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Abstract: Facing the significant challenge of 3D object detection in complex weather conditions
and road environments, existing algorithms based on single-frame point cloud data struggle to
achieve desirable results. These methods typically focus on spatial relationships within a single
frame, overlooking the semantic correlations and spatiotemporal continuity between consecutive
frames. This leads to discontinuities and abrupt changes in the detection outcomes. To address
this issue, this paper proposes a multi-frame 3D object detection algorithm based on a deformable
spatiotemporal Transformer. Specifically, a deformable cross-scale Transformer module is devised,
incorporating a multi-scale offset mechanism that non-uniformly samples features at different scales,
enhancing the spatial information aggregation capability of the output features. Simultaneously, to
address the issue of feature misalignment during multi-frame feature fusion, a deformable cross-
frame Transformer module is proposed. This module incorporates independently learnable offset
parameters for different frame features, enabling the model to adaptively correlate dynamic features
across multiple frames and improve the temporal information utilization of the model. A proposal-
aware sampling algorithm is introduced to significantly increase the foreground point recall, further
optimizing the efficiency of feature extraction. The obtained multi-scale and multi-frame voxel
features are subjected to an adaptive fusion weight extraction module, referred to as the proposed
mixed voxel set extraction module. This module allows the model to adaptively obtain mixed features
containing both spatial and temporal information. The effectiveness of the proposed algorithm is
validated on the KITTI, nuScenes, and self-collected urban datasets. The proposed algorithm achieves
an average precision improvement of 2.1% over the latest multi-frame-based algorithms.

Keywords: autonomous vehicle; 3D object detection; Transformer; point clouds

1. Introduction

In the continuous evolution of autonomous driving technology, environmental per-
ception, as a critical domain, has attracted extensive academic research and engineering
practices. One significant task within this domain is to accurately acquire 3D positional
and classification information of surrounding objects for vehicles under complex weather
conditions and road environments. Currently, numerous 3D detection algorithms employ
deep learning methods to extract features from images [1–6], point clouds [7–12], and fu-
sion data [13–20], achieving remarkable results on commonly used public datasets [21–23].
However, the data acquired during the vehicle’s travel exhibits spatiotemporal continuity,
and existing methods predominantly focus on single-frame data, neglecting to fully exploit
the semantic correlations between historical information. While the motion of an object
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changes over time, the environmental information and object features between adjacent
frames remain similar. In traffic environments, perception algorithms are susceptible to
various environmental interferences, while objects also exhibit feature discrepancies due
to changes in perspective. These influences result in abrupt variations in the size and
orientation of 3D object bounding boxes in continuous time sequences. Human percep-
tion benefits from the historical information of adjacent frames, aiding in obtaining more
accurate predictions for the perception system.

LiDAR sensors offer rich spatial structural information, and mainstream 3D object
detection algorithms typically adopt point cloud-based methods. Due to the unordered
and non-structural nature of point cloud data, it is challenging to directly leverage feature
extraction networks, as in the case of images [24–27], to obtain multiscale features. Existing
approaches address this issue by voxelization [7–9,12,28,29] or Bird’s Eye View (BEV)
projection [30–32] of the raw point cloud, followed by utilizing 3D convolutional neural
networks to extract various spatial features. While these methods tackle the difficulty in
point cloud feature extraction, they struggle to handle feature deficiency when objects are
distant or occluded. In recent research, some methods attempt to tackle 3D object detection
challenges by leveraging information from multiple frames [33–39]. One easily introduced
approach involves feeding features derived from sequences of multiple frames of point
clouds into Long Short-Term Memory (LSTM), iteratively producing object detection
results [35,39]. However, this method requires sequential data processing, making it less
amenable to parallel computation of multiple frames.

Transformer [40], originally designed for natural language processing, achieves paral-
lel context aggregation through attention mechanisms. Since its introduction into the field
of object detection in recent years, Transformer has been widely adopted and demonstrates
significant effectiveness. Therefore, some studies [33,36,38] explore the use of Transformer
to associatively fuse multi-frame point cloud data, enhancing the spatial information of
detected objects. However, in current multi-frame-based object detection methods, atten-
tion mechanisms are predominantly applied in the later stages. This is because the motion
of objects leads to continuous but varying frame-wise mismatched features. The same
object has different spatial features near and far, and different positions on the feature map
after the feature extraction layer. Consequently, directly fusing data from multiple frames
at the same position through concatenation becomes impractical. While the encoder of a
Transformer can perform attention calculations for each feature vector between two frame
feature maps, substantial attention computations are required in the early stage of feature
extraction to learn spatial relationships between different frames. To address this chal-
lenge, we propose a 3D object detection algorithm based on a Spatiotemporal Deformable
Transformer (SDT) for integrating features across multiple frames and scales. Inspired
by deformable convolutional neural networks [41], DEtection TRansformer (DETR) [42],
and deformable DETR [43], our research combines and extends their principles to the
task of 3D feature fusion. The proposed approach first employs 3D submanifold sparse
convolution [44] to obtain a set of multi-scale features. Subsequently, selective matching of
Query and Key is achieved by setting multiple learnable offset parameters. By avoiding self-
attention weight computations for all feature vectors, our method reduces computational
requirements and accelerates model convergence speed.

In addition, the huge amount of raw point clouds significantly escalates the computa-
tional demands of the model, posing challenges in meeting real-time requirements. Several
methods [7,11,45] employ the Farthest Point Sampling (FPS) to acquire a fixed number of
key points. However, key points obtained through FPS-based algorithms often include
numerous background points, introducing irrelevant background features into the model
training process. Although this method can obtain point clouds covering the whole scene
evenly, the number of point clouds contained in distant objects will be further reduced,
which brings difficulties to the object detection task. Therefore, we propose a method
named Proposal Aware Sampling (PAS) to enhance sampling efficiency. This approach
leverages the Region Proposal Network (RPN) to eliminate background points from 3D
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proposal boxes, thereby effectively obtaining a greater number of foreground points. By
reducing background noise points, this method simultaneously avoids the loss of points
belonging to the object.

In summary, this paper makes the following contributions:

(1) Addressing the issue of fine-grained feature misalignment in deformable attention
mechanisms, we propose a Deformable Cross-Scale Transformer (DCST) module. This
module employs a multi-scale offset mechanism, enabling non-uniform sampling of
features across different scales. This enhances the spatial information aggregation
capability of the output features.

(2) Tackling the problem of feature misalignment caused by object motion in multi-frame
feature fusion, we introduce a Deformable Cross-Frame Transformer (DCFT) module.
Independent learnable offset parameters are assigned to different frames, allowing
the model to adaptively associate dynamic features across multiple frames, thereby
improving the model’s utilization of temporal information.

(3) To fully exploit information from cross-scale and cross-frame features, we present a
Hybrid Voxel Set Extraction (HVSE) module. By predicting fusion weights for two
types of feature vectors, the model adaptively obtains hybrid features containing both
spatial and temporal information. We also devise a Proposal-Aware Sampling (PAS)
algorithm to enhance foreground point recall rates, further optimizing the model’s
feature extraction efficiency.

2. Related Work
2.1. 3D Object Detection Based on Multi-Frame Data

The challenge in processing temporal information lies in the mismatch of the object’s
position across different frames relative to the ego-motion of the vehicle. This results in
spatial inaccuracies in the fused features obtained by directly concatenating data from
different frames. Consequently, numerous studies have explored various methods for
appropriate feature extraction and encoding of temporal information. In work [35], the
utilization of LSTM, known for handling sequential data, involves employing a 3D sparse
convolutional U-Net module to independently process multi-frame point clouds for spatial
feature encoding. This model integrates features from the current frame with the hidden
and memory features from the previous frame, subsequently outputting updated hidden
and memory features. The proposed network detection head, graph convolutional neural
network, and maximum suppression algorithm are then applied to obtain the detection
results. Similarly, in another work [39], PointNet encoding is employed to process each
single-frame point cloud datum. Subsequently, a convolutional LSTM network is applied
sequentially to extract temporal information from multiple frames, and the final detection
results are obtained through existing detection heads.

However, LSTM-based methods only use a single memory state and bring a lot of
calculations. In work [46], a comprehensive approach is presented, employing entire
point cloud sequences as input. This approach adopts a modular design and a series
of custom deep network models, including a multi-frame detector, tracker, and object
auto-annotation model. Initially, the multi-frame detector is employed for the initial
object localization. Subsequently, tracking is utilized to extract all relevant object point
clouds and detection boxes, which are then forwarded to subsequent models for further
processing. Ultimately, this pipeline can output finely processed object trajectories at the
bounding box level. While this method achieves precise object detection, achieving real-
time processing remains challenging. The work [32] compresses the height information
of 3D point clouds in each single-frame to a 2D plane. Subsequently, a feature extraction
network is employed to individually extract features from multi-frame Bird’s Eye View
(BEV) data. The features are then weightedly fused using 1D convolution, and a detector
is applied to output detection boxes. Tracking is accomplished based on the positional
relationships among these detection boxes. In the fusion stage, this method assigns different
weights to features from different frames. The final stage involves multi-frame association
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through a tracking algorithm. A similar approach is adopted in work [34], where point
cloud data is first transformed into BEV pseudo-images. The features from different frames
are then dimensionality-reduced and flattened as inputs to the encoder. These methods do
not directly address the issue of feature misalignment during the fusion stage.

Therefore, some approaches utilize proposal network output, such as bounding boxes
or centroid points, to guide the association of features across multiple frames, as bound-
ing boxes can directly provide spatial positional information for different objects. The
method [33] first utilizes PointPillars [9] to obtain a large number of bounding boxes, then
mapping these boxes to multi-frame features to derive local features for each bounding
box. Subsequently, a cross-attention mechanism is employed to achieve multi-perspective
feature alignment and aggregation across frames, with these features being preserved and
continuously updated. In the final stage, a 3D detection head is employed to output the
position and classification information of the object. Another similar approach [36] involves
the proposed spatiotemporal fusion module, which performs weighted fusion on BEV
features of adjacent frames, followed by predicting the central position of the objects to
guide the extraction of multi-frame fusion features. However, these methods do not fully
leverage the early features with rich semantic information. Hence, the multi-frame fusion
module proposed in this paper associates information across frames at earlier stages.

2.2. 3D Object Detection Based on Attention Mechanism

DETR [42] first introduced the thought of Transformers [40] into image object de-
tection. Initially, it unfolds extracted image features into multiple sets of feature vectors,
incorporating positional encoding information as queries in self-attention computations.
Subsequently, following the encoder-decoder framework, a fixed number of bounding
box results are obtained. Leveraging the computed self-attention results, the Transformer
encoder facilitates adaptive weighted fusion of local and global features. Consequently,
numerous approaches in spatial feature fusion have taken advantage of this benefit in 3D
object detection based on point clouds.

The work [10] initially employs FPS for downsampling the point cloud and generates
local regions through a spherical query module. Subsequently, it utilizes Transformer
blocks, treating point features and coordinates as inputs, to generate aggregated features
for local regions. To further refine the centroid points, an attention map from the last
Transformer layer is applied to fine-tune the coordinates of the object bounding box.
The method [47] adopts a series of Transformer-based stacked sub-modules, where each
Transformer-based sub-module comprises a self-attention layer to enhance contextual
relationships and uniqueness for each voting cluster feature. Additionally, it includes a
cross-attention layer for positioning alignment with the initial voting cluster, ensuring
that the refined voting clusters remain consistent with the input point cloud. Several
methods [48,49] attempt to directly implement spatial attention mechanisms based on point
features. They achieve this by initially predicting points relevant to the object through
processing the raw point cloud. Subsequently, each sampled point feature vector is utilized
as a query input to the encoder. To further reduce computational demands, the work [50]
calculates self-attention on point features within proposed bounding boxes after obtaining
a series of proposals. Following this, a fully connected layer refines the decoder’s output
features of the bounding boxes.

Unlike image-based attention mechanisms, the spatial feature map derived from vox-
elization of point clouds is sparse. Applying self-attention computation to each voxel
feature, as done in methods similar to DETR, would result in significant computational
overhead and inefficiency. Therefore, the proposed approach in this paper introduces de-
formable convolutions into the computation process of the Transformer encoder, extending
it to 3D point cloud detection. By incorporating a set of learnable offsets, the method
ensures that each query only needs to compute attention weights with the most relevant
multi-scale voxel features. This not only reduces computational complexity, but also allows
the model to adapt to objects of various shapes.
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3. The Framework of the Deformable Spatiotemporal Transformer

In addressing the aforementioned challenges, this paper proposes a 3D object detection
network based on a deformable spatiotemporal Transformer. As illustrated in Figure 1,
the algorithm takes multiple frames of point clouds as input and effectively integrates
features from multi-scale, multi-frame point clouds into key points using a point-voxel [7]
feature aggregation approach. Initially, to facilitate the processing of point clouds, a vox-
elization [28] method is employed to partition the point cloud into regular cubic structures.
Subsequently, 3D sparse convolution [7,8] modules are applied to the adjacent N frames of
point clouds, extracting voxel spatial features for each frame individually. The Deformable
Cross-Scale Transformer (DCST) module is proposed to selectively fuse features from multi-
ple scales within the current frame, resulting in intra-frame fusion features. This facilitates
the exchange of information between deep and shallow features. Simultaneously, the
Deformable Cross-Frame Transformer (DCFT) module applies similar operations, fusing
same-scale features from the past N-1 frames into the current frame, thereby obtaining
inter-frame fusion features. This enables the exchange of object features at multiple posi-
tions and angles. Multiple-Scale Offset (MSO) and Multi-Frame Offset (MFO) are employed
to explore the correlation between the Query and reference points at various positions. The
hybrid voxel set abstraction module introduces a learnable weight parameter to further
integrate intra-frame and inter-frame fusion features, generating the ultimate mixed voxel
features. Following voxelization and 3D sparse convolution, there is an inevitable loss of
high fine-grained point cloud spatial features.
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Figure 1. The framework of the deformable spatiotemporal transformer.

Therefore, the proposed method employs key points [7] to obtain point-based local
voxel features from hybrid voxel features using PointNet++ [51]. Simultaneously, to enable
the point cloud downsampling algorithm to capture more foreground points, a proposal-
aware sampling algorithm is proposed. Ultimately, all key points’ features are fused with
reference points within the proposal, and after further refinement by the detection head,
the 3D position and classification of the object are obtained.

3.1. 3D Feature Extraction

3D sparse convolution is a widely used method for feature extraction from point clouds,
particularly suited for handling sparse data. 3D sparse convolution effectively reduces
computational load and storage requirements by performing convolution operations only
in the non-empty regions of the data. This is achieved by using a sparse tensor, which stores
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only the non-zero data points and their location information within the dataset. Assuming
there is an input feature map or image X and a convolution kernel K, the traditional 3D
convolution operation can be expressed as:

Y(i, j, k) =
a

∑
p=−a

b

∑
q=−b

c

∑
r=−c

K(p, q, r) · X(i + p, j + q, k + r) (1)

where (i, j, k) refers to a certain location of the output feature map Y, (p, q, r) refers to the
relative position of the convolution kernel K, and (a, b, c) is the size of convolution kernel
K. For 3D sparse convolution, the computation is performed only at non-zero positions.
Therefore, the operation of 3D sparse convolution can be formalized as:

Y(i, j, k) = ∑
(p,q,r)∈N(i, j, k)

K(p, q, r) · X(i + p, j + q, k + r) (2)

where N(i, j, k) refers to a set of nonzero feature points at location (i, j, k) of the input
feature map Y. Like the settings of current works [7,44,52], the input point cloud is voxelized
to L × H × W, which would be down-sampled to voxel features through 4-scale 3 × 3 × 3
3D sparse convolution with 1×, 2×, 4×, 8× size.

3.2. Deformable Cross-Scale Transformer Module

Features at different scales can capture various levels of fine-grained information. Deep
features, owing to their enlarged receptive fields, prioritize global contextual information.
Conversely, shallow features focus more on local information. Therefore, Feature Pyramid
Networks (FPN) are frequently incorporated after the feature extraction layers to aggregate
features at multiple scales. The concept of deformable DETR [43] integrates the idea
with the approach proposed in DETR [42], utilizing learnable offset parameters to guide
information exchange between different layers, thereby replacing the role of FPN. Our work
proposes a Deformable Cross-Scale Transformer (DCST) that extends this methodology
to 3D space and enhances its performance. The proposed DCST module is illustrated
in Figure 2. This module enhances the deformable DETR by introducing multiple sets
of varying offsets for each reference point, corresponding to multiple layers of spatial
voxel features.
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In the original approach, each reference point generates only one set of identical offsets
for each layer of feature maps. Subsequently, the reference point and sampling point
positions are mapped to different layers of feature maps through the downsampling rate.



Remote Sens. 2024, 16, 1621 7 of 23

However, different layers contain features with distinct receptive fields: shallow layers
embody semantic details, while deep layers embody global features. Consequently, due to
variations in receptive fields, shallow features need an increased number of sampling points
for object description. The proposed method DCST leverages the features of reference
points to generate Query vectors. These vectors are then projected through multiple linear
layers to predict offset parameters for different quantities and positions of features at each
layer’s voxel. Each sampling point feature is transformed into a Value vector, and its
corresponding attention weight is directly predicted by the Query vector through multiple
linear layers. Assuming the Query vector, denoted as qmli, for the i-th sampling point in
the l-th layer within the m-th attention head, the predicted attention weight Amli can be
represented as follows:

Amli = Softmax
(

L1(qmli), L2(qmli), . . . , Lj(qmli)) (3)

where Lj denotes the linear layer, Amli representing the degree of correlation between the
reference point and each sampled point. The sampled points are obtained by adding an
offset ∆pq

mli to the coordinates of the reference point center pq
mli. Unlike deformable DETR,

the coordinates corresponding to the sampling points and offsets are in three-dimensional
space. ∆pq

mli can be represented as follows:

∆pq
mli = L1(qmli), L2(qmli), . . . , Lj(qmli) (4)

Finally, the obtained fused feature vector can be represented as:

fs
li =

M

∑
m=1

Ws
m[

L

∑
l=1

I

∑
i=1

Amli·Wv
mli · G(ϕ(pq

mli) + ∆pq
mli)] (5)

where ϕ(·) refers to the normalization function, employed for normalizing coordinates
to the [0, 1] range, facilitating the mapping of reference points to distinct voxel features
in different layers. The matrix Wv

mli represents the projection of sampled point features
onto the Value vector, Ws

m denotes the learnable multi-head attention weights in cross-scale
fusion, and G(·) denotes the spatial trilinear interpolation function. The introduction of this
function is necessitated by the fact that the learned values of ∆pq

mli are mainly fractional,
making it challenging to precisely align with voxel coordinates. As shown in Figure 3,
assuming that there is a reference point f(xd, yd, zd) with eight0 voxel center points nearby,
the spatial trilinear interpolation can be calculated as follows:

fCi = fLi(1 − xd) + fRixd, i = 1, 2, 3, 4 (6){
fV1 = fC2(1 − yd) + fC1yd
fV2 = fC3(1 − yd) + fC4yd

(7)

f = fV1(1 − zd) + fV2zd (8)

Through the integration of the DCST module, fused voxel features are obtained, and
the ultimate intra-frame fused feature can be expressed as:

Fintra = {Fs
1 , Fs

2 , Fs
3 , Fs

4} (9)

where Fs
1 , Fs

2 , Fs
3 , Fs

4 refer to four scales of voxel features after fusion.
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3.3. Deformable Cross-Frame Transformer Module

There are temporal contextual connections between different frame data, and the object
features are similar in multi-frame data. Commonly used cross-attention mechanisms can
obtain correlation results between two inputs, and learnable fusion weights can be derived
based on this correlation. However, directly applying attention mechanisms to multi-
frame data introduces a substantial computational complexity. Therefore, we propose
a Deformable Cross-Frame Transformer (DCFT) that integrates each layer of multiscale
voxel features with adjacent frames. The fusion of inter-frame information differs from the
intra-frame multiscale fusion, as the object’s movement with respect to the ego car leads
to voxel features distribution at different positions. However, in the original Deformable
DETR, attention weights are directly obtained from the Query vector. This results in
challenges during training to determine the correct offset for position and appropriate
weight parameters. To address this issue, as shown in Figure 3, DCFT utilizes sampled point
features to generate Query and Key vectors separately, applying attention computation to
both. The Value vectors generated from reference points are fused to the original Query
position based on attention weights. The computation of attention weight matrix for the
i-th sample point in the f -th frame within the m-th attention head can be expressed as:

Am f i = Softmax(

(
Wq

m f qm f i)
T
(

Wk
m f km f 1

)
√

d
,(

Wq
m f qm f i)

T
(

Wk
m f km f 2

)
√

d
, ...,

(
Wq

m f qm f i)
T
(

Wk
m f km f j

)
√

d
)

(10)

where Wq
m f and Wk

m f refer to the projection matrix of Query and Value, and
√

d is the scale
factor used to prevent excessive scaling of the dot product sum. Similar to the proposed
DCST, the calculation of reference point features for cross-frame fusion can be expressed as:

f f
f i =

M

∑
m=1

W f
m[

F

∑
f=1

I

∑
i=1

Am f i·Wv
m f i · G(ϕ(pq

m f i) + ∆pq
m f i)] (11)

where Wv
m f i refers to the projection matrix that projects sampled points to the Value vector,

and W f
m denotes the learnable multi-head attention weights in cross-frame fusion. It should

be noted that the number of learnable offset values for each frame in DCFT is fixed. This is
due to the fact that the fusion in cross-frame data involves voxel features from the same
layer, sharing identical receptive field sizes and containing object features at the same fine-
grained level. The objective of multi-frame fusion is to establish associations between voxel
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features of the current frame and voxel features from adjacent frames at different positions
but representing the same object. Through the fusion process in the DCFT module, fused
voxel features are obtained, and the final inter-frame fusion feature can be represented as:

Finter =
{

F f
1 , F f

2 , F f
3 , F f

4

}
(12)

where F f
1 , F f

2 , F f
3 , F f

4 refer to the voxel features of the adjacent four frames after fusion.

3.4. Proposal-Aware Sampling Module

Following the processing of voxel features by the proposed DCST and DCFT, informa-
tion from multiscale and multi-frame point clouds is, respectively, integrated into the voxel
features at the corresponding positions of the current frame. While voxel-based methods
efficiently extract features, they inevitably lead to the loss of spatial details. To address this
issue, a point-voxel based method of aggregating 3D voxel features through key points is
applied in the subsequent stages.

Common FPS methods can uniformly sample the original point cloud but may include
a substantial number of background points. Therefore, a Proposal-Aware Sampling (PAS)
algorithm is proposed to enhance the recall rate of foreground point sampling for FPS. Voxel
features within a single frame and across multiple frames are compressed into BEV features.
Subsequently, a Region Proposal Network (RPN) is employed to generate proposal boxes
for foreground points. Assume N proposal boxes Bj ∈

[
Cj, dj, hj, wj

]
, where Cj, dj, hj, wj

represent the center point, depth, height, and width of the proposal box, respectively. The
Euclidean distance between each point PLi in the original point cloud and Cj is calculated
to filter out background points, expressed as:

Dij =
∥∥PLi − Cj

∥∥,

PLi =
[
xL

i , yL
i , zL

i
]
,

Cj =
[

xP
j , yP

j , zP
j

]
,

Dij =
[
∆xij, ∆yij, ∆zij

]
,

(13)

so that if the Dij is greater than
[
dj/2, hj/2, wj/2

]
, it indicates that the point is a background

point and should be deleted.
As shown in Figure 4, visual results obtained through different sampling algorithms

for the target vehicle indicate that the proposed PAS approach effectively filters out a greater
number of background points. It is evident that the method based on FPS loses significant
details of the object point cloud and exhibits the highest proportion of background points.
The Sectorized Proposal-Centric (SPC) method [53] directly employs the longest edge of
the proposal box as the diameter to form a spherical region as the criterion for selecting
foreground points. However, this method tends to include excessive background points.
The proposed PAS employs filtering criteria that are more aligned with the actual shape of
the object, thereby obtaining points more relevant to the object.
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3.5. Hybrid Voxel Set Extraction Module

Based on the key points obtained from PAS, a Hybrid Voxel Set Abstraction (HVSA) is
proposed, which can aggregate local voxel features in cross-scale voxel features and cross-
frame voxel features by voxel set abstraction [7]. Specifically, assume that
FlP =

{
f c
l1, ..., f c

lP
}

, c = [inter, intra] denotes the i-th layer feature of voxel features and
VlP =

{
vc

l1, ..., vc
lP
}

denotes 3D coordinates corresponding to each voxel feature. For the
key point PKj, the allocation of adjacent voxel features within the radius r is obtained
as follows:

Sc
lj =


∥∥∥vc

lp − pKj

∥∥∥2
< r,

[ f c
lp; vc

lp − pKj]
T , ∀ f c

lp ∈ Flp,
∀vc

lp ∈ Vlp

 (14)

where vc
lp − pKj refers to local coordinates, however, due to the abstraction of varying

amounts of voxel features by different key points, it is necessary to uniformly encode the
neighboring voxels obtained for each point. This process can be expressed as:

Fc
lj = max

{
G
(

M
(

Sc
lj

))}
(15)

where M(·) denotes random sampling of a certain number of voxel features from adjacent
voxel features, and G(·) denotes a multi-layer fully connected network for encoding local
voxel features and local coordinate features. Subsequently, all voxel features within the
range are integrated into a key point through maximum channel pooling. In the end, the
multi-scale and multi-frame voxel features for each key point at each layer are concatenated
together as follows:

Fc
j =

[
Fc

1j, Fc
2j, Fc

3j, Fc
4j

]
(16)

As shown in Figure 5, Equations (12)–(14) extract multi-scale and multi-frame infor-
mation from the intra-frame voxel features and inter-frame voxel features, obtaining Fintra

j

and Finter
j at the key points. To further integrate the two types of information, a weight

prediction module is proposed, enabling weighted fusion based on learnable weights. It
is worth noting that, due to the attention mechanisms implemented by DCST and SCFT,
different-layer feature information exchange for a single-frame and same-layer information
exchange for multi-frame have been achieved. Moreover, these features have already been
aggregated at the same key point position. Therefore, attention calculations between spatial
positions are not required for this fusion stage. There will be a learning weight vector for
each key point. The calculation can be expressed as:

wkeypoint
j = σ[G(tan h(G(Fintra

j ) + G(Finter
j )))] (17)
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where G(·) denotes a multi-layer fully connected network, tanh(·) denotes hyperbolic
tangent activation function, and σ refers to the sigmoid function used to normalize wkeypoint

j
into the range [0, 1]. Finally, the obtained features of each key point can be expressed as:

Fkeypoint
j = Fintra

j wkeypoint
j ⊕ Finter

j

(
1 − wkeypoint

j

)
(18)
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4. Experiments
4.1. Experiment Setup
4.1.1. Voxelization

The proposed algorithm was validated on the nuScenes dataset and the KITTI dataset.
The raw point cloud was voxelized into regular voxels before serving as input. For the
nuScenes dataset, the point cloud range was clipped to: X-axis and Y-axis [−75.2, 75.2] m,
Z-axis [−2, 4] m. The input voxel size was set to [0.1 m, 0.1 m, 0.15 m]. Since the KITTI
dataset provides annotations only for objects within the field of view (FOV), we clipped
the point cloud range to: X-axis [0, 70.4] m, Y-axis [−40, 40] m, and Z-axis [−3, 1] m. The
input voxel size was set to [0.05 m, 0.05 m, 0.1 m].

4.1.2. Public Dataset and Training Setup

(a) nuScenes dataset

The nuScenes dataset [22] comprises 700 sequences for training and 150 sequences
for validation. Each point cloud sequence has a duration of approximately 20 s, with
a frame interval of 0.05 s. Annotations are provided for every ten consecutive frames,
referred to as keyframes. The nuScenes dataset provides a substantial volume of data and
covers a diverse range of environmental conditions, including variations in times of day
and weather. It offers detailed annotations across a variety of object classes and sensor
modalities, supporting an extensive evaluation of the model’s capabilities in multi-modal
3D detection scenarios. Additionally, the inclusion of continuous multi-frame data in the
nuScenes dataset enables the application of spatiotemporal fusion methods. The presence
of sequential frame data enables the evaluation of the model’s ability to utilize temporal
information, which is crucial for accurate 3D object detection in dynamic environments
typical of autonomous driving.

The primary evaluation metric for the detection task is the mean average precision
(mAP). The mAP computation utilizes a series of centroid distance thresholds rather than
the commonly used bounding box IoU thresholds. Training is conducted using data from
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keyframes taken every four consecutive frames due to the absence of ground truth for
non-keyframes.

(b) KITTI dataset

The KITTI dataset [21] consists of 7481 training samples and 7518 testing samples, with
the training samples typically divided into training subsets (3712 samples) and validation
subsets (3769 samples). This dataset is one of the most established benchmarks in the
field of autonomous driving. It provides a diverse set of real-world scenarios, which are
crucial for evaluating the performance of our 3D sparse convolution models in realistic
settings. The KITTI dataset includes a variety of annotated 3D objects, such as vehicles and
pedestrians, captured in different urban environments, making it highly suitable for testing
the accuracy and robustness of our model. Since KITTI does not provide consecutive frame
data, the proposed model is equipped with only the fusion module of DCFT during testing.

(c) Training setup

For model training, An NVIDIA GTX 3090 graphics card (Nvidia Corporation, Santa
Clara, CA, USA) was utilized for training with a batch size of four, across a total of
80 epochs for KITTI and 50 epochs for nuScenes, and the initial learning rate was set at
0.01. The operating system was Ubuntu 20.04, and the algorithm was implemented using
the OpenPCDet ( version 0.5) and PyTorch ( version 1.10) frameworks, with Adam being
employed as the optimizer.

4.1.3. Self-Collected Dataset

As shown in Figure 6, to further validate the portability and effectiveness of the
proposed algorithm, we established a physical testing platform equipped with an 80-line
LiDAR (RoboSense RS-Ruby Lite, 10 Hz, Shenzhen, China), an IMU (200 Hz), and a stereo
camera (30 Hz). The LiDAR has a 360-degree horizontal field of view and a 40-degree
vertical field of view. The camera has a resolution of 1080 × 720, a horizontal field of view
of 71 degrees, and uses a global shutter to output images.
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We collected small-scale datasets across two different scenes totaling ten continuous
segments (each approximately 5 min in length). The collection includes eight segments
from urban residential areas and two from city streets in Anting Town, Shanghai, China.
The dataset encompasses various object types including cars, pedestrians, bicycles, and
motorcycles. Data from all sensors were gathered through ROS and synchronized to a
common timestamp. The proposed algorithm was tested on LiDAR data, which were
transformed into the format of the KITTI dataset.

4.2. Results of the nuScenes Dataset

The nuScenes dataset provides continuous frame data for 150 scenes, serving as
the evaluation benchmark to validate the effectiveness of the proposed algorithm. As
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shown in Table 1, the proposed DSTrans exhibits significant advantages compared to recent
state-of-the-art methods. It achieves the highest detection accuracy in categories such as
“car”, “pedestrian”, “truck”, “motorcycle”, “construction vehicle”, “bicycle”, and “average
precision (mAP)”. Competitive results are also obtained in other categories. In comparison
to the latest multi-frame 3D object detection algorithm, TCTR [34], our method shows a
performance improvement of 2.1%.

Table 1. Comparison of 3D object detection results for different methods on the nuScenes validation
dataset (%). The best results are marked in bold. Abbreviations: construction vehicle (CV), pedestrian
(Ped.), motorcycle (Motor.), and traffic cone (TC).

Method Data Car Ped. Bus Barrier TC Truck Trailer Motor. CV Bicycle mAP

SARPNET [54]

Single-
frame

59.9 69.4 19.4 38.3 44.6 18.7 18.0 29.8 11.6 14.2 32.4
InfoFocus [55] 77.9 63.4 44.8 47.8 46.5 31.4 37.3 29.0 10.7 6.1 39.5

MAIR [56] 47.8 37.0 18.8 51.1 48.7 22.0 17.6 29.0 7.4 24.5 30.4
PointPillars [9] 68.4 59.7 28.2 38.9 30.8 23.0 23.4 27.4 4.1 1.1 30.5

PointPainting [57] 77.9 73.3 36.1 60.2 62.4 35.8 37.3 41.5 15.8 24.1 46.4
WYSIWYG [58] 79.1 65.0 46.6 34.7 28.8 30.4 40.1 18.2 7.1 0.1 35.0

3DVID [37]
Multi-
frame

79.7 76.5 47.1 48.8 58.8 33.6 43.0 40.7 18.1 7.9 45.4
TCTR [34] 83.2 74.9 63.7 53.8 52.5 51.5 33.0 54.0 15.6 22.6 50.5

TransPillars [59] 84.0 77.9 62.0 55.1 55.4 52.4 34.3 55.2 18.9 27.6 52.3
DSTrans (Ours) 86.2 78.3 60.9 58.2 54.9 54.2 35.1 57.4 19.8 28.7 53.4

As shown in Figure 7, compared to the commonly used PointPillars method, the
proposed approach can output stable detection results in continuous multi-frame point
cloud data. Figure 7 illustrates the detection results for pedestrians and vehicles near the
road in three consecutive frames, comparing the two methods. When the pedestrian is at a
distance, PointPillars fails to detect the pedestrian, and due to occlusion, the insufficient
return point cloud results in the failure to correctly detect the three vehicles near the road.
In contrast, the proposed DSTrans leverages data from adjacent frames, enhancing the
feature representation of objects and producing accurate detection results.

Different voxelization settings lead to voxel grids with varying spatial resolutions,
directly impacting the fine-grained features obtained by 3D sparse convolution. Therefore,
various voxelization parameters were set, and a comparison of 3D detection performance
on the nuScenes dataset was conducted. As shown in Figure 8, each voxel size was set to
[0.05, 0.05, 0.2], [0.1, 0.1, 0.2], [0.2, 0.2, 0.2], and [0.4, 0.4, 0.2]. The results indicate that as
the voxel size increases, the extracted features inevitably lose details, leading to a decrease
in detection accuracy. Conversely, overly small voxels result in increased computational
demands, reducing the number of point clouds contained in each voxel and consequently
decreasing the expressive power of local features.

In rainy conditions, the quality of LiDAR point clouds is noticeably affected due to
several reasons: (1) The presence of raindrops leads to scattering and absorption of the
laser beam in the atmosphere, resulting in a reduction of beam intensity. This may cause a
weakening of the received signal by the LiDAR, lowering sensitivity and detectable range.
(2) After intersecting with raindrops, the laser beam may undergo multiple reflections,
causing a single laser pulse to generate multiple return points in space. This may introduce
redundant points in the point cloud, interfering with the accuracy of object shape and
position. (3) Scattering effects of raindrops can blur the boundaries between the laser beam
and objects on the ground. This blurring effect may result in less distinct object contours in
the point cloud, thereby reducing spatial resolution. Figure 9 illustrates the detection results
of the proposed method in rainy conditions. It is evident that the LiDAR point clouds
associated with each object have significantly decreased, especially for distant objects.
However, due to the incorporation of information across multiple frames, the network
captures temporal correlations between consecutive frames. The proposed algorithm still
detects the majority of objects under these challenging weather conditions.
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4.3. Results of the KITTI Dataset

The test results of the KITTI dataset are commonly used 3D object detection evaluation
metrics. Due to the absence of continuous temporal data in the 3D object detection task of
the KITTI dataset, the proposed method in this paper excludes the multi-frame information
fusion module DCFT, retaining only the DCST and PAS modules. As shown in Table 2, even
without the inclusion of the DCFT module, the proposed method still achieves the highest
mAP results. The architecture of PV-RCNN is most similar to the proposed algorithm, and
by adopting the improvements presented in this chapter, a 4% improvement is observed in
mAP results. The detection results of the “car”, “pedestrian”, and “bicycle” were increased
by 1.4%, 8.3%, and 3.7%, respectively. All compared methods results are sourced from
the official OpenPCDet data, and the proposed DSTrans is also implemented based on
OpenPCDet. The proposed method achieves a single-frame processing speed of 0.18 s for
the KITTI dataset on a GTX 3090 graphics card. Compared with PV-RCNN, the proposed
model increases the number of learnable parameters by 16.1%, but the running time is only
increased by 0.02 s.
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Table 2. Comparison of 3D object detection results for different methods on the KITTI validation
dataset (%). The best results are marked in bold. Abbreviations: pedestrian (Ped.), parameters
(Params.).

Method Car Ped. Bicycle mAP Params. Runtime

CaDDN [60] 21.4 13.0 9.8 14.7 67.55 M 0.57 s
PointPillars [9] 77.3 52.3 62.7 64.1 4.83 M 0.05 s
SECOND [8] 78.6 53.0 67.2 66.3 5.32 M 0.06 s

PointRCNN [61] 78.7 54.4 72.1 68.4 4.09 M 0.10 s
Part-A2 78.7 66.0 74.3 73.0 59.23 M 0.14 s

PV-RCNN [7] 83.6 57.9 70.5 70.7 13.12 M 0.16 s
VoxelR-CNN [12] 84.5 - - - 7.59 M 0.05 s

DSTrans (w/o DCFT) 84.8 62.7 73.1 73.5 15.23 M 0.18 s

Figure 10 presents the detection results in two different scenarios from the KITTI
dataset. It can be observed that in the scenarios of enclosed roads and intersections, PV-
RCNN tends to misclassify roadside trees and traffic facilities as pedestrians due to the
lack of utilization of multi-scale information. In contrast, the proposed method, integrating
multi-scale features, significantly reduces false positive objects. Without the addition of the
DCST module, the false positive objects of PV-RCNN are mostly small pedestrian objects.
This is attributed to the fact that voxel features obtained through 3D sparse convolution
focus more on global features, leading to the loss of some local fine-grained details. The
DCST module facilitates the exchange and fusion of multi-scale features, achieving more
selective feature fusion based on deformable mechanisms.
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Figure 10. Visualization results of KITTI dataset. (a) The image of an enclosed road; (b) The detection
results of PV-RCNN for an enclosed road; (c) The detection results of proposed method for an enclosed
road; (d) The image of an intersection; (e) The detection results of PV-RCNN for an intersection;
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4.4. Results of the Self-Collected Dataset

To further validate the effectiveness of the proposed method in this paper, we con-
structed a small-scale dataset based on a real-world vehicle collection platform, specifically
targeting urban road scenes in China. While the nuScenes and KITTI datasets provide
extensive urban scene data, these datasets differ from Chinese urban roads in terms of back-
ground feature distribution and object density within the scenes. Figure 11 illustrates three
common and complex urban scenarios in China. In the “Intersection Scene” in Figure 11a,
the proposed method addresses the issue of missing vehicle object features due to occlusion
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by fusing information from multiple frames, resulting in correct detections for the majority
of objects. Similarly, in Figure 11c, vehicles parked alongside the road and partially ob-
scured are also detected by proposed method. In Figure 11b, pedestrians, vehicles, and
motorcycles are correctly detected for the majority of occurances. These results affirm the
effectiveness of the proposed DSTrans in practical road environments.
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4.5. Ablation Studies
4.5.1. Ablation Experiments of the DCST Module

The proposed DCST module facilitates the fusion of inter-frame voxel features across
multiple scales, enhancing the representation capability for objects at various scales. To
investigate the effectiveness of this module, several ablation experiments were designed to
compare changes in detection results. As shown in Table 3, Fs

1 , Fs
2 , Fs

3 , Fs
4 denote the applica-

tion of deformable attention mechanisms only to the 1st, 2nd, 3rd, and 4th layer of voxel
features. It can be observed that, after the fusion of features in the 4th layer, the performance
improvement is most significant for the “Car” category, while the improvement for the
“Pedestrian” and “Bicycle” categories is not obvious. This is because deep-level features
tend to represent small objects in a coarse manner. However, by applying the DCST mod-
ule with deformable attention mechanisms at each layer, the proposed method achieves
the highest results across all categories and “mAP”. The results in Table 3 demonstrate
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the effectiveness of DCST in integrating multi-scale information, resulting in a noticeable
enhancement in 3D object detection performance.

Table 3. Comparison of 3D object detection results for different scale fusion methods on the KITTI
(moderate) validation dataset (%). The best results are marked in bold. The ‘

√
’ marks indicate that

the corresponding scale feature is utilized.

Fs
1 Fs

2 Fs
3 Fs

4 Car Pedestrian Bicycle mAP
√

81.7 58.2 69.7 69.9√
82.9 57.3 70.2 70.1√
82.3 59.6 71.3 71.1√
83.2 58.7 68.9 70.3√ √ √ √
84.8 62.7 73.1 73.5

4.5.2. Ablation Experiments of the DCFT Module

To validate the effectiveness of the proposed DCFT for multi-frame feature integration,
a comparison was conducted with results obtained using different numbers of fusion
frames. As evident from the last four rows in Table 4, the 3D detection performance
gradually improves with an increase in the number of fusion frames. The increment “∆”
column in the table represents the detection performance improvement over the previous
set of Settings.

Table 4. Comparison of 3D object detection results with different fusion frame numbers on the
nuScenes validation dataset (%). Abbreviations: fusion frame numbers (FFN), construction vehicle
(CV), pedestrian (Ped.), motorcycle (Motor.), and traffic cone (TC).

Method FFN Car Ped. Bus Barrier TC Truck Trailer Motor. CV Bicycle mAP ∆

PointPillars [9]

1 68.4 59.7 28.2 38.9 30.8 23.0 23.4 27.4 4.1 1.1 30.5 -
2 69.2 60.9 30.0 39.3 32.1 24.8 24.6 29.2 5.2 2.3 31.8 1.3
3 70.1 60.4 30.7 38.7 31.4 22.1 23.8 30.5 5.7 2.9 31.6 −0.1
4 70.8 59.1 29.6 35.2 27.3 25.6 22.9 28.2 4.8 2.5 30.6 −1.0

DSTrans

1 79.4 69.2 58.6 47.1 45.3 48.4 28.9 50.2 15.4 18.9 46.1 -
2 81.5 72.7 59.1 50.4 48.7 51.3 29.6 53.4 17.2 23.4 48.7 2.6
3 83.1 74.8 60.4 51.9 52.3 53.8 31.4 54.7 19.2 26.3 50.8 2.1
4 84.2 77.3 60.9 52.7 52.9 54.2 32.6 55.2 19.8 27.2 51.7 0.9

It can be observed that employing DCFT for fusing adjacent two frames achieves
the maximum improvement in the detection results for DSTrans. In contrast, Table 4 also
analyzes the results of PointPillars using a method of overlaying multiple frames of raw
data. While overlaying two frames of point cloud yields better results, overlaying three
and four frames of data negatively impacts the detection performance. This suggests that
the direct overlaying method does not effectively enhance the data representation of object
features. The inconsistency in the positions of moving objects across multiple frames leads
to distortion in the object features when directly overlaid. This result further emphasizes
the effectiveness and necessity of the proposed DCFT.

However, it can be found that with the increase of FFN, the detection performance has
not increased significantly from Table 4. This trend is gradually slowing down. Figure 12
shows the location and feature differences of different objects in the point cloud of four
consecutive frames. It can be seen that there are differences of point clouds features and
density distribution between objects at different times. When such differences are too large,
more data is needed to train the model to adapt to the diversity and complexity brought
by higher FFN. The results provide a promising direction for future research to explore
advanced approaches that can more effectively deal with high variability across frames.
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4.5.3. Ablation Experiments of the PAS Module

The choice of different sampling methods from the original point cloud can influence
the aggregation of voxel features for key points. To investigate the impact of various
sampling methods, while keeping the proposed model structure unchanged, key points
were obtained using FPS, SPC, and PAS methods. These methods were tested on the
nuScenes dataset.

FPS involves averaging sampling from the original point cloud, maintaining the point
cloud density for each part while reducing the overall quantity. SPC divides a spherical
region with the longest side of each proposal box as the radius to filter the object-related
point cloud. The proposed PAS method simultaneously extracts proposals from two BEV
features obtained from intra-frame and inter-frame voxel features, directly filtering the
point cloud using the square region of the proposal box. PAS further improves the recall rate
of foreground points based on SPC. Results presented in Table 5 demonstrate a significant
improvement of 7.5% and 10.2% for SPC and PAS over the FPS method, respectively. This
indicates that the proposed PAS module has a favorable impact on the performance of 3D
object detection.

Table 5. Comparison of 3D object detection results with different sampling methods on the nuScenes
validation dataset (%). Abbreviations: construction vehicle (CV), pedestrian (Ped.), motorcycle
(Motor.), and traffic cone (TC).

Method Car Ped. Bus Barrier TC Truck Trailer Motor. CV Bicycle mAP

FPS 81.7 72.1 58.6 45.4 44.6 48.3 30.2 49.8 14.7 23.9 46.9
SPC 83.6 76.4 58.9 51.3 50.7 53.8 33.7 53.9 16.5 25.3 50.4
PAS 84.2 77.3 60.9 52.7 52.9 54.2 32.6 55.2 19.8 27.2 51.7

4.5.4. Ablation Experiments of the HVSA Module

Upon obtaining intra-frame voxel features Fintra
j and inter-frame voxel features Finter

j ,
it is essential to devise an appropriate fusion method to effectively integrate the information
contained in both features into a key point. One direct approach involves element-wise
addition of corresponding channels, followed by averaging to derive the key point feature.
This process can be expressed as follows:

Fkeypoint
j = (F intra

j ⊕ Finter
j

)
/2 (19)

Table 6 compares the detection results between direct concatenation (Concat) and the
proposed Hybrid Voxel Set Aggregation (HVSA). It is evident that HVSA outperforms
direct concatenation, with the most significant improvements observed in the “Barrier” and
“Traffic cone” categories. This indicates that the fusion method based on predictable weights
proposed in this paper is effective in enhancing the performance of 3D object detection.



Remote Sens. 2024, 16, 1621 20 of 23

Table 6. Comparison of 3D object detection results with different feature fusion methods on the
nuScenes validation dataset (%). Abbreviations: construction vehicle (CV), pedestrian (Ped.), motor-
cycle (Motor.), and traffic cone (TC).

Method Car Ped. Bus Barrier TC Truck Trailer Motor. CV Bicycle mAP

Concat 82.6 75.8 59.3 50.4 49.3 52.8 31.2 53.9 18.2 26.1 50.0
HVSA 84.2 77.3 60.9 52.7 52.9 54.2 32.6 55.2 19.8 27.2 51.7

Increment 1.6 1.5 1.6 2.3 3.6 1.4 1.4 1.3 1.6 1.1 1.7

5. Conclusions

To fully exploit the semantic correlations and spatiotemporal continuity inherent in
temporal information, the proposed method specifically addresses the challenge of main-
taining consistent perception results in the face of temporal instability or abrupt changes,
particularly under complex weather conditions and on challenging road environments.
This paper proposes a multi-frame 3D object detection algorithm based on the deformable
spatiotemporal Transformer. Firstly, a Deformable Cross-Scale Transformer module is intro-
duced to enhance the model’s aggregation capability of spatial features. The Deformable
Cross-Frame Transformer module is proposed to adaptively correlate dynamic features
across multiple frames, improving the model’s utilization of temporal information. Sec-
ondly, a proposal-aware sampling algorithm is designed to further optimize the efficiency
of feature extraction. Finally, the obtained multiscale and multi-frame voxel features are
adaptively fused using the proposed Hybrid Voxel Set Aggregation module, enabling the
model to adaptively obtain fused features containing spatiotemporal information. Multiple
experiments and ablation analyses conducted on the KITTI, nuScenes, and self-collected
datasets validate the effectiveness of the proposed method. Future work will focus on
optimizing implementation methods to reduce computational resource requirements for
multi-frame fusion.
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