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Abstract: This study extensively examines the estimation of irrigation water requirements using
different methodologies based on Earth Observation data. Specifically, two distinct methods inspired
by recent remote sensing and satellite technology developments are examined and compared. The
first methodology, as outlined by Maselli et al. (2020), focuses on using Sentinel-2 MSI data and
a water stress scalar to estimate the levels of actual evapotranspiration and net irrigation water
(NIW). The second methodology derives from the work of D’Urso et al. (2021), which includes the
application of the Penman–Monteith equation in conjunction with Sentinel-2 data for estimating key
parameters, such as crop evapotranspiration and NIW. In the context of the Bekaa Valley in Lebanon,
this study explores the suitability of both methodologies for irrigated potato crops (nine potato fields
for the early season and eight for the late season). The obtained NIW value was compared with
measured field data, and the root mean square errors were calculated. The results of the comparison
showed that the effectiveness of these methods varies depending on the growing season. Notably,
the Maselli method exhibited better performance during the late season, while the D’Urso method
proved more accurate during the early season. This comparative assessment provided valuable
insights for effective agricultural water management in the Bekaa Valley when estimating NIW in
potato cultivation.

Keywords: evapotranspiration; net irrigation water; earth observation; water accounting; Lebanon;
potato; Penman–Monteith

1. Introduction

Agriculture is a crucial sector worldwide for sustainable development, poverty re-
duction, and food security. Ensuring sufficient food for the increasing population requires
developing and intensifying irrigated agriculture, especially in arid and semi-arid re-
gions [1,2]. To meet this demand, there must be a shift toward more productive irrigated
agriculture, a category which accounts for 70% of total water use. However, this amount of
diverted fresh water does not directly contribute to food production, due to inefficiencies
caused by leakages in water distribution systems and insufficient water resources and
on-farm water management practices. The United Nations Sustainable Development Goals
(SDGs), notably Target 4 of SDG #6, emphasise improving water efficiency in all sectors.
In recent years, research on crop “water productivity” and “irrigation water accounting”
has illustrated how increasing output or value can improve food security and resource
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management. Due to a lack of metering devices and regular monitoring, the amount of
water used for irrigation is unknown in many irrigated areas.

Using agro-hydrological models and remote sensing technologies such as Earth Ob-
servation (EO), it is possible to identify critical water management areas and evaluate the
current and potential use of water for crops. As a result of the suitability of spatial, tem-
poral, and spectral resolutions for agricultural water management applications, European
satellites of the Copernicus constellation, including Sentinel-2A (S2A) and Sentinel-2B (S2B),
can be used to improve EO to a substantial extent. These new sensor characteristics have
led to advanced techniques for estimating crop biophysical parameters for crop models, par-
ticularly over large areas, across the growing season with appropriate temporal and spatial
resolutions [3,4]. Many studies have presented strategies for integrating crop models with
EO-based estimations of crop parameters from freely available data of operational satellite
Copernicus Sentinel-2 missions in a variety of applications for irrigation management.
These applications consider different types of input variables, such as (i) meteorological
data (e.g., air temperature, pressure, wind speed, relative humidity, and solar radiation);
(ii) crop biophysical variables, such as the Normalized Difference Vegetation Index (NDVI),
leaf area index (LAI), and canopy cover (CC); and (iii) soil hydraulic properties [5–9].

Satellite-based irrigation guidance services were developed to help farmers make bet-
ter decisions. These services analyse crop water requirements based on climatic conditions
and the crop’s growth stage [7–9] to estimate evapotranspiration ETp under “standard”
conditions, as defined by the FAO 56 Paper [10,11], i.e., complete availability of water
in the soil, and a lack of biotic and abiotic agricultural stressors. In this scenario, crop
biophysical characteristics (crop height, albedo, and LAI) and meteorological data deter-
mine ETp. Most satellite sensors are typically able to detect crop development utilising
visible and near-infrared wavelengths, which do not require knowledge of the soil [9].
Contrastingly, in applications that aim at irrigation water accounting [12], detailed crop
and soil water balance models can be implemented together with EO-based input [5,13] to
estimate actual evapotranspiration (ETa). Alternatively, surface energy balance has been
calculated using EO data in the thermal range to obtain ETa without requiring precise soil
data [5,14]. Recent research has focused on shortwave infrared wavelength data, which
are used to derive information about the water status of land surfaces, considering the
limitations of thermal range EO in terms of spatial and temporal resolution and issues
related to atmospheric corrections sufficiently accurate for deriving land surface tempera-
ture from thermal data [15–17]. The availability of accurate radiometric observations with
20 m spatial resolution and acquisitions every five days from S2 platforms has brought
new developments in the estimation of ETa for operational applications in agricultural
water management.

In this study, two alternative methodologies, proposed by (i) Maselli et al. (2020) [18]
and (ii) D’Urso et al. (2021) [14], for estimating ETa and net irrigation water use are com-
pared with metered irrigation volumes to assess water accounting, under dry conditions,
for potato crops in Lebanon.

This study is part of the international project “Earth Observation Technologies for
Irrigation in Mediterranean Environments” (EO-TIME). The EO-TIME project aims to
optimise water management in agriculture by combining EO data with Information and
Communication Technologies (ICT) and improve irrigation scheme performance regarding
technical efficiency, environmental impact, and socioeconomic outcomes in water-scarce
regions. The project aims to create integrated systems and services that leverage EO and
ICT to manage water resources in river basins, irrigation projects, and individual farms.
The purpose is to enable farmers to make intelligent irrigation schedule decisions while
considering regional water availability and management decisions.
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2. Materials and Methods
2.1. Characteristics of the Study Area

In the Bekaa valley of Lebanon, the Upper Litani watershed (33.20–34.10◦N, 35.20–0.10◦E,
Figure 1) is the subject of the study. With irregular precipitation and recurring droughts,
the area has a semi-arid Mediterranean climate. The average annual rainfall in the north is
about 230 mm, while it is over 850 mm in the western region and 610 mm in the middle
valley. The primary irrigated crops in the area include grains, legumes, vegetables, fruit
trees, and vines, yet productivity in agriculture is firm despite the region’s low levels
of precipitation. While spring and summer vegetables are produced under irrigation,
winter grains are grown under additional irrigation. Farmers are being forced to use less
water for food production due to the growing water shortage in the valley, threatening
their livelihoods.
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Figure 1. Map of Lebanon, showing the geographical position of the Upper Litani and the distribution
of the fields grown with potatoes in the early and late seasons of 2020.

The study focused on potato cultivation during the early and late seasons of 2020,
given the phenological calendar of potato growth (Table 1). Early-season potato crops
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would benefit from rainwater already stored in the soil. At the same time, irrigation water
was provided to the crops according to a schedule determined by the farmers’ practical
experience. The irrigation system farmers use incorporates traditional impact sprinklers
spaced at 12 m intervals on a lateral line, with a discharge rate of 1.5 m3/h, and the spacing
between the lines is 18 m.

Table 1. Phenological calendar of potato in the Upper Litani watershed.

Crop Type Sowing Window Harvest Window

Potato (early season) February–March June–August
Potato (late season) July–August November–December

2.2. Collected Data Overview

Field data was collected from 17 potato fields during the early and late seasons in 2020.
Information on the growing calendar and the irrigation method used was obtained, and
water meters were installed to register the irrigation volumes applied (Table 2). Notably, the
net irrigation amounts were estimated from the gross amounts by assuming an efficiency
of 70%. Daily meteorological variables (air temperature and humidity, wind speed at
10 m, incoming solar radiation, precipitation P, and reference evapotranspiration ET0)
were derived from the fifth Generation of ECMWF Atmospheric Reanalysis of the Global
Climate ERA5 [19] (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5
-land?tab=overview, accessed on 10 January 2021).

Table 2. Field data used for validation in 2020.

Season X Y Planting
Date

Number of
Sprinklers

per ha

Sprinkler
Application
Rate (m3/h)

Net Irrigation Water Use (mm) Total Net
Irrigation
Water Use

(mm/Season)

Until
Day 45

Days
45 to

70

Days
70 to
100

Days
100 to

110

Days
110 to

120

Early
sea-
son

36.062545 34.010629 15 March 30 1.5 19 63 142 38 6 268
36.087906 33.912448 22 March 30 1.5 19 57 126 19 6 227
36.008369 33.870860 18 March 30 1.5 25 47 95 25 6 198
36.119467 34.002163 1 April 30 1.5 28 95 227 38 6 394
35.943419 33.778937 15 March 30 1.5 13 57 189 28 6 293
35.808920 33.702613 25 March 30 1.5 9 79 198 50 6 343
35.892434 33.738782 25 March 30 1.5 19 57 142 25 6 249
35.837074 33.694242 15 March 30 1.5 13 79 198 38 6 334
36.003494 33.817086 1 April 30 1.5 50 110 221 28 6 416

Late
sea-
son

35.995051 33.832279 1 August 30 1.5 28 57 63 0 0 148
35.773305 33.659328 4 August 30 1.5 38 57 63 0 0 158
35.765647 33.627283 5 August 30 1.5 38 47 28 0 0 113
35.832065 33.665258 1 August 30 1.5 63 32 63 0 0 158
36.094344 33.902884 8 August 30 1.5 47 16 57 0 0 120
36.093712 33.909883 1 August 30 1.5 50 57 63 0 0 170
36.048899 33.903378 17 July 30 1.5 28 32 57 0 0 117
36.145770 33.990577 1 August 30 1.5 38 32 63 0 0 132

These data were checked for consistency against those collected from the Tal Amara
ground station (35.986899 Long; 33.856866 Lat), which belongs to LARI and is in the Upper
Litani watershed. The comparison and the goodness of fit between the cumulative daily
values of P and ET0 for the year 2020 extracted from ERA5 and those derived from the
Tal Amara weather station are reported in the Supplementary Material (Figures S1 and S2).
In addition, the minimum and maximum monthly cumulative values of P and ET0 are
provided in Table 3, while the distribution of those parameters within the study area is
shown in Figure S3.

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
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Table 3. The monthly cumulative values of precipitation P and reference evapotranspiration ET0, as
extracted from ERA5 within the study area in 2020.

2020 P (mm) ET0 (mm)
Month Min Max Min Max

January 83 135 23 28
February 77 141 34 38

March 90 137 64 68
April 35 78 89 97
May 15 42 136 148
June 1 4 150 171
July 0 6 163 185

August 0 5 149 168
September 2 5 124 135

October 2 6 84 90
November 61 97 33 39
December 37 57 27 32

Cumulative values in the early season
(February to August) 219 413 785 875

Cum. values in late season
(August to November) 65 112 391 432

Yearly totals 404 713 1075 1199

The twin Sentinel-2A and Sentinel-2B satellites of the European Space Agency pro-
vided the Earth Observation images that were utilised to calculate the crop parameters.
The nominal revisit time for the Sentinel-2 constellation is five days. Satellite images from
Sentinel-2 for each band (Appendix A) for each available day throughout the research
period (from the 5th of February to the end of December 2020) were collected. They
were downloaded from the ESA website in an ortho-rectified, pre-processed L-2A format
(https://sentinel.esa.int/web/sentinel/sentinel-data-access, accessed on 10 January 2021).

The area covered by potatoes in 2020 was obtained from the FAO-WAPOR remote
sensing open-access database, accessible through the following link: https://wapor.apps.
fao.org/home/WAPOR_2/1, accessed on 10 January 2021.

2.3. Prediction Methods for Actual Evapotranspiration and Net Irrigation Water Use

Two methodologies, derived from existing studies conducted in Mediterranean areas
and found in the literature [14,18,20], were used to estimate ETa and, hence, the net irriga-
tion water use (NIW) of potatoes. NIW is the amount of water farmers apply, calculated
from ETa by considering precipitation and soil water status.

2.3.1. Method (A): NIW Prediction According to Maselli et al. (2020) [18]

The methodology combines meteorological data and the remotely sensed fractional
vegetation cover (FVC) [21]. It consists of estimating ETa and then predicting the NIW
through a site water balance approach that accounts for the most recent precipitation events
and the rainwater stored in the soil as the sum of the two terms representing transpiration
and evaporation:

ETai = ET0i × 1.2 × FVCi × (0.5 + 0.5 × AWi) + ET0i × 0.2 × (1 − FVCi)× AWi (1)

In Equation (1) above, the subscript i refers to the generic day, FVC to fractional vege-
tation cover, and AW to a short-term water stress scalar; 1.2 and 0.2 represent the maximum
crop coefficients for herbaceous vegetation and soil. Notably, the daily layers of ETo were
combined with precipitation (Prec) to predict the meteorological water stress scalar (AWi).
Then, the FVC was computed from Sentinel images by using the Sentinel Application
Platform (SNAP) biophysical processor, which simulates FVC through the application of

https://sentinel.esa.int/web/sentinel/sentinel-data-access
https://wapor.apps.fao.org/home/WAPOR_2/1
https://wapor.apps.fao.org/home/WAPOR_2/1
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an artificial neural network to multispectral Sentinel-2 MSI observations [12,22,23]. The
water stress scalar is calculated as follows:

AWi =
∑i−29

i Preci

∑i−29
i EToi

(2)

where the total amount of precipitation (Prec) is bound by ET0, which allows the scalar to
range from 0 (with total meteorological water stress) to 1 (no stress).

To account for the irrigated conditions of the spring/summer crops, a modified water
stress scalar of day i (AWFVCi) was obtained by keeping the maximum of the original AWi
and a normalised FVCi (FVCNORMi), calculated as follows:

FVCNORMi =
(FVCi − FVCmin)

(FVCmax − FVCmin)
(3)

where FVCmin and FVCmax have been progressively found since the beginning of the dry
season. This modification deactivates the water stress scalar (increases it up to 1) when FVC
is increasing or close to the seasonal maximum during the summer spring/water stress
period. After that, ETa was computed using Equation (1).

Finally, NIWi was estimated, reducing the result to account for any precipitation which
may have fallen in the same period or accumulated in the soil during the previous weeks.
For this, a normalised difference between AWFVCi and AWi was multiplied by ETa.

The algorithm combines indicators of meteorological water stress with temporal FVC
variation to dynamically identify the imbalance between the water supplied by precipitation
and the level required by the plants, which can serve as the basis for predicting crop
irrigation. It is assumed that the daily water needs of irrigated crops can be estimated from
the actual transpiration amount over a brief period. The precipitation that may have fallen
during the same period or accumulated in the soil over the prior weeks must be reduced
from this amount to calculate the actual NIW.

Therefore, this correction will be conducted in two stages. First, since irrigation is
not applied during rainy periods, the predicted NIW is set to 0 when the last three days’
adequate precipitation determination (i.e., precipitation minus ET0) is favourable. Second,
based on the logical framework presented in Maselli et al. [18], which assumes that AWFVC
and AW are proportional to the total water and the rainwater transpired by the crop,
respectively, an estimate of the contribution of less recent precipitation to soil water storage
is calculated. As a result, the normalised difference between the two terms can be utilised to
correct the transpired water calculation and be interpreted as a measurement of the water
amount provided by irrigation.

The above reasoning leads to the following predictions for irrigation water on non-
rainy day i (NIWi):

NIWi =
∑i−2

i Tai

3
× (AWFVCi − AWi)

AWFVCi
(4)

Figure 2 presents a flowchart of the applied methodology and equations used. All
work was conducted using two geographical information system software programs (ESA-
SNAP and ArcMap 10.8).
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2.3.2. Method (B): NIW Prediction According to D’Urso et al. (2021) [14]
Estimation of Maximum Evapotranspiration ETp and Effective Precipitation

This methodology used the Penman–Monteith equation model with surface param-
eters and resistance levels derived from Sentinel-2 data to determine evapotranspiration
(ET) according to the so-called “direct approach” in [11]. This strategy has been used in
satellite-based advisory services for managing irrigation without using the crop coefficient
Kc [24]. In this case, surface parameters derived from Sentinel-2 are used as inputs for
calculating ET. In particular, the hemispherical shortwave albedo determines the value of
net radiation and the leaf area index (LAI) the value of the bulk stomatal canopy resistance
rc

s.
The set of equations is described in detail in D’Urso et al. (2021) [14].
Firstly, the albedo (α) approximates the hemispherical and spectrally integrated surface

albedo; given the limited spectral resolution of EO data, it is calculated as a weighted sum
of surface spectral reflectance derived from the atmospheric correction, with broadband
coefficients representing the corresponding fraction of solar irradiance in each sensor
band [14]:

α = ∑
λ

ωλρλ λ = 1, 2, . . . , m (5)

where the weighting factors, ωλ, are derived from the equation below using the mean
exo-atmospheric solar irradiation in m distinct spectral bands (Appendix B):

ωλ =
ESUN,λ

∑m
λ=1 ESUN,λ

(6)

Secondly, the bulk stomatal canopy resistance rc
s [sm−1] is given by

rc
s =


rlea f

0.5 LAI

∣∣∣ LAI ≤ 4
rlea f

2

∣∣∣ LAI ≥ 4
(7)
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Szeicz and Long [25] first introduced the expression of rsc given in Equation (7), and it
was subsequently used in the formulation of the Penman–Monteith equation in the FAO-56
paper [11]. Since, in most instances, only the top half of the crop foliage is constantly
contributing to the transfer of heat and vapour, the coefficient 0.5 was added to the denomi-
nator. Although the Penman–Monteith approach was initially created for closed canopies,
it has been successfully implemented in several hydrological studies when canopy gaps are
present, provided that the correct values for resistance levels are included to account for the
gap fractions. To achieve this, a numerical inversion of the Penman–Monteith equation [26]
can be used to empirically derive the value of rsc using latent heat flux data. The canopy
resistance in response to LAI and other environmental factors has been determined using
various models [27]. The leaf resistance rleaf in Equation (7), the reciprocal of the leaf con-
ductance, has been the subject of numerous physiological investigations. A minimal value
(maximum conductance) of rleaf = 100 sm−1 has been proposed based on measurements of
leaves of several species, including trees and herbaceous crops. It is also adopted in the
FAO-56 method for crops under standard conditions. This value has been verified based
on Fluxnet information on crop and grassland areas [28].

The computation of ETp using meteorological data and canopy parameters, such
as surface albedo, LAI, and crop height, which may be calculated using remote sensing
techniques, is made possible by assuming a constant fixed value for rleaf = 100 sm−1. The
canopy height hc is proportional to the values of d0, z0m, and z0h, using the abovementioned
factors [25].

Hence, LAI is the most crucial crop parameter, and its value can be obtained from the
spectral observations of Sentinel-2 following the method outlined in the Sentinel-2 Toolbox
contained in the ESA package SNAP [3].

Finally, the net irrigation water requirements NIWR can be determined from the
ETp and effective precipitation Peff [10]; this information is generally used for irrigation
scheduling. The difference between effective precipitation and crop-specific potential
evapotranspiration is computed as follows:

NIWR = ETp − Pe f f i f ETp > Pe f f otherwise NIWR = 0 [mm/d] (8)

Due to its nonlinear relationships with precipitation and potential evapotranspiration,
the irrigation requirement may be overestimated or underestimated. Underestimation is
just 2.4% worldwide, but can be significant in locations with low net-irrigation needs [11].

The Peff is the percentage of total precipitation (P) directly available to potato crops
and which does not runoff. Several factors affect the variation of the Peff. The key factors
include precipitation characteristics, soil parameters, crop evapotranspiration rates, and
irrigation management. However, the soil properties are parameters which are not used
in the Peff calculations. Precipitation efficiency is highly influenced by absorption and
retention qualities, such as water release and movement. The Peff is extremely difficult to
determine; however, the United States Department of Agriculture (USDA) soil conservation
approach is used to determine the Peff using the following formulas:

Pe f f =
P(4.17 − 0.2P)

4.17
i f P < 8.2 mm/day (9)

Pe f f = 4.17 + 0.1P i f P ≥ 8.2 mm/day (10)

From ETp to ETa by Use of SWIR Observations

When there are no restrictions on water resource availability, irrigation applications
are generally abundant, so ETa = ETp, i.e., no crop water stress occurs. In this latter case,
NIW = NIWR, meaning that irrigation requirements can be of the same magnitude as actual
net irrigation water use. Diversely, in dry and water-scarce areas, where water resources
can be limited for long periods during the growing season, the assessment of net irrigation
water use requires that soil and plant water status be considered. Although extensive
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research has been conducted into detecting soil water content using remote sensing [29],
there are still significant constraints for applications at the field scale regarding spatial and
temporal resolution and vegetation cover. Vegetation water indices have been established
to complement the widely used normalised difference vegetation index, NDVI, and it
has been demonstrated that the shortwave infrared signal is sensitive to vegetation water
content [30]. The possibility can be considered that the values of surface resistance levels
in the ET calculations are modulated depending on the water status of the soil and the
canopy water status, evaluated by using a spectral index based on the shortwave infrared
observations of Sentinel-2 [14]. Sadeghi et al. [15] suggested a physically based trapezoidal
space called the “Optical TRApezoid Model” (OPTRAM) for estimating the water status
of the soil and canopy ensemble. The idea is based on the distribution of pixels in the
STR-NDVI space, where STR stands for shortwave infrared transformed reflectance:

STR =
(1 − ρSWIR)

2

2ρSWIR
(11)

The distribution of STR and NDVI for a crop surface generally falls within trapezoids
(Figure 3a), whose borders represent limited wet and dry conditions.
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Figure 3. (a) NDVI-STR space for the suggested substrate and leaf stomatal resistance regulation in
the OPTRAM approach and (b) variation of the leaf resistance rleaf with the water index W, as taken
into consideration in this study (literature reference in the text).

Plotting the values of pixels of NDVI and STR over a given area for various dates
(under various climatic circumstances) allows us to determine the limits of this domain.
The two limits in the (STR, NDVI) domain are determined by using the following equations
to establish the slope and intercepts for dry (sd, id) and wet (sw, iw) edges:

STRd = id + sdNDVI (12)

STRw = iw + swNDVI (13)

According to Sadeghi et al. [16], a linear relationship exists between soil saturation
degree, W (0 for arid soil and 1 for saturated soil), and STR, resulting in:

W =
STR − STRd

STRw − STRd
(14)

When using band 12 of the Sentinel-2 data, it has been demonstrated that W is a proxy
for the degree of soil water saturation, with significant correlation with the measured soil
water content (R2 > 0.8) [16]. However, in this method, we propose to employ W only as an
index to modulate the soil and canopy resistance levels rs

s and rleaf between wet conditions
(W = 1) and dry conditions (W = 0), corresponding to their lower and higher limits. Before
the water index falls below a predetermined threshold Ws, the value of rleaf is maintained,
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constant at rleaf, min; after that, rleaf is linearly increased up to rleaf, max (Figure 3b). Although
validating the resistance function shown in Figure 3 would be rather tricky, the fundamental
assumptions align with comparable consolidated parameterisations, such as those for root
water uptake [31]. With limit values of 2000 and 500 sm−1, the substrate resistance rs

s is
thought to be inversely linked to W over the entire range of 0 to 1.

This approach increases the value of rleaf to be used in Equation (7), used to calculate
ETa using the Penman–Monteith equation. The methodology has been tested in irrigated
vineyards in California [14] using Eddy Covariance measurements, and other validation
experiments are currently being carried out for different types of crops.

2.4. Data Evaluation and Validation

The predicted NIW was assessed by comparing it with the ground measurements
collected from the 17 potato fields during the early and late seasons in 2020. The statistical
indicators used were RMSEs.

The root mean squared error (RMSE) describes the average difference between simula-
tion outputs and experimental data, as described below:

RMSE =

[
N

N

∑
i=1

(Pi − Oi)
2

]0.5

(15)

where N is the number of pairs of observed/measured (Oi) and predicted/simulated
(Pi) data.

3. Results
3.1. Crop and Surface Parameters Derived from Remote Sensing

The following results are based on the remote sensing data extracted from Satellite
imagery. In Figure 4, the trends for the potatoes grown showed a peak of FVC in May–June,
followed by, for most fields, a rapid decrease in the dry summer period until the end of the
season before harvesting at the beginning of August. The Mediterranean natural grasslands
are known for their FVC decrease from spring to summer, which results in a significant
NIW estimate for this period.

Figure 4a shows some different FVC variations of potato crops in the early-season
validation fields. Figure 4 shows different FVC variations of potato fields during the late
season, with a peak in early October followed by a slight decrease in the moist fall period,
extending, for most fields, until the end of the season before harvesting at the end of
November. The Mediterranean natural grasslands are known for their steady, slow FVC
decrease from October to November.

The temporal plots of NDVI in Figure 5, and of the hemispherical surface albedo in
Figure 6. NDVI trends for early- (a) and late-season (b) potato validation fields. show
surface reflectance coefficients from Sentinel-2. The values in these plots represent the
values of NDVI and surface Albedo for the early- and late-season fields, respectively.
Similarly to FVC trends, NDVI values increase gradually at the beginning of both seasons,
to reach the maximum halfway each season, and then NDVI starts decreasing towards the
harvest period.

The fluctuations in NDVI values during the growing season of a potato crop are
typically a result of the complex interactions between the potato plant physiology, environ-
mental conditions, and management practices used by each farmer during the season.

The albedo (α) is calculated as a weighted sum of surface spectral reflectance, with
broadband coefficients representing the corresponding fraction of solar irradiance in each
sensor band, as described in Equation (6).

The leaf area index (LAI) is the most crucial crop parameter when calculating evapo-
transpiration using the P-M combination equation approaches. For Sentinel-2, LAI values
were obtained by following the steps outlined in the Sentinel-2 Toolbox contained within
the ESA package SNAP [32].
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Figure 4. FVC trends for early- (a) and late-season (b) potato validation fields.
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Figure 5. NDVI trends for early- (a) and late-season (b) potato validation fields.
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Figure 6. Albedo trends for early- (a) and late-season (b) potato validation fields.

The trends in Figure 7 show a fundamental temporal pattern in LAI from Sentinel-2.
Because some of the leaves on the potato plants begin to deteriorate and fall off as they
grow, the LAI for the potato crop declines in June for early season and October for the late
season. In general, both seasons and the 17 chosen fields exhibit significant variations in
the Sentinel-2 LAI values.
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Figure 7. LAI trends for early- (a) and late-season (b) potato validation.



Remote Sens. 2024, 16, 1598 13 of 28

There are several reasons why LAI varies throughout the potato crops. These include
variances in crop management techniques like fertilization and insect control. LAI can also
be influenced by field history, which includes past crop rotations, tillage methods, and soil
management. By being aware of these variables, farmers can adjust their management
tactics to maximize LAI and, as a result, raise the quantity and quality of potatoes produced
in each field.

The “shortwave infrared transformed reflectance” (STR) in Equation (11) has been
calculated using the surface reflectance in Band 12 of Sentinel-2. The graphs in Figure 8
show that, theoretically speaking, the values of STR based on Band 12, with a central
wavelength of 2190 nm, have an interval from 0.85 to 5.8. This shows Band 12 of Sentinel-2
to have good sensitivity for this study’s objects of observation.
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Figure 8. STR trends for early- (a) and late-season (b) potato validation fields.

The value of STR increases following the sizeable amounts of irrigation applied in
May (early season) and October (late season), and then the amount drops towards the end
of each season. The lower STR values in the time series figure further highlight that fields 2,
3, and 7 (early season) correspond to lower irrigation levels.

Variations in SWIR transformed reflectance in potato crop fields are caused by several
variables, such as plant health, nutrient content, soil qualities, environmental factors,
agricultural practices, and the sensitivity of data processing and instrumentation. The
reflectance characteristics of the soil surface and crop canopy, which are observable in the
SWIR spectrum, vary because of changes in these parameters.

3.2. NIW Prediction According to Method (A)
3.2.1. Meteorological, FVC, and NIW Patterns in 2020

In Figure S1, the precipitation and reference evapotranspiration (ET0) distributions
are shown for the year of the study, 2020. Precipitation is abundant in the winter and fall
periods, from January to early April (400–450 mm) and from late October until the end of
December (150–200 m) (the beginning and end of the year). In contrast, the spring and
summer precipitation levels combined are modest (80–100 mm). On the opposite side,
ET0 is low in winter (100–110 mm) and fall (60–200 mm) and high in spring (270–390 mm)
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and summer (460–540 mm). The dry season begins in early May and lasts until October;
however, water stress occurs from June to September due to these weather patterns.

The following results are based on the ERA5 land dataset, as extracted. In Figures 9
and 10, two FVC and NIW images, from both the early and the late seasons of the potato
fields, are displayed. For each season, the first image is extracted at the beginning, and
the second is extracted at the peak period (depending on the availability of the Sentinel-2
images). As evident in these images below for the early season, the NIW values are low at
the beginning of the season, ranging between 0–2 mm/day, and increase gradually with
the growth of the potato crops throughout the season to reach 6–8 mm/day during the
peak in June.

The total NIW predicted over the study area equals 3433 mm for the selected fields,
2601 mm for the early season, and 832 mm for the late season. This variation can be
explained by the varying meteorological conditions throughout the year.

As previously mentioned, ET0 was lower in the late season than in the early season;
the water deficit is equal to the difference between ET0 and precipitation (i.e., 283 mm in
the early season and 400 mm in the late season, or a relative decrease of 29%). This different
meteorology presumably led to more stressed conditions for the early-season potato crop
and to a consequent pressure to increase irrigation during that period.
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Figure 10. Examples of Sentinel-2 FVC images at the beginning ((a)—3 August) and peak period
((b)—7 October) of the early season, and maps of NIW as predicted by the described procedure at the
beginning ((c)—3 August) and peak period ((d)—7 October) of the early season of 2020.

3.2.2. Trends of Estimated FVC, ETa, and NIW in Validation Fields

In Figure 11, the trends of the potatoes grown showed a peak of FVC and ETa in
May–June, followed by a rapid decrease, for most fields, in the dry summer period until the
end of the season before harvesting at the beginning of August. Because of this trend, ETa
is high until July. The Mediterranean natural grasslands are known for their FVC decrease
from spring to summer, which results in a significant NIW estimate in this period.

The trend of potato crop ETa mostly matches that of NIW; however, throughout the
growing cycle, when precipitation contributes to soil water recharge and crop transpiration,
the latter is lower than ETa.

Figure 12 shows different FVC, Eta, and NIW variations of potato fields during the
late season, with, for most fields, a peak in early October followed by a slight decrease in
the moist fall period until the end of the season, before harvesting at the end of November.

Because of this trend, ETa is high throughout October. In the late season of potato
cultivation, NIW tends to be lower than in the early season. This phenomenon can be
attributed to the fact that precipitation gradually replaces the need for irrigation as the
season progresses, reducing the demand for additional watering. The Mediterranean natu-
ral grasslands are known for their steady, slow FVC decrease from October to November,
which results in a low NIW estimate for this period.

The trend of potato crop ETa mostly matches that of NIW; however, throughout the
growing cycle, when precipitation contributes to soil water recharge and crop transpiration,
the latter is lower than ETa.
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Figure 11. FVC, ETa, and NIW trends for each early-season potato validation field.
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Figure 12. Trends for the FVC, ETa, and NIW of each late-season potato validation field.
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3.3. NIW Prediction According to Method (B)

The ERA5 dataset used in this method encompasses a comprehensive array of meteo-
rological variables, including temperature, precipitation, wind speed, relative humidity,
pressure, radiation, evaporation, cloud cover, and surface variables such as temperature
and solar radiation, in addition to the crop and surface parameters mentioned in Section 3.1.
The NDVI-STR domain has been plotted by considering the average pixel values in the
Sentinel-2 images subset covering each of the selected 17 fields in the Upper Litani water-
shed to determine the leaf resistance rleaf by using the method in Section From ETp to ETa
by Use of SWIR Observations. It was decided not to calibrate the resistance as a function
of the water index W but to use the standard values described in Section 2, i.e., Figure 3,
which should cover various potential scenarios.

The plot shown in Figure 13 was created using the entire collection of Sentinel-2 images
provided in Appendix A. The NDVI-STR observed across a particular scene portion is
considered to determine the domain borders specific to a given location. The current study
uses visual inspection to distinguish between dry and wet borders. This is not a significant
flaw in the methodology because the pixel distribution on the NDVI-STR domain has a
constant shape for every given location and time, regardless of the surface and weather
conditions. Oversaturated or darkened pixels are those that are excluded over the wet edge.
Due to difficulties in delineating the dry and wet boundaries, the oversaturated pixels
should be eliminated from the NDVI-STR domain.
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Figure 13. NDVI-STR domain for the Upper Litani watershed, extracted from the time series of 2020
Sentinel-2 images (Appendix A). Wet and dry edges are shown with dashed lines. The parameters of
Equations (12) and (13) are indicated in the right corner.

A recent study defined the boundaries of the NDVI-STR domain in alternative ways;
this aspect may need to be reviewed to improve the methodology [17]. The intercepts and
slope values for the lines representing the wet and dry edges of the Upper Litani watershed
are shown in Figure 13. Based on these data, the value of W in Equation (14) has been
calculated for each date.

In Figure 14, the values of water index W are derived using Equation (14). It is possible
to notice in the early season a slight increase in W at the beginning, lasting until the halfway
point of the season, with values ranging between 0.2–0.4, meaning that the crops are
under stress, and then a rapid increase with the intensification of irrigation applications,
associated with values between 0.60–0.78 from the beginning of June. The value of W in this
last period decreases again towards the end of the season, along with the reduced amount
of irrigation. Similar behaviour has been observed in all nine fields. For the late season,
a similar pattern has also been observed, compared with the early season, with a slight
difference in which, in the last half of the season, the W value was stable, ranging between
0.4–0.5 after decreases in the amount of irrigation, which were caused by the amounts of
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precipitation in the previous two months of the year, during which the crop was rainfed.
Similar behaviour has been observed in all eight fields.
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Figure 14. Temporal series of Water index W for early- (a) and late-season (b) potato validation fields.

The leaf resistance rleaf (Figure 15a) starts to decrease in early July for the early season
due to the level of irrigation water applied, in conjunction with shortwave infrared trans-
formed reflectance STR, as illustrated in Figure 8a, with a value of 260–400 sm−1 in June,
decreasing rapidly from early July to its minimum value of 100 sm−1 at the end of July,
when W is less than 0.6 (Figure 3b). On the other hand, for the late season, rleaf (Figure 15b)
starts to decrease in the middle of October (late season), with a value of 250–400 sm−1 in
October, declining rapidly from early November to its minimum value of 50 sm−1 at the
end of December.
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Figure 15. Temporal series of leaf resistance rleaf in the Peman–Monteith Sentinel-2 models modulated
by using the OPTRAM approach satellite for early- (a) and late-season (b) potato validation fields.



Remote Sens. 2024, 16, 1598 20 of 28

3.4. Data Evaluation and Validation

Table 4 reports the NIW values collected from the fields and calculated using methods
(A) and (B) for each season.

Table 4. Comparison of NIW [mm/season] data collected from the field with data estimated from
Maselli’s and D’Urso’s methodologies.

Season Field Number NIW_Field Data NIW_(A) NIW (B)

Early season

1 268 279 256
2 227 203 188
3 198 177 158
4 394 383 380
5 293 262 222
6 343 321 278
7 249 242 228
8 334 316 309
9 416 418 393

Late season

10 148 125 136
11 158 108 139
12 113 100 127
13 158 107 145
14 120 99 127
15 170 109 145
16 117 97 128
17 132 86 140

Table 5 displays the root mean square error (RMSE) values for both methodologies
compared to the field data for potato net irrigation water use (NIW).

Table 5. RMSE statistical results for NIW, between field data and methodologies (A) and (B), as
calculated for early and late potato seasons.

RMSE_Method (A) (mm) RMSE_Method (B) (mm)

Season Early Season Late Season Early Season Late Season

Until day 45 20 33 20 17
Days 45 to 70 27 23 14 15

Days 70 to 100 37 20 61 28
Days 100 to 110 19 0 15 3
Days 110 to 120 22 0 13 1
Seasonal total 18 40 39 15

The root mean squared error RMSE mentioned in Section 2.4 was computed for specific
Sentinel-2 satellite data acquisition dates, as shown in Table 5.

Figure 16 shows the NIW comparisons for both methodologies with the field data.
In comparing the NIW of potato crops between two methodologies, it is evident that in
the early season Method A exhibits higher irrigation volumes during the early stages of
the growing season, whereas Method B distributes irrigation more evenly throughout the
entire season.
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Figure 16. NIW comparison between field data and method A (Maselli) and method B (D’Urso) for
early-season validation fields.

Contrary to the previous scenario, in this comparison of NIW for late-season potato
crops (Figure 17), Method B demonstrates higher irrigation volumes during the early stages
of the growing season, while Method A distributes irrigation more heavily towards the late
stages of growth.
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Figure 17. NIW comparison between field data, method A (Maselli) and method B (D’Urso) for
late-season validation fields.

4. Discussion

Maselli’s proposed methodology (A) is based on the primary assumption that the NIW
corresponds to the crop water requirements not covered by precipitation, which suggests
that local farmers are experienced in water resource management. This assumption is
reasonable in the study area since most farmers irrigate carefully due to the high cost of
obtaining water from the most common sources, mainly deep wells. Such an expectation is
reinforced by recent experimental data, which show that the NIW by local farmers is close
to the level required by the cultivated crops. Saving water is also a significant motivation
for this study, as farmers use sprinklers to irrigate their potato crops, which justifies the
current decision to consider ETa for NIW prediction.

This method predicts the NIW necessary for maintaining plants under the reported
greenness conditions, which may not always correspond to complete water satisfaction.
The studied crop may have an incomplete FVC, and the water stress scalar may be partially
deactivated, limiting the projected ETa in the presence of mainly dense or green plants [20].
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In common practice, this approach provides a lower-limit estimate of NIW, which can be
exceeded unintentionally or purposely.

From a functional point of view, the method employs a previously proposed ETa esti-
mation algorithm that assumes that crop evapotranspiration can be affected by both short-
and long-term water stress, with the first being accounted for by a meteorological scalar
and the latter by a possible FVC decrease [21]. Since the computation of the meteorological
scalar was initially based on precipitation estimates, it must be corrected in situations
where there is an additional water supply, i.e., in irrigation conditions. The correction,
which is entirely presented and tested in Maselli et al. [20], is based on the identification
of temporal divergences between meteorological water stress and FVC, i.e., of cases in
which FVC is increasing or very close to the seasonal maximum during periods of intense
water stress. This concept was proposed by Ozdogan and Gutman [2], who demonstrated
that combining meteorological water stress indicators and FVC data is highly beneficial
for detecting irrigated croplands in regions with explicit summer water limitations. Long-
term meteorological water stress usually leads to persistent soil water scarcity in rainfed
ecosystems [33]. This is not the case when irrigation is applied. The two situations are
manifested in diverging green biomass and NDVI evolutions, i.e., decreasing or increasing
trends, providing the basis for the possible deactivation of the meteorological water stress
scalar [20].

The deactivation of the water stress scalar under irrigated conditions allows accurate
prediction of crop ETa and segmentation of this quantity into water provided by precip-
itation and irrigation. While the original meteorological scalar represents the rainwater
accumulated in the soil and is usable for evapotranspiration, the modified scalar represents
this amount supplemented by NIW. As a result, the two scalars can be utilised to minimise
the predicted ETa for rainwater stored in the soil. NIW is calculated from ETa by consid-
ering both the immediate and medium-term effects of precipitation. The former results
in a three-day irrigation block—however, the latter accounts for a normalised difference
between the modified and original water stress scalars.

This approach requires ground and satellite data affected by relevant uncertainty. The
meteorological data are derived from ERA5, which includes daily estimates of ET0 and
precipitation. The accuracy of these estimations is determined by both ERA5 and the data
obtained for the ground station located in the study area (Tal Amara weather station).

The FVC data are derived from the processing of Sentinel-2 imagery, which provides
high spatial resolution (10 m), frequent revisiting time (every 5–10 days), and a standard pre-
processed format. This enables the generation of maximum value composite (MVC) images
that are only moderately impacted by atmospheric disturbances and have been enhanced
further by a multitemporal filtering operation [21]. This study generally confirms the high
quality of the radiometrically and atmospherically corrected Sentinel-2 L2A product, which
predicts an FVC overestimation during low solar irradiation periods.

A generalised linear equation whose local applicability has been established by Maselli
et al. [34] is used to transform NDVI into FVC. Similar estimations could be achieved using
the Sentinel Application Platform (SNAP) biophysical processor [22,23], which simulates
FVC by using an artificial neural network to analyse multispectral Sentinel-2 images. The
current methodology also assumes a uniform maximum Kc for all herbaceous species (1.2),
which is the case for potato crops, suggesting that FVC accounts for all Kc variability of
annual crops, regardless of type. The low NIW values found for some potato fields in the
study area may be attributed to the method’s inherent uncertainty, i.e., cases where crop
FVC tends to grow throughout the dry season, even without irrigation. The presence of
alternate water sources, which increase soil water availability throughout the dry season,
could explain these situations.

Regarding the methodology proposed by D’Urso, the results reported in Table 4
indicate that NIW obtained from a P-M equation model with surface resistance modulated
using STR is in satisfactory agreement with the measured values from the field. This
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finding demonstrates that resistance modulation with OPTRAM accurately reproduces the
observed mechanism.

The STR-NDVI space was created using high spatiotemporal resolution Sentinel-2 data,
demonstrating dynamic fluctuation between acquisition dates. Agriculture processes like
soil moisture change and crop growth development were replicated in dynamic variation.
This is especially significant for showing the coevolution of soil moisture and crop growth
within irrigated agricultural fields and identifying the critical events and stages of crop
growth, as they affect the timing and scheduling of management inputs [35]. Various surface
conditions (e.g., irrigated and non-irrigated, bare and vegetated) can be distinguished using
dynamic STR-NDVI spaces, and vital agronomic events and crop growth stages (e.g., start
and halt of irrigation, crop emergence and maturity, and harvesting time) can be identified.
The apparent increase in STR (Figure 8) showed irrigation and the commencement of the
growth cycle, but the rise in NDVI and LAI (Figures 5 and 7, respectively) after around
2–4 weeks for both seasons later suggested crop growth. Given the high temporal resolution
features of the Sentinel-2 data, it is notable that the coevolution of STR and NDVI reflected
by the dynamic STR-NDVI spaces illustrates the overall process of irrigated agriculture in
the study area.

Due to low representativeness, a single STR-NDVI space from a single day cannot
be utilised to parameterise the wet and dry edges. Although dynamic STR-NDVI spaces,
composed of a time series of STR-NDVI spaces, are valuable for assessing the coevolution of
surface processes and quantifying spatial heterogeneity, variable potato crop growth status
cannot be determined from a single image. To estimate the wet and dry edge parameters,
a time series of all photos covering at least a complete growth cycle should generate a
complete STR-NDVI space.

Hence, the P-M Sentinel-2 method gives credible estimates of ETa even in significant
water stress. This approach allowed for the characterisation of the potato canopy and
provided valuable information for crop management and yield estimation.

The provided dataset, contrasting field-based net irrigation water use (NIW) data with
estimations derived from the methodologies of Maselli and D’Urso, reveals a consistent
trend of underestimation by both approaches across various seasons. However, the accuracy
of these estimation methods in terms of the field-derived data exhibits seasonal variations.

During the early season (represented by fields 1 to 9), both the Maselli and D’Urso
methods—(A) and (B), respectively—consistently yield NIW estimates that fall below
the actual field measurements. Nevertheless, it appears that, during this phase of crop
growth, method (B) tends to approximate the field data more closely than method (A),
demonstrating a relatively better accuracy. In contrast, in the late season (fields 10 to 17),
the trend of underestimation persists, but the relative accuracy of the methods differs. Here,
method (A) tends to provide NIW estimates that better align with the field-derived data,
compared to those of method (B).

5. Limitations and Further Investigation

Although an acceptable level of soil moisture retrieval accuracy was reached, some
significant difficulties regarding the transferability of the OPTRAM technique to other
regions remain to be solved and will necessitate future research. The first concern is
the availability of data with little or no cloud contamination. It is worth noting that the
presented work was carried out in an area where the Sentinel-2 images were mostly cloud-
free, allowing for the availability of a high-quality image time series that was well suited for
parameterising the trapezoid’s dry and wet edges [15]. As a result, high-density Sentinel-
2 image time series capturing temporal variations in agricultural growth and irrigation
methods were obtained. Several potential solutions to this problem may be applicable:
(1) to collect cloud-free images for a more extended period to capture as much detail as
possible on crop growth and surface changes; (2) to increase the quality of remote sensing
images by refining cloud detection and reduction methods; or (3) to combine Landsat 8-9
with Sentinel-2, considering the availability of SWIR observations in both systems.
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Another issue is the model formulation and the edges’ parameterisation. The OP-
TRAM edges can be linear, exponential, or power functions. Thus, strengthening the
edge parameterisation using additional formulations has the potential to improve the
performance of the OPTRAM approach and the accuracy of soil moisture retrieval [14].

6. Conclusions

The use of remote sensing and ancillary data for identifying and quantifying ir-
rigation patterns has been the subject of numerous research efforts over the past few
decades [2,35–38]. Most of these studies focus on parametric and nonparametric statistical
techniques, which require long, complicated training processes and may have limited
generalisation. Additionally, only recent works can fully take advantage of the improved
spatio-temporal features of Sentinel-2 imagery data, whereas earlier studies were required
to operate at lower spatial resolutions [36].

The current study endeavour is thus unique regarding both the core theory and the
spatial and temporal scales of investigation. Both remote sensing-based methods for net
irrigation water use (NIW) have distinct advantages and should be considered, based
on specific agricultural contexts. One method may excel in certain situations, while the
other may offer advantages elsewhere. It is crucial to acknowledge that factors such as
soil type, fertiliser application rates, and susceptibility to pests play a significant role in
determining the most suitable method. For instance, satellite-based remote sensing can
provide broad-scale information over large agricultural regions, making it beneficial for
extensive crop monitoring. On the other hand, ground-based remote sensing and sensor
networks offer higher spatial and temporal resolution, making them ideal for fine-tuning
irrigation management at the field level. A holistic approach, considering both methods and
accounting for local variables, including soil conditions and pest pressures, is essential for
optimising irrigation practices and maximising agricultural productivity while conserving
water resources.
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Appendix A

Table A1. Summary of S-2 A and B images used in the upper Litani watershed study in 2020 season.

Early Season Late Season

Date Date

S2A 5 February 2020 S2A 4 July 2020
S2A 16 March 2020 S2A 24 July 2020

https://www.mdpi.com/article/10.3390/rs16091598/s1
https://www.mdpi.com/article/10.3390/rs16091598/s1
https://scihub.copernicus.eu/
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Table A1. Cont.

Early Season Late Season

Date Date

S2A 26 March 2020 S2A 3 August 2020
S2A 15 April 2020 S2A 13 August 2020
S2A 15 May 2020 S2A 23 August 2020
S2A 25 May 2020 S2A 2 September 2020
S2A 4 June 2020 S2A 12 September 2020
S2A 14 June 2020 S2A 22 September 2020
S2A 24 June 2020 S2A 2 October 2020
S2A 4 July 2020 S2A 12 October 2020
S2A 24 July 2020 S2A 22 October 2020
S2A 3 August 2020 S2A 1 November 2020
S2A 13 August 2020 S2A 11 December 2020
S2A 23 August 2020 S2A 21 December 2020

S2A 31 December 2020
S2B 11 March 2020 S2B 9 July 2020
S2B 31 March 2020 S2B 19 July 2020
S2B 20 April 2020 S2B 29 July 2020
S2B 10 May 2020 S2B 8 August 2020
S2B 20 May 2020 S2B 18 August 2020
S2B 30 May 2020 S2B 28 August 2020
S2B 9 June 2020 S2B 7 September 2020
S2B 29 June 2020 S2B 17 September 2020
S2B 9 July 2020 S2B 27 September 2020
S2B 19 July 2020 S2B 7 October 2020
S2B 29 July 2020 S2B 17 October 2020
S2B 8 August 2020 S2B 27 October 2020
S2B 18 August 2020 S2B 16 November 2020
S2B 28 August 2020 S2B 26 December 2020

Appendix B

Table A2. Characteristics of the multispectral imager (MSI) onboard Sentinel-2 satellites and coeffi-
cients for hemispherical albedo calculation.

Sentinel-2 MSI
Spectral Band

Central
Wavelength

(µm)

Bandwidth
(µm)

Exo-Atmosph.
Sun Irradiance Coefficient

Esun,λ (W m−2) ωλ

1 0.443 0.020 1893.4
2 0.490 0.065 1926.7 0.1836
3 0.560 0.035 1845.7 0.1759
4 0.665 0.030 1528.5 0.1457
5 0.705 0.015 1412.6 0.1346
6 0.740 0.015 1294.4 0.1234
7 0.783 0.020 1189.7 0.1134
8 0.842 0.115 1050.3 0.1001
8a 0.865 0.020 970.4
9 0.945 0.020 831.0
10 1.375 0.030 360.1
11 1.610 0.090 242.3 0.0231
12 2.190 0.180 3.0 0.0003
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