A Mars Local Terrain Matching Method Based on 3D Point Clouds
Abstract
:1. Introduction
- (1)
- DEM coarse registration. A DEM coarse registration framework based on the combination of ISS + FPFH features is proposed, and the feature matching gross errors are removed based on a graph strategy.
- (2)
- DEM fine registration. For the problem of large difference in resolution between MOLA DEM and HiRISE DEM raw observation data, the loss and covariance are weighted by the Euclidean distance between distributions, and a smoothing weighting method is constructed to take into account the specificity and improve the VGICP fine registration algorithm.
- (3)
- Experiment and analysis. To validate the proposed method, we apply it to real experimental data from Mars. The results demonstrate the effectiveness of our approach in solving the local terrain registration problem on Mars.
2. DEM Coarse Registration Based on 3D Features
2.1. ISS Key Points and PFH/FPFH Features
- (1)
- When calculating the point pair features, only the angular components are retained.
- (2)
- The triplets of are processed separately, and the histogram corresponding to each dimensional feature is simply stitched, so that the dimensionality of the synthetic features is reduced from to , effectively eliminating the spatial redundancy in the feature description process.
- (3)
- Only the features corresponding to the point pairs formed by the points and the k nearest neighbors are calculated (as shown in Figure 2b), and the SPFH (Simplified PFH) features are obtained using statistical histograms. Weighted fusion of the SPFH features corresponding to the k nearest neighbor points is performed to obtain the FPFH features
2.2. Matching Gross Rejection Based on Structural Features
3. DEM Fine Registration Based on Improved VGICP
4. Experiment and Analysis
4.1. Experimental Data
4.2. Evaluation Metrics
4.3. Coarse Registration Results
4.4. Fine Registration Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qing, X.U.; Xun, G.; Chaozhen, L.A.N.; Shuai, X. Review of Mars Topographic Mapping. J. Deep Space Explor. 2014, 1, 28–35. [Google Scholar]
- McEwen, A.S.; Eliason, E.M.; Bergstrom, J.W.; Bridges, N.T.; Hansen, C.J.; Delamere, W.A.; Grant, J.A.; Gulick, V.C.; Herkenhoff, K.E.; Keszthelyi, L. Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef]
- Rosiek, M.R.; Kirk, R.L.; Archinal, B.A.; Howington-Kraus, E.; Hare, T.; Galuszka, D.; Redding, B. Utility of Viking Orbiter Images and Products for Mars Mapping. Photogramm. Eng. Remote Sens. 2005, 71, 1187–1195. [Google Scholar] [CrossRef]
- Kirk, R.L.; Howington-Kraus, E.; Redding, B.; Galuszka, D.; Hare, T.M.; Archinal, B.A.; Soderblom, L.A.; Barrett, J.M. High-resolution Topomapping of Candidate MER Landing Sites with Mars Orbiter Camera Narrow-angle Images. J. Geophys. Res. Planets 2003, 108. [Google Scholar] [CrossRef]
- Kirk, R.; Soderblom, L.; Howington-Kraus, E.; Archinal, B.; Team, A. USGS High Resolution Topo-Mapping of Mars with Mars Orbiter Camera Narrow-Angle Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2002, 34, 713–722. [Google Scholar]
- Shan, J.; Yoon, J.; Lee, D.S.; Kirk, R.L.; Neumann, G.A.; Acton, C.H. Photogrammetric Analysis of the Mars Global Surveyor Mapping Data. Photogramm. Eng. Remote Sens. 2005, 71, 97–108. [Google Scholar] [CrossRef]
- Albertz, J.; Attwenger, M.; Barrett, J.; Casley, S.; Dorninger, P.; Dorrer, E.; Ebner, H.; Gehrke, S.; Giese, B.; Gwinner, K. HRSC on Mars Express–Photogrammetric and Cartographic Research. Photogramm. Eng. Remote Sens. 2005, 71, 1153–1166. [Google Scholar] [CrossRef]
- Smith, D.E.; Zuber, M.T.; Frey, H.V.; Garvin, J.B.; Head, J.W.; Muhleman, D.O.; Pettengill, G.H.; Phillips, R.J.; Solomon, S.C.; Zwally, H.J. Mars Orbiter Laser Altimeter: Experiment Summary after the First Year of Global Mapping of Mars. J. Geophys. Res. Planets 2001, 106, 23689–23722. [Google Scholar] [CrossRef]
- Abshire, J.B.; Sun, X.; Afzal, R.S. Mars Orbiter Laser Altimeter: Receiver Model and Performance Analysis. Appl. Opt. 2000, 39, 2449–2460. [Google Scholar] [CrossRef]
- Li, R.; Hwangbo, J.; Chen, Y.; Di, K. Rigorous Photogrammetric Processing of HiRISE Stereo Imagery for Mars Topographic Mapping. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2558–2572. [Google Scholar]
- Wang, K.; Zhu, T.; Gao, Y.; Wang, J. Efficient Terrain Matching with 3-D Zernike Moments. IEEE Trans. Aerosp. Electron. Syst. 2018, 55, 226–235. [Google Scholar] [CrossRef]
- Yoo, J.-C.; Han, T.H. Fast Normalized Cross-Correlation. Circuits Syst. Signal Process. 2009, 28, 819–843. [Google Scholar] [CrossRef]
- Heidler, K.; Mou, L.; Baumhoer, C.; Dietz, A.; Zhu, X.X. HED-UNet: Combined Segmentation and Edge Detection for Monitoring the Antarctic Coastline. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4300514. [Google Scholar] [CrossRef]
- Sipiran, I.; Bustos, B. Harris 3D: A Robust Extension of the Harris Operator for Interest Point Detection on 3D Meshes. Vis. Comput. 2011, 27, 963–976. [Google Scholar] [CrossRef]
- Scovanner, P.; Ali, S.; Shah, M. A 3-Dimensional Sift Descriptor and Its Application to Action Recognition. In Proceedings of the 15th ACM International Conference on Multimedia, Augsburg, Germany, 25–29 September 2007; pp. 357–360. [Google Scholar]
- Chen, H.; Bhanu, B. 3D Free-Form Object Recognition in Range Images Using Local Surface Patches. Pattern Recognit. Lett. 2007, 28, 1252–1262. [Google Scholar] [CrossRef]
- Zaharescu, A.; Boyer, E.; Varanasi, K.; Horaud, R. Surface Feature Detection and Description with Applications to Mesh Matching. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 373–380. [Google Scholar]
- Zhong, Y. Intrinsic Shape Signatures: A Shape Descriptor for 3D Object Recognition. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, Kyoto, Japan, 24 September–27 October 2009; pp. 689–696. [Google Scholar]
- Salti, S.; Tombari, F.; Di Stefano, L. SHOT: Unique Signatures of Histograms for Surface and Texture Description. Comput. Vis. Image Underst. 2014, 125, 251–264. [Google Scholar] [CrossRef]
- Rusu, R.B.; Marton, Z.C.; Blodow, N.; Beetz, M. Persistent Point Feature Histograms for 3D Point Clouds. In Proceedings of the 10th International Conference on Intelligent Autonomous Systems (IAS-10), Baden-Baden, Germany, 23–25 July 2008; pp. 119–128. [Google Scholar]
- Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D Registration. In Proceedings of the 2009 IEEE International Conference On Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3212–3217. [Google Scholar]
- Gojcic, Z.; Zhou, C.; Wegner, J.D.; Wieser, A. The Perfect Match: 3d Point Cloud Matching with Smoothed Densities. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5545–5554. [Google Scholar]
- Rosenholm, D.A.N.; TORLEGARD, K. Three-Dimensional Absolute Orientation of Stereo Models Using Digital Elevation Models. Photogramm. Eng. Remote Sens. 1988, 54, 1385–1389. [Google Scholar]
- Besl, P.J.; McKay, N.D. Method for Registration of 3-D Shapes. In Sensor Fusion IV: Control Paradigms and Data Structures; SPIE: Bellingham, WA, USA, 1992; Volume 1611, pp. 586–606. [Google Scholar]
- Chen, X.; Cen, M.; Guo, H.; Zhang, T.; Zhao, C.; Zhang, B. Chinese Satellite Photogrammetry without Ground Control Points Based on a Public DEM Using an Efficient and Robust DEM Matching Method. Int. J. Remote Sens. 2018, 39, 704–726. [Google Scholar] [CrossRef]
- Arvidson, R.E.; Bell III, J.F.; Bellutta, P.; Cabrol, N.A.; Catalano, J.G.; Cohen, J.; Crumpler, L.S.; Des Marais, D.J.; Estlin, T.A.; Farrand, W.H. Spirit Mars Rover Mission: Overview and Selected Results from the Northern Home Plate Winter Haven to the Side of Scamander Crater. J. Geophys. Res. Planets 2010, 115. [Google Scholar] [CrossRef]
- Welch, R.; Limonadi, D.; Manning, R. Systems Engineering the Curiosity Rover: A Retrospective. In Proceedings of the 2013 8th International Conference on System of Systems Engineering, Maui, HI, USA, 2–6 June 2013; pp. 70–75. [Google Scholar]
- Hwangbo, J.; Chen, Y.; Li, R. Precision processing of hirise stereo orbital images for topograpic mapping on mars. In Proceedings of the ASPRS 2010 Annual Conference, San Diego, CA, USA, 26–30 April 2010. [Google Scholar]
- MOLA Team. Mars MGS MOLA DEM 463m V2. Available online: https://astrogeology.usgs.gov/search/map/Mars/GlobalSurveyor/MOLA/Mars_MGS_MOLA_DEM_mosaic_global_463m (accessed on 17 April 2024).
- Zhou, R.; Li, X.; Jiang, W. 3D Surface Matching by a Voxel-Based Buffer-Weighted Binary Descriptor. IEEE Access 2019, 7, 86635–86650. [Google Scholar] [CrossRef]
- Torr, P.H.; Zisserman, A. MLESAC: A New Robust Estimator with Application to Estimating Image Geometry. Comput. Vis. Image Underst. 2000, 78, 138–156. [Google Scholar] [CrossRef]
- Tordoff, B.J.; Murray, D.W. Guided-MLESAC: Faster Image Transform Estimation by Using Matching Priors. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1523–1535. [Google Scholar] [CrossRef]
- Lebeda, K.; Matas, J.; Chum, O. Fixing the Locally Optimized Ransac–Full Experimental Evaluation. In British Machine Vision Conference; Citeseer: Princeton, NJ, USA, 2012; Volume 2. [Google Scholar]
- Li, J.; Hu, Q.; Ai, M. LAM: Locality Affine-Invariant Feature Matching. ISPRS J. Photogramm. Remote Sens. 2019, 154, 28–40. [Google Scholar] [CrossRef]
- Cho, M.; Lee, J.; Lee, K.M. Reweighted Random Walks for Graph Matching. In Proceedings of the Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece, 5–11 September 2010; Proceedings, Part V 11. Springer: Berlin/Heidelberg, Germany, 2010; pp. 492–505. [Google Scholar]
- Elibol, A.; Gracias, N.; Garcia, R.; Kim, J. Graph Theory Approach for Match Reduction in Image Mosaicing. J. Opt. Soc. Am. A 2014, 31, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Hoegner, L.; Tuttas, S.; Stilla, U. Voxel-and Graph-Based Point Cloud Segmentation of 3D Scenes Using Perceptual Grouping Laws. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 43–50. [Google Scholar] [CrossRef]
- Berner, A.; Bokeloh, M.; Wand, M.; Schilling, A.; Seidel, H.-P. A Graph-Based Approach to Symmetry Detection. In Proceedings of the 7th International Symposium on Volume Graphics, 5th Symposium on Point-Based Graphics, VG/PBG@ SIGGRAPH, Los Angeles, CA, USA, 10–11 August 2008; pp. 1–8. [Google Scholar]
- Wu, J.; Shen, H.; Li, Y.-D.; Xiao, Z.-B.; Lu, M.-Y.; Wang, C.-L. Learning a Hybrid Similarity Measure for Image Retrieval. Pattern Recognit. 2013, 46, 2927–2939. [Google Scholar] [CrossRef]
- Umeyama, S. An Eigendecomposition Approach to Weighted Graph Matching Problems. IEEE Trans. Pattern Anal. Mach. Intell. 1988, 10, 695–703. [Google Scholar] [CrossRef]
- Belongie, S.; Malik, J.; Puzicha, J. Shape Matching and Object Recognition Using Shape Contexts. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 509–522. [Google Scholar] [CrossRef]
- Leordeanu, M.; Hebert, M. A Spectral Technique for Correspondence Problems Using Pairwise Constraints. In Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, Washington, DC, USA, 17–20 October 2005; IEEE: Piscataway, NJ, USA, 2005; Volume 2, pp. 1482–1489. [Google Scholar]
- Li, J.; Hu, Q.; Ai, M. GESAC: Robust Graph Enhanced Sample Consensus for Point Cloud Registration. ISPRS J. Photogramm. Remote Sens. 2020, 167, 363–374. [Google Scholar] [CrossRef]
- Luenberger, D.G. Introduction to Linear and Nonlinear Programming; Addison-Wesley: Boston, MA, USA, 1973. [Google Scholar]
- Hofbauer, J.; Sigmund, K. Evolutionary Games and Population Dynamics; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Chen, Y.; Medioni, G. Object Modelling by Registration of Multiple Range Images. Image Vis. Comput. 1992, 10, 145–155. [Google Scholar] [CrossRef]
- Segal, A.; Haehnel, D.; Thrun, S. Generalized-Icp. In Robotics: Science and Systems; MIT Press: Seattle, WA, USA, 2009; Volume 2, p. 435. [Google Scholar]
- Biber, P.; Straßer, W. The Normal Distributions Transform: A New Approach to Laser Scan Matching. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453), Las Vegas, NV, USA, 27–31 October 2003; Volume 3, pp. 2743–2748. [Google Scholar]
- Koide, K.; Yokozuka, M.; Oishi, S.; Banno, A. Voxelized Gicp for Fast and Accurate 3d Point Cloud Registration. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 11054–11059. [Google Scholar]
Number Points | ISS Key Points | Initial Matching | Graph Match Optimization | |
---|---|---|---|---|
MOLA | 349,674 | 2409 | 1336 | 136 |
HiRISE | 143,774 | 3639 |
Algorithm | δTM/m | RMSE/m | LCP | CD/m |
---|---|---|---|---|
ISS + FPFH | 101.261 | 143.276 | 623 | 675.100 |
Algorithm | δTM/m | RMSE/m | LCP | CD/m |
---|---|---|---|---|
ICP | 97.226 | 128.760 | 709 | 664.771 |
GICP | 93.273 | 123.804 | 757 | 630.082 |
VGICP | 91.836 | 122.014 | 770 | 642.532 |
Ours | 79.072 | 104.068 | 830 | 620.426 |
Algorithm | r (Vs = 400 m) | RMSE/m |
---|---|---|
VGICP | Vs | 127.38818962202778 |
2Vs | 139.79158193437294 | |
3Vs | 138.31933973779917 | |
4Vs | 129.55025475600053 | |
5Vs | 111.60038788194028 | |
Ours | Vs | 104.06773202236396 |
2Vs | 104.06773202298623 | |
3Vs | 104.06773202298623 | |
4Vs | 104.06773202298623 | |
5Vs | 104.06773202298623 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Zhao, S.; Guo, X.; Yu, G. A Mars Local Terrain Matching Method Based on 3D Point Clouds. Remote Sens. 2024, 16, 1620. https://doi.org/10.3390/rs16091620
Wang B, Zhao S, Guo X, Yu G. A Mars Local Terrain Matching Method Based on 3D Point Clouds. Remote Sensing. 2024; 16(9):1620. https://doi.org/10.3390/rs16091620
Chicago/Turabian StyleWang, Binliang, Shuangming Zhao, Xinyi Guo, and Guorong Yu. 2024. "A Mars Local Terrain Matching Method Based on 3D Point Clouds" Remote Sensing 16, no. 9: 1620. https://doi.org/10.3390/rs16091620
APA StyleWang, B., Zhao, S., Guo, X., & Yu, G. (2024). A Mars Local Terrain Matching Method Based on 3D Point Clouds. Remote Sensing, 16(9), 1620. https://doi.org/10.3390/rs16091620