Estimating Landfill Landslide Probability Using SAR Satellite Products: A Novel Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Data
2.2. Proposed Methodology
2.2.1. Persistent Scatterer Interferometry (PSI) Analysis
- Master/slave selection and splitting.
- Co-registration and Interferogram computation: This step conducts co-registration between the master image and each of the slave images in sequence. The interferograms corresponding to each pair of master and slave images are then generated prior to removing the flat-earth phase, i.e., the phase associated with the ellipsoid. Debursting for both the SLC images and the differential interferograms is applied to remove horizontal stripes. The topographical phase is then simulated using the 3 s Shuttle Radar Topography Mission (SRTM) Digital Terrain Model (DTM), which is downloaded automatically by SNAP. This topographical component is then removed from the interferograms. In this step, a subset of the previously selected research area is chosen.
- StaMPS export for PSI. The export step using StaMPS is performed using the operator with the same name, and the inputs required for this step are: (i) the co-registered master–slave pair, (ii) the corresponding interferogram with the elevation and latitude and longitude bands that have been orthorectified.
- Data load.
- Estimate phase noise.
- PS selection: Pixels are selected on the basis of their noise characteristics; this step also estimates the percentage of random (non-PS) pixels in a scene from which the density per km2 can be obtained.
- PS weeding: In the previous step, pixels are selected and filtered, discarding those that are caused by contributions from neighboring ground resolution elements and those considered too noisy. Data for the selected pixels are stored in new workspaces.
- Phase correction: The wrapped phase of the selected pixels is corrected for spatially uncorrelated look angle (DEM) error. At the end of this step, the patches are merged.
- Phase unwrapping.
- Estimate spatially uncorrelated look angle error: spatially uncorrelated look angle (SULA) error was calculated in Step 3 and removed in Step 5. In Step 7, spatially correlated look angle (SCLA) error is calculated which is due almost exclusively to spatially correlated DEM error (this includes error in the DEM itself, and incorrect mapping of the DEM into radar coordinates). Master atmosphere and orbit error (AOE) phase are estimated simultaneously.
- Atmospheric filtering.
2.2.2. Deformation Model
Numerical Implementation
2.2.3. Monte Carlo Experiment Design
3. Results
3.1. Verification of the Solver
3.2. Validation of the Capability to Predict the Landfill Deformation
3.3. Case of Study: Zaldibar Landslide
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vollprecht, D.; Machiels, L.; Jones, P.T. The EU training network for resource recovery through enhanced landfill mining—A review. Processes 2021, 9, 394. [Google Scholar] [CrossRef]
- Savchyn, I.; Lozynskyi, V. Analysis of Consequences of Waste-Slide at Lviv Municipal Solid Waste Landfill on May 30, 2016; European Association of Geoscientists & Engineers: Bunnik, The Netherlands, 2019; Volume 2019, pp. 1–5. [Google Scholar] [CrossRef]
- Yin, Y.; Li, B.; Wang, W.; Zhan, L.; Xue, Q.; Gao, Y.; Zhang, N.; Chen, H.; Liu, T.; Li, A. Mechanism of the December 2015 Catastrophic Landslide at the Shenzhen Landfill and Controlling Geotechnical Risks of Urbanization. Engineering 2016, 2, 230–249. [Google Scholar] [CrossRef]
- Giraldo, E.; Caicedo, B.; Yamin, L.; Soler, N. The landslide of Dona Juana Landfill in Bogota. A Case Study. In Proceedings of the Fourth International Congress on Environmental Geotechnics (4th ICEG), Rio de Janeiro, Brazil, 11–15 August 2002. [Google Scholar]
- Xiu, W.; Wang, S.; Qi, W.; Li, X.; Wang, C. Disaster Chain Analysis of Landfill Landslide: Scenario Simulation and Chain-Cutting Modeling. Sustainability 2021, 13, 5032. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Lin, H. Satellite-based analysis of landfill landslide: The case of the 2015 Shenzhen landslide. Int. J. Geotech. Eng. 2022, 16, 293–300. [Google Scholar] [CrossRef]
- Zhang, S.; Lv, Y.; Yang, H.; Han, Y.; Peng, J.; Lan, J.; Zhan, L.; Chen, Y.; Bate, B. Monitoring and Quantitative Human Risk Assessment of Municipal Solid Waste Landfill Using Integrated Satellite–UAV–Ground Survey Approach. Remote Sens. 2021, 13, 4496. [Google Scholar] [CrossRef]
- Pasternak, G.; Zaczek-Peplinska, J.; Pasternak, K.; Jóźwiak, J.; Pasik, M.; Koda, E.; Vaverková, M.D. Surface Monitoring of an MSW Landfill Based on Linear and Angular Measurements, TLS, and LIDAR UAV. Sensors 2023, 23, 1847. [Google Scholar] [CrossRef]
- Papale, L.G.; Guerrisi, G.; De Santis, D.; Schiavon, G.; Del Frate, F. Satellite Data Potentialities in Solid Waste Landfill Monitoring: Review and Case Studies. Sensors 2023, 23, 3917. [Google Scholar] [CrossRef]
- Du, Y.; Fu, H.; Liu, L.; Feng, G.; Wen, D.; Peng, X.; Ding, H. Continued Monitoring and Modeling of Xingfeng Solid Waste Landfill Settlement, China, Based on Multiplatform SAR Images. Remote Sens. 2021, 13, 3286. [Google Scholar] [CrossRef]
- Yao, S.; Kan, G.; Liu, C.; Tang, J.; Cheng, D.; Guo, J.; Jiang, H. A Hybrid Theory-Driven and Data-Driven Modeling Method for Solving the Shallow Water Equations. Water 2023, 15, 3140. [Google Scholar] [CrossRef]
- Sanz-Ramos, M.; Bladé, E.; Oller, P.; Furdada, G. Numerical modelling of dense snow avalanches with a well-balanced scheme based on the 2D shallow water equations. J. Glaciol. 2023, 1, 1–17. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Jungner, A.; Crippa, B. Persistent scatterer interferometry: Potential and limits. In Proceedings of the 2009 ISPRS Workshop on High-Resolution Earth Imaging for Geospatial Information, Hannover, Germany, 2–5 June 2009; Volume 25. [Google Scholar]
- Jahanfar, A.; Gharabaghi, B.; McBean, E.A.; Dubey, B.K. Municipal solid waste slope stability modeling: A probabilistic approach. J. Geotech. Geoenviron. Eng. 2017, 143, 04017035. [Google Scholar] [CrossRef]
- Dai, Z.; Huang, Y.; Jiang, F.; Huang, M. Modeling the flow behavior of a simulated municipal solid waste. Bull. Eng. Geol. Environ. 2016, 75, 275–291. [Google Scholar] [CrossRef]
- Nam, B.X.; Van Anh, T.; Bui, L.K.; Long, N.Q.; Le Thu Ha, T.; Goyal, R. Mining-induced land subsidence detection by persistent scatterer InSAR and sentinel-1: Application to Phugiao Quarries, Vietnam. In Proceedings of the International Conference on Innovations for Sustainable and Responsible Mining: ISRM 2020-Volume 2; Springer: Berlin/Heidelberg, Germany, 2021; pp. 18–38. [Google Scholar]
- Foumelis, M.; Blasco, J.M.D.; Desnos, Y.-L.; Engdahl, M.; Fernández, D.; Veci, L.; Lu, J.; Wong, C. ESA SNAP-StaMPS integrated processing for Sentinel-1 persistent scatterer interferometry. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1364–1367. [Google Scholar]
- Zhou, S.; Ouyang, C.; Huang, Y. An InSAR and depth-integrated coupled model for potential landslide hazard assessment. Acta Geotech. 2022, 17, 3613–3632. [Google Scholar] [CrossRef]
- Hooper, A.; Spaans, K.; Bekaert, D.; Cuenca, M.C.; Arıkan, M.; Oyen, A. StaMPS/MTI Manual; Delft Institute of Earth Observation and Space Systems, Delft University of Technology: Delft, The Netherlands, 2010. [Google Scholar]
- Farolfi, G.; Piombino, A.; Catani, F. Fusion of GNSS and Satellite Radar Interferometry: Determination of 3D Fine-Scale Map of Present-Day Surface Displacements in Italy as Expressions of Geodynamic Processes. Remote Sens. 2019, 11, 394. [Google Scholar] [CrossRef]
- Lin, G.-F.; Lai, J.-S.; Guo, W.-D. Finite-volume component-wise TVD schemes for 2D shallow water equations. Adv. Water Resour. 2003, 26, 861–873. [Google Scholar] [CrossRef]
- Denlinger, R.P.; Iverson, R.M. Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation. J. Geophys. Res. Earth Surf. 2004, 109, F1. [Google Scholar] [CrossRef]
- Steffler, P.M.; Yee-Chung, J. Depth averaged and moment equations for moderately shallow free surface flow. J. Hydraul. Res. 1993, 31, 5–17. [Google Scholar] [CrossRef]
- Ming, H.T.; Chu, C.R. Two-dimensional shallow water flows simulation using TVD-MacCormack scheme. J. Hydraul. Res. 2000, 38, 123–131. [Google Scholar] [CrossRef]
- Ouyang, C.; He, S.; Xu, Q.; Luo, Y.; Zhang, W. A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain. Comput. Geosci. 2013, 52, 1–10. [Google Scholar] [CrossRef]
- Kavazanjian, E.; Matasovic, N.; Bonaparte, R.; Schmertmann, G.R. Evaluation of MSW Properties for Seismic Analysis. In Proceedings of the Specialty Conference on Geotechnical Practice in Waste Disposal. Part 1 (of 2), New Orleans, LA, USA, 24–26 February 1995; ASCE: Reston, VA, USA, 1995; pp. 1126–1141. [Google Scholar]
- Hossain, M.S. Mechanics of Compressibility and Strength of Solid Waste in Bioreactor Landfills; North Carolina State University: Raleigh, NC, USA, 2002; ISBN 0493911820. [Google Scholar]
- Jafari, N.H.; Stark, T.D.; Merry, S. The July 10 2000 Payatas landfill slope failure. ISSMGE Int. J. Geoengin. Case Hist. 2013, 2, 208–228. [Google Scholar]
- Fennema, R.J.; Chaudhry, M.H. Explicit methods for 2-D transient free surface flows. J. Hydraul. Eng. 1990, 116, 1013–1034. [Google Scholar] [CrossRef]
- Bermúdez, A.; Dervieux, A.; Desideri, J.-A.; Vázquez, M.E. Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes. Comput Methods Appl. Mech. Eng. 1998, 155, 49–72. [Google Scholar] [CrossRef]
- Valiani, A.; Caleffi, V.; Zanni, A. Finite volume scheme for 2D shallow-water equations. Application to the Malpasset dam-break. In Proceedings of the the 4th CADAM Workshop, Zaragoza, Spain, 18–19 November 1999; pp. 63–94. [Google Scholar]
- Chaudhry, M.H. Open-Channel Flow; Springer: Berlin/Heidelberg, Germany, 2008; Volume 523. [Google Scholar]
- Biscarini, C.; Di Francesco, S.; Manciola, P. CFD modelling approach for dam break flow studies. Hydrol. Earth Syst. Sci. 2010, 14, 705–718. [Google Scholar] [CrossRef]
- Delis, A.I.; Katsaounis, T. Numerical solution of the two-dimensional shallow water equations by the application of relaxation methods. Appl. Math Model 2005, 29, 754–783. [Google Scholar] [CrossRef]
- Huang, Y.; Cheng, H. A simplified analytical model for run-out prediction of flow slides in municipal solid waste landfills. Landslides 2017, 14, 99–107. [Google Scholar] [CrossRef]
- Stinavage, M. Democratic Processing of Waste: European Federalism and Democratic Processing of Waste: European Federalism and Decentralized Waste Management in Navarra and Basque Country Decentralized Waste Management in Navarra and Basque Country. Master’s Thesis, City University of New York (CUNY), New York, NY, USA, 2022. [Google Scholar]
- El Kamali, M.; Abuelgasim, A.; Papoutsis, I.; Loupasakis, C.; Kontoes, C. A reasoned bibliography on SAR interferometry applications and outlook on big interferometric data processing. Remote Sens. Appl. 2020, 19, 100358. [Google Scholar] [CrossRef]
- Heras, J.; De Las Heras, G. Las Claves del Derrumbe. Available online: https://www.elcorreo.com/bizkaia/claves-derrumbe-20200223011927-in.html (accessed on 2 June 2023).
- Feng, Z.; Niu, W.; Zhou, J.; Cheng, C. Linking Nelder–Mead simplex direct search method into two-stage progressive optimality algorithm for optimal operation of cascade hydropower reservoirs. J. Water Resour. Plan Manag. 2020, 146, 04020019. [Google Scholar] [CrossRef]
- Google. Google Maps Directions to Zaldibar Landfill. 2023. Available online: https://www.google.es/maps (accessed on 15 January 2024).
Frequency Range | Resolution | Frequency | |
---|---|---|---|
Sentinel 1 | C-Band (5.4 GHz) | 5 × 20 m | 12 days 1 |
COSMO SkyMed | X-Band (9.65 GHz) | 1 m | 5 days |
RADARSAT | C-Band (5.4 GHz) | 1 × 3 m | 24 days |
Terra SAR X | X-Band (9.65 GHz) | 1–16 m | 11 days |
ALOS 2 | L-Band (1.24 GHz) | 3 m | 14 days |
RISAT | X-Band (9.65 GHz) | 1 m | 4 days |
Slope α (deg) | Model Test (cm) | Huang and Cheng (cm) | Error (%) | 2D Shallow Water (cm) | Error (%) |
---|---|---|---|---|---|
0 | 53.5 | 58.27 | 8.92 | 53.5 | 0.00 |
5 | 60.8 | 64.14 | 5.49 | 62.6 | 2.81 |
10 | 76.5 | 69.93 | −8.59 | 75.76 | −1.06 |
15 | 80.2 | 75.41 | −5.97 | 82.8 | 3.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Gutiérrez, A.; Gonzalo, J.; Rubio, C.; Corvino, M.M. Estimating Landfill Landslide Probability Using SAR Satellite Products: A Novel Approach. Remote Sens. 2024, 16, 1618. https://doi.org/10.3390/rs16091618
García-Gutiérrez A, Gonzalo J, Rubio C, Corvino MM. Estimating Landfill Landslide Probability Using SAR Satellite Products: A Novel Approach. Remote Sensing. 2024; 16(9):1618. https://doi.org/10.3390/rs16091618
Chicago/Turabian StyleGarcía-Gutiérrez, Adrián, Jesús Gonzalo, Carlos Rubio, and Maria Michela Corvino. 2024. "Estimating Landfill Landslide Probability Using SAR Satellite Products: A Novel Approach" Remote Sensing 16, no. 9: 1618. https://doi.org/10.3390/rs16091618
APA StyleGarcía-Gutiérrez, A., Gonzalo, J., Rubio, C., & Corvino, M. M. (2024). Estimating Landfill Landslide Probability Using SAR Satellite Products: A Novel Approach. Remote Sensing, 16(9), 1618. https://doi.org/10.3390/rs16091618