drought, we used ET derived from the ETMonitor dataset
based on multi-source remote sensing (https://data.casearth.cn/thematic/GWRD_2023/272
(accessed on 1 April 2023)). The ETMonitor model estimates actual ET by integrating plant
transpiration, soil evaporation, vegetation canopy interception loss, water body evapo-
ration, and snow/ice sublimation, by considering the simulation of the energy balance,
water balance, and plant physiological processes that control the surface energy and water
exchanges [55]. ETMonitor is suitable for ET estimation under both homogeneous and
heterogeneous land surfaces [55,60], and it has been successfully applied at medium–high
resolution for various applications [61,62]. The validation result based on flux observations
from 251 ground flux sites around the world showed that the Root-Mean-Square Error
of daily ET from the ETMonitor product was 0.93 mm/day, which is better than other
mainstream global ET datasets [55]. Meanwhile, ETMonitor ET can capture the seasonal
dynamics of ET in water and snow-covered regions and performs better in presenting the
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spatial variation in ET in the irrigated cropland regions and mountainous regions with
complex terrain. The potential ET (PET) is also estimated using the Food and Agriculture
Organization Penman–Monteith equation [63]. Both the actual ET and PET from 2000 to
2021 have a spatial resolution of 1 km and temporal resolution of daily.
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Figure 1. The spatial distribution of (a) location in China; (b) mean annual precipitation (mm/year);
(c) altitudes (m); (d) land cover in 2019 from MCD12Q1 and IrriMap CN dataset over North China.
The mean annual precipitation was calculated using the Global Precipitation Measurement (GPM)
precipitation data product for the period 2001–2020.

2.3. Land Cover and Irrigation Datasets

To explore the response of different vegetation types to flash droughts, we used the
MODIS land cover products (MCD12Q1) based on the international geosphere biosphere
program (IGBP) classification (https://search.earthdata.nasa.gov/ (accessed on 1 January
2023)). The MCD12Q1 V6 product provides global land cover types annually with a spatial
resolution of 500 m derived from six different classification schemes for 2001–present. To fa-
cilitate the follow-up analysis, the 17 categories of IGBP were aggregated into six categories,
as shown in Table 1. The LULC data were resampled to 1 km resolution.

The MCD12Q1 land use dataset does not explicitly differentiate between irrigated and
rainfed croplands. In this study, we used the irrigated cropland maps in 2019 across China
derived from IrriMap_CN (http://doi.org/10.6084/m9.figshare.20363115 (accessed on 1
June 2023)). The IrriMap CN dataset provides annual irrigated cropland maps with a 500 m
resolution across China for 2000–2019 [64,65]. To match the spatial scale, this irrigated
cropland map in 2019 was resampled to 1 km resolution by using the majority resampling
method, which calculated the fractions of land cover classes in each 1 km pixel using the
500 m resolution data and assigned the land cover class according to the largest fraction of
the land cover class for each 1 km grid. Generally, the vegetation in this study area mainly
consists of forest, rainfed cropland, irrigated cropland, grassland, and others which occupy

https://search.earthdata.nasa.gov/
http://doi.org/10.6084/m9.figshare.20363115
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5%, 21%, 44%, 14%, and 16% of the total study area, respectively. The land cover used in
this study is shown in Figure 1d.

Table 1. The original IGBP classification and reclassification of land use.

Class IGBP Classes Reclassification

1 Evergreen needleleaf forests Forest
2 Evergreen broadleaf forests Forest
3 Deciduous needleleaf forests Forest
4 Deciduous broadleaf forests Forest
5 Mixed forests Forest
6 Closed shrublands Others
7 Opened shrublands Others
8 Woody savannas Forest
9 Savannas Forest
10 Grasslands Grassland
11 Permanent wetlands water
12 Croplands Cropland
13 Urban and built-up Urban
14 Cropland/natural vegetation mosaic Cropland
15 Snow and ice Others
16 Barren and sparsely vegetated Others
17 Water bodies water

2.4. NDVI Dataset

The Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices
product (MOD13A2 V6.1) (https://search.earthdata.nasa.gov/ (accessed on 1 January
2023)) provides the Normalized Difference Vegetation Index (NDVI) at a 1 km resolution
every 16 days. We applied the iHANTS (improved Harmonic Analysis of Time Series)
method [66] to reconstruct daily values of NDVI from the original 16-day NDVI data
(MOD13A2 V6.1). The time series of daily NDVI at 1 km for the period of 1 January 2001–31
December 2020 were generated. The iHANTS (improved Harmonic Analysis of Time
Series) method was updated from the original HANTS based on the Fourier transform,
which is commonly used in remote sensing image processing to reconstruct the missing
data and remove the noise [66–72]. The reconstructed daily NDVI did correctly capture the
phenology response of each land cover type, as shown in Figure 2. Irrigated cropland has
two crop cycles in a year, whereas rainfed cropland has only one crop cycle per year.
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3. Methods

This paper proposes a new method to quantify the response of vegetation conditions
to water availability during flash droughts by applying cross-spectral analysis to the
vegetation-index-based drought indicator (i.e., the Normalized Vegetation Anomaly Index,
NVAI) and an ET-based flash drought index (i.e., evaporative stress percentile, ESP). The
ESP describes the water availability. This method was applied over North China in the
growing season (March–September) during the period of 2001–2020. The workflow is
presented in Figure 3, and it consists following steps:

(1) Drought index calculation, which estimates the Evaporative Stress Anomaly Index
(ESAI) based on ET from the ETMonitor dataset and the Normalized Vegetation
Anomaly Index (NVAI) based on the reconstructed daily NDVI dataset.

(2) Flash drought identification, which identifies flash drought events and their char-
acteristics using the Evaporative Stress Percentile (ESP) using ET from the ETMoni-
tor dataset.

(3) Detection of the vegetation response to water availability during flash drought, which
applies the cross-spectral analysis method to detect the time lag between NVAI
and ESAI.

(4) Analysis of the advantages of the proposed method, which is compared with the
results using the response time index method.

We applied the 7-day moving window average to reduce the noise in the time series
of ET and the NDVI and to ensure the cross-spectral method can extract the information on
the response of the vegetation anomaly to the water availability.

Detailed information on each step is presented in the following sections.
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3.1. Drought Index Calculation
3.1.1. Evaporative Stress Anomaly Index

The evaporative stress ratio (ESR) is expressed as the physical relationship between
the actual evapotranspiration and potential evapotranspiration as follows [73]:

ESR =
AET
PET

(1)

where AET is the actual evapotranspiration and PET is the potential evaporation. The ESR
ranges from zero to one, indicating the water availability of an ecosystem from insufficient
water supply to optimal water conditions. In this study, the daily ET and PET time series
from the ETMonitor dataset during 2001–2020 were used and smoothed by applying a
7-day moving average filter to obtain a 7-day moving average ESR in daily steps. The 7-day
average ESR in daily steps was obtained using the ratio of 7-day ET to 7-day PET.

The Evaporative Stress Anomaly Index (ESAI) presents standardized anomalies of
ESR and can effectively capture flash drought events. The ESAI is defined as

ESAI =
ESR − ESRmean

ESRmax − ESRmin
(2)

where ESR, ESRmean, ESRmax, and ESRmin are the current, multi-year average, historical
maximum, and historical minimum values of ESR, respectively, for a given time period
(e.g., daily, weekly, or monthly) and for each pixel. The ESAI varies from −1 to 1. Negative
ESAI values indicate that vegetation is experiencing water stress, while positive ESAI
values indicate favorable moisture conditions or sufficient water availability. In this study,
the daily ET and PET time series from the ETMonitor dataset during 2001–2020 were
first smoothed by applying a 7-day moving window filter to obtain a 7-day moving average
ESR with a daily time step. By using a daily time step, the ESAI drought index retains the
higher temporal resolution. The 7-day moving average ESR in daily steps was then applied
to Equation (2) to obtain the daily step ESAI to be used in cross-spectral analysis.

3.1.2. Normalized Vegetation Anomaly Index

The vegetation health condition responds to drought and can be captured by vegetation-
index-based drought indicators. The NVAI evaluates the current NDVI in comparison to
the values in the same period in history, as defined by [20]

NVAI =
NDVI − NDVImean

NDVImax − NDVImin
(3)

where NDVI, NDVImean, NDVImax, and NDVImin are the current, historical average,
historical maximum, and historical minimum NDVI, respectively, for a given period and
pixel. The NVAI ranges from −1 to 1, characterizing changes in vegetation conditions
from extremely poor (−1) to favorable (1). In this study, we applied iHANTS [66] to the
original 16-day NDVI data (MOD13A2 V6.1) to obtain daily NDVI, and then applied a
7-day moving average filter to obtain the 7-day moving average NDVI in daily steps. The
7-day moving average NDVI in daily steps was then applied to Equation (3) to obtain the
daily step NVAI to be used in cross-spectral analysis.

3.2. Identification and Characteristics of Flash Drought
3.2.1. Flash Drought Identification

The Evaporative Stress Percentile (ESP) is the percentile of ESR of a period (e.g., weekly)
over the historical record of ESR in the same period in each pixel, which is proposed
by Li et al. [53] to detect flash drought. The ESP was calculated using the cumulative
distribution function of ESR (Figure 4). The ESP value that falls below a given value can be
linked to the severity of drought; the lower the ESP, the drier the condition compared to
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the historical record. Three criteria based on the weekly ESP are established to identify a
flash drought event [53]:

(1) Onset: the ESP decreases from above the 40th percentile to below the 20th percentile
with an average decline rate of no less than 6.5 percentile/week.

(2) Termination: the flash drought terminates when the ESP value rises above the 20th per-
centile and lasts for at least two weeks.

(3) Duration: flash droughts should last for at least 3 weeks.
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In this study, the ESP was calculated using the ETMonitor ET dataset and applied to
identity flash droughts over North China in the growing season (March–September) during
the period of 2001–2020.

3.2.2. Characteristics of Flash Drought

In this study, we investigated the spatiotemporal characteristics (numbers and average
duration) of flash droughts over North China during the growing season (March–September)
for the period of 2001–2020 based on the ESP. The characteristics of the flash droughts can
be described as follows:

(1) The number of flash droughts: the total number of flash drought events over the
selected study period.

(2) The duration of the flash drought: the number of days from the onset (the ESP dropped
to below the 20th percentile) to the recovery (ESP above the 20th percentile again).

3.3. Cross-Spectral Method

Cross-spectral analysis has been applied to multiple scientific research fields, which can
simultaneously study the relationship and corresponding time lag between two stationary
time series in the frequency domain [74,75]. This means that the oscillations in a forcing
signal precede the oscillations in the response signal. The cross-spectral analysis was
applied to the time series of ESAI and NVAI for each flash drought event identified by
the ESP-based approach (see Section 3.2) to investigate the response of vegetation to flash
drought over North China during the growing season (March–September) from 2001 to
2020. More precisely, the cross-spectral analysis provides a measure of the response of
oscillations in NVAI to oscillations in ESAI during each drought event. The specific steps
and detailed explanation of cross-spectral analysis are detailed below [47,76]:
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(1) Cross-coherence

Cross-coherence is a measure of the correspondence between the spectra of two signals:

Cxy( f ) =

∣∣Pxy( f )
∣∣2

Pxx( f )Pyy( f )
(4)

where Pxy( f ) is the cross-power spectral density between two signals x(t) and y(t) in the
frequency domain. Pxx( f ) and Pyy( f ) are the auto-spectral densities of signals x(t) and y(t)
at frequency f, respectively. The coherence value varies from 0 to 1. A coherence value of
1 indicates that the signals are highly correlated or related at that frequency. Conversely,
a coherence of 0 indicates that the two signals have unrelated spectral components at
that frequency.

(2) Gain:

The gain is the measure of the contribution of a specific frequency component from
one signal in the cross-spectrum of two signals. It provides information about how the
power or amplitude of a particular frequency component in one signal contributes to the
overall cross-spectrum of another signal, which is defined as

Cxy( f ) =

∣∣Pxy( f )
∣∣2√

Pxx( f )
(5)

where Pxy( f ) is the cross-power spectral density between two signals x(t) and y(t) in the
frequency domain. Pxx( f ) is the auto-spectral density of signal x(t) at frequency f. A higher
amplitude in the gain indicates that the first signal contributes more to the cross-spectrum
at that particular frequency.

(3) Phase spectrum

The phase spectrum is expressed in radians, which represents the phase difference
between signals x and y at a given frequency. The time lag (Φxy(t)) is expressed in units of
days and obtained from the phase spectrum as

Φxy(t) =
tan−1 img(Pxy( f ))

real(Pxy( f ))

2π f
(6)

where img
(

Pxy
)

is the imaginary part of Pxy( f ) and real
(

Pxy( f )
)

is the real part of Pxy( f ).

(4) Consistency test

To estimate the uncertainty of the phase spectrum, a Monte Carlo simulation was ap-
plied by using semi-random sampling to obtain the distribution of the phase spectrum [47].
The semi-random time series of x(t)ran, and y(t)ran are created using the following formula:

x(t)ran= Zx( f )e+ f t (7)

y(t)ran =

(
Zy( f )

√
1−Cxy( f )2

)
e+ f t + Zx( f )e+ f t (8)

where Zx( f ) and Zy( f ) are the Fourier transforms of the random realizations of the
time series x(t) and y(t) divided by the absolute sum of the norm of each realization,
and e+ f t represents the inverse Fourier transform. When the two signals do not have a
strong correlation at a given frequency, or the sample is insufficient, it will fail to pass the
consistency test.

To illustrate the cross-spectral analysis method, two artificial signals were created
with a certain visible correlation between the two series (Figure 5). The two time series
are presented in Figure 5a. According to the coherence spectrum (Figure 5b), significant
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relationships (coherence = 1.0) are identified at 0.05 Hz and 0.1 Hz, corresponding to com-
ponents with a period of 20 and 10 days, respectively. The 20-day and 10-day components
of X lag the components of Y by 2.1 and 8.3 days, respectively (Figure 5d). The gain can
more accurately capture the impact of signal components at different frequencies on the
relationship between the forcing and response signals, thereby leading to a better under-
standing of the lag relationship between the signals. According to the gain of the frequency
components (Figure 5c), it is found that the 10-day component contributes most to the
cross-spectrum of the two signals, accounting for about 92% of the total signal amplitude,
while the 20-day component contributes less, accounting for about 8% of the total signal
amplitude. The 20-day and 10-day components of X lag the components of Y by 2.1 and
8.3 days, respectively (Figure 5d). The time lag between X and Y is weighted by the gains
of the corresponding components. We multiply the time lag corresponding to the 10-day
period by 92% and the time lag corresponding to the 20-day period by 8% to obtain the
total time lag. This results in X responding to Y with a delay of 7.8 days.

This means that X responds to Y with a delay of 7.8 days. The cross-spectral analysis
method was implemented using the Nitime library, an open-source programming language
library for Python. This library provides a comprehensive set of tools for time series
analysis, including spectral analysis and coherence estimation.
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Figure 5. Cross-spectral analysis of time series of two signals with Y as forcing and X as response:
(a) Sample time series; (b) the coherence spectrum (with two frequency components with significant
relationship marked by the grey vertical lines); (c) gain; (d) the time lag and uncertainty of X and Y
signals (the red dashed lines indicate the time lags corresponding to the two frequency components
with significant relationship marked by the grey vertical lines).

3.4. Response Time Index

Previous studies used the response time index to qualify the response of vegetation to
flash drought [37–42]. In this study, we analyzed the response time derived using response
time index method together with the time lag from the spectral analysis method to further
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understand the response of vegetation to water availability during the flash droughts. In
this study, the ESP-based approach was used to detect the onset of flash droughts and the
NVAI was used to assess the impact of flash drought on vegetation health conditions. The
vegetation response time to flash drought in the response time index method is defined
as the time difference between the onset of flash drought ( t20↓

)
and the time at which the

NVAI becomes negative (tN) (Figure 6).
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Figure 6. A schematic representation of estimating the response time of vegetation to flash droughts
by using ESP and NVAI. During the flash drought onset development duration (FDOD, the light pink
area), the soil water condition was drying, and the ESP decreased from above the 40th percentile (at t0)
to below the 20th percentile (at t20↓) with an average decline rate of no less than 6.5 percentile/week.
The time t20↓ is the onset of the flash drought where the ESP falls below the 20th percentile. tN is
the time when NVAI becomes negative for the first time during the flash drought event. The period
tN − t20↓ denotes the vegetation response time to flash drought defined by the response time index
method. FDPD (flash drought persistence duration; the light orange area) and FDRD (flash drought
recovery duration; the light green area) were defined in Li et al. [53]. The blue dashed line indicates
the 40th percentile of ESP, and the red dashed line indicates both the 20th percentile of ESP and the
zero NVAI.

4. Results
4.1. Flash Droughts over North China from 2001 to 2020

In this section, the Evaporative Stress Percentile (ESP) calculated using the ETMonitor
product was applied to analyze the characteristics (frequency and duration) of flash drought
over North China in the growing seasons (March–September) during 2001–2020. The
specific calculation method for the frequency, duration, and rate of intensification of
historical flash droughts is described in Section 3.2.2. During 2001–2020, 14 flash drought
events were detected across all of North China (Figure 7a). The areas with fewer than
10 flash drought events in 2001–2020 were mainly located in central Shanxi province,
i.e., the eastern part of the Loess Plateau. The hot spot region, which experienced more than
15 drought events in 2001–2020, was in eastern Hebei province, northern and eastern Henan
province, and most areas of Shandong province. These areas typically experience dry-hot
winds in summer, also known as heat stress, an agrometeorological disaster characterized
by high temperature, low humidity, and high wind speed [77], which could increase the
likelihood of flash drought developing [78]. The average duration of flash droughts is
37 days over North China, with the longest average durations located over southern Henan
province, western Shanxi province, and most areas of Shandong province (Figure 7b). Flash
droughts in the southern areas generally last longer than those in the north of North China.
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4.2. Time Lag of Vegetation Response to Flash Droughts over North China during
March–September for the Period 2001–2020

Having identified flash drought events as documented in Section 4.1, we can now
apply two complementary indicators of the response of the vegetation health condition to
water availability: the phase (time) lag by the cross-spectral analysis method defined in
Section 3.3 and the response time index defined in Section 3.4. The response time index
method uses ESP and NVAI to identify the vegetation response time to flash droughts
in this study. We focus on flash drought events where vegetation is severely impacted,
i.e., NVAI drops below 0 during flash droughts. It should be noted that the response time
and the phase (time) lag provide complementary information on the response of vegetation
to water availability. The response time indicates how long past the onset of a drought
event a clear impact is made on vegetation condition (i.e., a negative NVAI appears). The
phase (time) lag provides a finer insight into the variability in vegetation response during a
drought event, i.e., how much time are fluctuations in vegetation conditions (i.e., NVAI)
lagging behind fluctuations in water availability (i.e., ESAI).
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4.2.1. Time Lag Obtained Using Cross-Spectral Analysis

In this section, cross-spectral analysis was applied to NVAI and ESAI time series during
flash droughts to investigate in more detail the response of vegetation to fluctuations in
water availability (Figure 8a). The time lag in central Henan, northern Hebei, and central
Shandong provinces was about 1 to 10 days. In the southern parts of Shanxi, northern
Shandong, southern Hebei, and western Henan provinces, the time lag of the response of
vegetation to ESAI was about 5 to 20 days. The regional average time lag obtained through
cross-spectral analysis was 5.9 days (Figure 8a).
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Figure 8. Spatial distribution and histogram of temporal vegetation response to flash droughts over
North China during March–September for the period 2001–2020 by using (a) cross-spectral analysis
and (b) response time index, respectively (note that blank (white) areas in the spatial maps are areas
where the NVAI is above 0, i.e., vegetation was not severely affected during flash droughts).

4.2.2. Combination with the Response Time Index

The response time of vegetation to flash droughts over North China during March–
September for the period of 2001–2020 was estimated and its spatial and frequency distri-
butions were evaluated (Figure 8b). The response time in western Henan, northwestern
Shandong, western Hebei, and most parts of Shanxi province was more than 20 days. The
response time in eastern Shandong province and central Henan province was about 10 to
20 days. The regional average response time was 26.5 days (Figure 8b). Table 2 summarizes
the statistics of the time lag from the cross-spectral analysis method and the response time
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from the response time index method over the study area for the flash drought events in
2001–2020. It is not surprising that the time lag obtained by using the cross-spectral analysis
and the response time index differ greatly: they relate to different processes determining
the forcing (ESAI)–response (NVAI) relationship during a given drought event, i.e., an irre-
versible impact indicated by a negative NVAI vs. a subtle signature in the response signal
(NVAI) correlated with the forcing signal (ESAI). The response time is an overall measure
of the time difference between the initial stage in the onset of a flash drought event and a
likely irreversible impact on vegetation conditions, i.e., a negative NVAI, which highlights
vegetation that has been severely affected. The time lag measured by cross-spectral analysis
is significantly shorter than the response time, because it is a measure of the resilience of
vegetation in adapting to fluctuations in water availability during a drought event. In other
words, the time lag reflects the time required for vegetation to respond and adapt to a
fluctuation in water availability, i.e., the cross-spectral analysis detects a faster response of
vegetation, which might be relevant to prompt drought mitigation actions.

Table 2. The mean time lag from the cross-spectral analysis method and the response time from the
response time index method across provinces over the study area for the flash drought events. The
values within the parentheses are the range of minimum to maximum values.

North China Beijing Tianjin Hebei Shanxi Shandong Henan

Time lag
(days)

5.9
(1–15.3)

5.8
(1–13.5)

5.2
(1–12.2)

5.7
(1–13.8)

6.1
(1–15.3)

6.2
(1–14.1)

5.9
(1–13.1)

Response
time (days)

26.5
(1–61)

28.0
(1–61)

25.5
(2–50)

26.2
(1–56)

28.5
(1–61)

27.0
(2–55)

26.0
(1–55)

4.3. Temporal Response of Different Vegetation Types to Water Availability during Flash Droughts

The temporal response during flash drought events of vegetation types was different
(Figure 9). This evaluation was performed by stratifying the maps obtained by using the
cross-spectral analysis and response time index for the four main land cover classes over
North China. Forest had the longest time lag (mean: 6.8 days), followed by irrigated crop
(mean: 6.1 days), rainfed crop (mean: 5.8 days), and grass (mean: 5.4 days) (Figure 9a). With
regard to the response time index, forest had the longest response time (mean: 34.7 days),
followed by irrigated crop (mean: 27.1 days), rainfed crop (mean: 26.3 days), and grass
(mean: 25.9 days) (Figure 9b).

Interestingly, both the time lag and the response time for forests were longer than
those for the other vegetation types. Forests typically have deep root systems, allowing
them to absorb water from deeper soil layers. As a result, forests can better maintain their
water supply during drought periods compared to other vegetation types, thereby delaying
the impact of drought on the vegetation, i.e., a longer response time [37,39,79,80]. Likewise,
the larger soil water reservoir increases the inertia in the response to fluctuations in water
availability, i.e., a longer time lag. In contrast, the time lag for grasslands was shorter than
those for other vegetation types. Grasslands, with their shallow root systems, have limited
ability to absorb water from deeper soil layers [42,81]. As expected, the response time
of irrigated croplands to flash drought was longer than that of rainfed croplands. This
can be attributed to the beneficial effects of irrigation in mitigating drought impacts and
enhancing the resistance of croplands to drought conditions [82,83]. In most agricultural
areas of North China, more than 80% of irrigation water is sourced from groundwater,
reducing the reliance of crops on local precipitation [84]. The rainfed cropland is more
vulnerable to flash droughts because of limited artificial intervention, and water supply is
highly dependent on local precipitation [85].
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Figure 9. Violin plot of temporal response of vegetation condition (NVAI) of irrigated cropland,
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China during March–September for the period 2001–2020 by using (a) cross-spectral analysis and
(b) response time index. The blue dot shows the mean value, and black dotted lines show the 25th,
50th, and 75th percentile values of each distribution.

5. Discussion
5.1. Advantage of ET-Based Drought Indicator Derived from Satellite Remote
Sensing Observations

Flash droughts are often accompanied by precipitation deficits, abnormally high air
temperatures, low humidity, and high solar radiation [8,49]. These meteorological factors
can quickly increase the atmospheric evaporative demand, thus leading to an increase in
transpiration by vegetation, which can rapidly deplete soil moisture. Subsequently, when
the soil water supply is insufficient, the AET will rapidly decrease even if theses extreme
meteorological conditions continue to increase the atmospheric evaporative demand [7].
As soil moisture dry-down continues, flash droughts lead to negative effects on vegetation,
such as decreases in photosynthetic activity and canopy vitality [7,80]. Vegetation indices
are less able to detect incipient plant stress in the early stages of drought development,
because the signal becomes strong after significant damage to the vegetation has already
occurred. ET-based drought indices measure anomalies in the ET fraction and can detect
incipient plant stress, thus providing an early warning of incipient drought impacts on
vegetation. Therefore, vegetation-based drought indicators typically lag behind ET-based
drought indicators by several days, even several weeks [8,86]. The time lag is affected by
many factors such as vegetation type and soil water retention capacity [47].

Previous studies investigating the response of vegetation to flash droughts have
used root-zone soil moisture datasets with coarser grids (e.g., 25–50 km) to identify flash
droughts [37–39,42]. In this study, the ET-based drought index based on the ETMonitor
product with a finer spatial resolution (1 km) provided a better understanding of the
spatial patterns of the response of vegetation to water availability during flash droughts. In
addition, previous research on the response of vegetation to drought has rarely focused on
the weekly timescale, but rather on the monthly timescale [29,32,44]. The ET-based drought
index based on the ETMonitor product provides relatively clean time series showing
changes in water availability on a timescale of days.

5.2. Advantage of Cross-Spectral Analysis

Previous studies used the response time index to quantify the temporal response of
vegetation to flash drought [31–35]. Although the response time index method is easy to
apply, the disadvantage of this method is that it only provides a single, overall measure for
each drought event, i.e., the time lag between the onset of a drought and the first negative
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anomaly in NDVI, i.e., conditions with a severe impact on vegetation. This seriously limits
the development of the early warning system that requires the timeliness monitoring of the
response of vegetation to droughts.

This study differs from previous studies in two aspects: the ET-based drought index
based on remote sensing data (see discussion in Section 5.1) and cross-spectral analysis.
Another unique aspect of this study is the use of cross-spectral analysis. In this study, the
time lag during drought events was estimated by cross-spectral analysis of continuous
forcing (i.e., ESAI) and response (i.e., NVAI) to explore the finer response of vegetation to
fluctuations in water availability during flash drought events. This method has three ad-
vantages. Firstly, it provides a better understanding of the response of vegetation to water
availability by measuring temporal variability during each drought event. Second, unlike
the time response index method and correlation analysis, cross-spectral analysis is applied
in the frequency domain and provides independent phase lag estimates for all coherent
spectral components of the temporal forcing and response signals through the phase cross-
spectrum. Noise appears as small-amplitude components in the frequency domain, which
can be filtered out. Last but not least, the time lag estimated through cross-spectral analysis
is significantly shorter than that of the response time index. This is due to the inherently
different nature of the two temporal metrics. In this study, cross-spectral analysis estimates
the time lag between fluctuations in the forcing (i.e., ESAI) and response (i.e., NVAI) signals
during each separate drought event. This leads to capturing the fine details in the dynamic
response of vegetation conditions to variable water availability during a period of time that
is generally drier than normal. Contrariwise, the response time index is an overall estimate
of the temporal separation of the onset of a drought event and the appearance of severe
impacts, i.e., the first occurrence of a negative NVAI during the drought event. The latter is
likely to be associated with an irreversible drought impact on vegetation, limiting the de-
velopment of an early warning system that requires the timely monitoring of the response
of vegetation to droughts. This suggests that our new method using cross-spectral analysis
may provide information relevant to the design and deployment of adaptive interventions
to mitigate drought impacts by, e.g., sustainable and flexible water resource management.

5.3. Limitations and Future Work

However, our study also has several limitations. It should be noted that the cross-
spectral analysis method requires a large number of samples to accurately estimate the
spectral density. If the time series are short, the method may produce biased estimates
of the spectral density and fail to pass consistency checks. The response of vegetation to
flash drought can be influenced by a number of factors, including crop type, soil texture,
and irrigation management strategies [87]. In this study, different crops were not treated
separately. It should be noted that the cross-spectral analysis implicitly assumes that the
underlying processes of the two signals are stationary [88]. This may affect the accuracy of
the analysis results if the actual signals do not meet this assumption.

It is challenging to apply the percentile-based approach to datasets with short record
periods, as there are insufficient data to represent the statistical distribution [89]. In this
study, we used the ESP to identify flash droughts over North China based on a 20-year
(2001–2020) span of the remote sensing dataset, and the results showed that the duration
of flash droughts ranged from 20 to 50 days, which is comparable to the study from
Zhang et al. [12] who investigated the flash droughts in China based on soil moisture over
a 40-year period (1981–2021), and found that the duration of flash droughts in the North
China Plain ranged from 30 to 50 days. Some studies have also used data from the time
span of 20 years and the percentile-based method to identify flash drought [4,78]. Further
studies can investigate the uncertainties in identifying flash droughts based on different
historical data periods.

With regard to the NDVI limitations, instead of using NDVI values, we used the
NDVI anomaly, i.e., the Normalized Vegetation Anomaly Index (NVAI), to represent the
vegetation vigor condition, which eliminates the saturation problem of MODIS NDVI over
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dense vegetation. Indeed, our research aims to investigate the response of vegetation vigor
conditions to flash droughts, and the NDVI-based index is widely used and considered an
appropriate parameter to present vegetation vitality. Future work may also evaluate other
vegetation indicators, for example, based on GPP and biomass.

There are promising directions for future work to further explore insights into the
response of vegetation to flash drought. Given the complex relationship between vegetation
conditions and flash drought, future research should focus on machine learning algorithms
such as eXtreme Gradient Boosting (XGBoost) [90,91], Random Forest [92,93], SVM [94],
and the Convolutional Neural Network (CNN) [95] that can effectively capture their rela-
tionships. Among these machine learning methods, the CNN algorithm performs better in
feature extraction, pattern recognition, and multi-scale analysis, facilitating the exploration
of the relationship between flash drought and vegetation [95]. Future research should also
further explore the relationship between vegetation and flash droughts from historical
inventory data and ground station data based on the method proposed in this study, as well
as to evaluate the use of other drought indicators (e.g., DISS—Drought Information Satellite
System [18,19]), which will help us in better understanding the response of vegetation
to drought and in supporting the policy designation of water resource management and
agricultural planning to reduce the impact of drought on agricultural production.

6. Conclusions

Exploring the spatiotemporal response of vegetation to flash drought is significant
for water resource management, flash drought warning, and flash drought mitigation.
This study proposes a method to quantify the response of vegetation to flash droughts
based on the cross-spectral analysis of two time series, i.e., the ET-based drought index
ESAI as the forcing and the vegetation-based drought index NAVI as the response, using
remote sensing data at moderate spatial resolution (i.e., 1 km). The new method was used
to explore the temporal response of vegetation to water availability during flash drought
events over North China during March–September (growing season) for the period of
2001–2020. The complementarity of the time lag estimated by cross-spectral analysis
and the response time index was documented. The average time lag of the response of
vegetation to fluctuations in water availability during flash drought events in North China
during March–September (growing season) for the period of 2001–2020, as estimated by
cross-spectral analysis, was 5.9 days, which is significantly shorter than the response time
estimated using the response time index method. Using the first negative NDVI anomaly
to determine the response time leads to the detection of a late, irreversible stage of drought
effects on vegetation, while the cross-spectral phase lag gives an earlier alert of the response
to fluctuations in water availability. We also found that the time lag of the response of
vegetation to water availability during flash droughts varied with vegetation types and
irrigation conditions. The time lags for rainfed croplands, irrigated croplands, grass, and
forest had a spatial average of 5.4, 5.8, 6.1, and 6.9 days, respectively. The findings of
this study contribute to a better understanding of the mechanisms of the response of
vegetation to flash droughts and support decision makers in providing early warning and
timely intervention for flash droughts. While much work remains to be performed, such as
using machine learning such as the CNN to investigate the response of vegetation to flash
droughts, we sense that cross-spectral analysis is a generally applicable method to study
forcing–response processes and a valuable addition to current methods of estimating the
time lag of vegetation to flash drought. Future work will focus on exploring insights into
the response of vegetation to flash droughts over broader regions as well as for different
agricultural practices. Attention will also be given to developing an early warning system
for flash droughts by identifying the time lag between vegetation response and water deficit
based on the cross-spectral analysis.
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