Impact of Urbanization on Cloud Characteristics over Sofia, Bulgaria †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Instrumentations, and Sources of Data
2.2. Software and Tools
3. Results
3.1. Lifting Condensation Level (LCL)
3.2. Cloud Base Height (CBH) Determined by the Ceilometers
3.3. Clouds Persistence Determined by the Ceilometers
3.4. Validation of CBH Determined by the Rawinsonde
3.5. Low-Level Cloud Cover (LCC) in CERRA
3.6. Joint Cloud Histograms Based on CLARA Products
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bony, S.; Stevens, B.; Frierson, D.M.W.; Jakob, C.; Kageyama, M.; Pincus, R.; Shepherd, T.G.; Sherwood, S.C.; Siebesma, A.P.; Sobel, A.H.; et al. Clouds, Circulation and Climate Sensitivity. Nature Geosci. 2015, 8, 261–268. [Google Scholar] [CrossRef]
- Zelinka, M.D.; Hartmann, D.L. Why Is Longwave Cloud Feedback Positive? J. Geophys. Res. 2010, 115, D16117. [Google Scholar] [CrossRef]
- Hartmann, D.L.; Ockert-Bell, M.E.; Michelsen, M.L. The Effect of Cloud Type on Earth’s Energy Balance: Global Analysis. J. Climate 1992, 5, 1281–1304. [Google Scholar] [CrossRef]
- Allan, R.P.; Barlow, M.; Byrne, M.P.; Cherchi, A.; Douville, H.; Fowler, H.J.; Gan, T.Y.; Pendergrass, A.G.; Rosenfeld, D.; Swann, A.L.S.; et al. Advances in Understanding Large-Scale Responses of the Water Cycle to Climate Change. Ann. N. Y. Acad. Sci. 2020, 1472, 49–75. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, F.; Rajakaruna, S.; Ghosh, A. Very Short-Term Photovoltaic Power Forecasting with Cloud Modeling: A Review. Renew. Sustain. Energy Rev. 2017, 75, 242–263. [Google Scholar] [CrossRef]
- Bocheva, L.; Dimitrova, T.; Penchev, R.; Gospodinov, I.; Simeonov, P. Severe Convective Supercell Outbreak over Western Bulgaria on July 8, 2014. Idojaras 2018, 122, 177–203. [Google Scholar] [CrossRef]
- Yau, M.K.; Rogers, R.R. A Short Course in Cloud Physics; Elsevier: Amsterdam, The Netherlands, 1996; ISBN 978-0-08-057094-5. [Google Scholar]
- Guo, X.; Fu, D.; Wang, J. Mesoscale Convective Precipitation System Modified by Urbanization in Beijing City. Atmos. Res. 2006, 82, 112–126. [Google Scholar] [CrossRef]
- Liu, J.; Niyogi, D. Meta-Analysis of Urbanization Impact on Rainfall Modification. Sci. Rep. 2019, 9, 7301. [Google Scholar] [CrossRef]
- Li, Y.; Fowler, H.J.; Argüeso, D.; Blenkinsop, S.; Evans, J.P.; Lenderink, G.; Yan, X.; Guerreiro, S.B.; Lewis, E.; Li, X. Strong Intensification of Hourly Rainfall Extremes by Urbanization. Geophys. Res. Lett. 2020, 47, e2020GL088758. [Google Scholar] [CrossRef]
- Danchovski, V.; Ivanov, D. Urban Effects on Cloud Base Height and Cloud Persistence over Sofia, Bulgaria Environ. Sci. Proc. 2024, 29, 45. [Google Scholar] [CrossRef]
- Angevine, W.M.; White, A.B.; Senff, C.J.; Trainer, M.; Banta, R.M.; Ayoub, M.A. Urban–Rural Contrasts in Mixing Height and Cloudiness over Nashville in 1999. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Theeuwes, N.E.; Barlow, J.F.; Teuling, A.J.; Grimmond, C.S.B.; Kotthaus, S. Persistent Cloud Cover over Mega-Cities Linked to Surface Heat Release. npj Clim. Atmos. Sci. 2019, 2, 15. [Google Scholar] [CrossRef]
- Lemonsu, A.; Masson, V. Simulation of a Summer Urban Breeze Over Paris. Bound. -Layer Meteorol. 2002, 104, 463–490. [Google Scholar] [CrossRef]
- Han, J.-Y.; Baik, J.-J. A Theoretical and Numerical Study of Urban Heat Island–Induced Circulation and Convection. J. Atmos. Sci. 2008, 65, 1859–1877. [Google Scholar] [CrossRef]
- Varentsov, M.; Wouters, H.; Platonov, V.; Konstantinov, P. Megacity-Induced Mesoclimatic Effects in the Lower Atmosphere: A Modeling Study for Multiple Summers over Moscow, Russia. Atmosphere 2018, 9, 50. [Google Scholar] [CrossRef]
- Rozoff, C.M.; Cotton, W.R.; Adegoke, J.O. Simulation of St. Louis, Missouri, Land Use Impacts on Thunderstorms. J. Appl. Meteorol. Climatol. 2003, 42, 716–738. [Google Scholar] [CrossRef]
- Han, J.-Y.; Baik, J.-J.; Lee, H. Urban Impacts on Precipitation. Asia-Pac. J. Atmos. Sci. 2014, 50, 17–30. [Google Scholar] [CrossRef]
- Huang, T.; Yim, S.H.; Yang, Y.; Lee, O.S.; Lam, D.H.; Cheng, J.C.; Guo, J. Observation of Turbulent Mixing Characteristics in the Typical Daytime Cloud-Topped Boundary Layer over Hong Kong in 2019. Remote Sens. 2020, 12, 1533. [Google Scholar] [CrossRef]
- Rosenfeld, D. Suppression of Rain and Snow by Urban and Industrial Air Pollution. Science 2000, 287, 1793–1796. [Google Scholar] [CrossRef]
- Mochida, M.; Kuwata, M.; Miyakawa, T.; Takegawa, N.; Kawamura, K.; Kondo, Y. Relationship between Hygroscopicity and Cloud Condensation Nuclei Activity for Urban Aerosols in Tokyo. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Zhang, Q.; Quan, J.; Tie, X.; Huang, M.; Ma, X. Impact of Aerosol Particles on Cloud Formation: Aircraft Measurements in China. Atmos. Environ. 2011, 45, 665–672. [Google Scholar] [CrossRef]
- Han, J.-Y.; Baik, J.-J.; Khain, A.P. A Numerical Study of Urban Aerosol Impacts on Clouds and Precipitation. J. Atmos. Sci. 2012, 69, 504–520. [Google Scholar] [CrossRef]
- Schmid, P.E.; Niyogi, D. Modeling Urban Precipitation Modification by Spatially Heterogeneous Aerosols. J. Appl. Meteorol. Climatol. 2017, 56, 2141–2153. [Google Scholar] [CrossRef]
- Zhong, S.; Qian, Y.; Zhao, C.; Leung, R.; Yang, X.-Q. A Case Study of Urbanization Impact on Summer Precipitation in the Greater Beijing Metropolitan Area: Urban Heat Island versus Aerosol Effects. J. Geophys. Res. Atmos. 2015, 120, 10903–10914. [Google Scholar] [CrossRef]
- Kingfield, D.M.; Calhoun, K.M.; De Beurs, K.M.; Henebry, G.M. Effects of City Size on Thunderstorm Evolution Revealed through a Multiradar Climatology of the Central United States. J. Appl. Meteorol. Climatol. 2018, 57, 295–317. [Google Scholar] [CrossRef]
- Dou, J.; Wang, Y.; Bornstein, R.; Miao, S. Observed Spatial Characteristics of Beijing Urban Climate Impacts on Summer Thunderstorms. J. Appl. Meteorol. Climatol. 2015, 54, 94–105. [Google Scholar] [CrossRef]
- Ryu, Y.-H.; Baik, J.-J.; Han, J.-Y. Daytime Urban Breeze Circulation and Its Interaction with Convective Cells. Q. J. R. Meteorol. Soc. 2013, 139, 401–413. [Google Scholar] [CrossRef]
- Theeuwes, N.E.; Boutle, I.A.; Clark, P.A.; Grimmond, S. Understanding London’s Summertime Cloud Cover. Q. J. R. Meteorol. Soc. 2022, 148, 454–465. [Google Scholar] [CrossRef]
- Mittermaier, M. A Critical Assessment of Surface Cloud Observations and Their Use for Verifying Cloud Forecasts. Q. J. R. Meteorol. Soc. 2012, 138, 1794–1807. [Google Scholar] [CrossRef]
- Lawrence, M.G. The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications. Bull. Am. Meteorol. Soc. 2005, 86, 225–234. [Google Scholar] [CrossRef]
- Poore, K.D.; Wang, J.; Rossow, W.B. Cloud Layer Thicknesses from a Combination of Surface and Upper-Air Observations. J. Clim. 1995, 8, 550–568. [Google Scholar] [CrossRef]
- Comstock, J.M.; Ackerman, T.P.; Mace, G.G. Ground-Based Lidar and Radar Remote Sensing of Tropical Cirrus Clouds at Nauru Island: Cloud Statistics and Radiative Impacts. J. Geophys. Res. Atmos. 2002, 107, AAC 16-1–AAC 16-14. [Google Scholar] [CrossRef]
- Gryning, S.-E.; Batchvarova, E.; Floors, R.; Münkel, C.; Skov, H.; Sørensen, L.L. Observed and Modelled Cloud Cover up to 6 km Height at Station Nord in the High Arctic. Int. J. Climatol. 2021, 41, 1584–1598. [Google Scholar] [CrossRef]
- Pîrloagă, R.; Ene, D.; Boldeanu, M.; Antonescu, B.; O’Connor, E.J.; Ştefan, S. Ground-Based Measurements of Cloud Properties at the Bucharest–Măgurele Cloudnet Station: First Results. Atmosphere 2022, 13, 1445. [Google Scholar] [CrossRef]
- An, N.; Pinker, R.T.; Wang, K.; Rogers, E.; Zuo, Z. Evaluation of Cloud Base Height in the North American Regional Reanalysis Using Ceilometer Observations. Int. J. Climatol. 2020, 40, 3161–3178. [Google Scholar] [CrossRef]
- Illingworth, A.J.; Cimini, D.; Haefele, A.; Haeffelin, M.; Hervo, M.; Kotthaus, S.; Löhnert, U.; Martinet, P.; Mattis, I.; O’Connor, E.J.; et al. How Can Existing Ground-Based Profiling Instruments Improve European Weather Forecasts? Bull. Am. Meteorol. Soc. 2019, 100, 605–619. [Google Scholar] [CrossRef]
- Cimini, D.; Haeffelin, M.; Kotthaus, S.; Löhnert, U.; Martinet, P.; O’Connor, E.; Walden, C.; Coen, M.C.; Preissler, J. Towards the Profiling of the Atmospheric Boundary Layer at European Scale—Introducing the COST Action PROBE. Bull. Atmos. Sci. Technol. 2020, 1, 23–42. [Google Scholar] [CrossRef]
- Platnick, S.; King, M.D.; Ackerman, S.A.; Menzel, W.P.; Baum, B.A.; Riedi, J.C.; Frey, R.A. The MODIS Cloud Products: Algorithms and Examples from Terra. IEEE Trans. Geosci. Remote Sens. 2003, 41, 459–473. [Google Scholar] [CrossRef]
- Pavolonis, M.J.; Heidinger, A.K. Daytime Cloud Overlap Detection from AVHRR and VIIRS. J. Appl. Meteorol. Climatol. 2004, 43, 762–778. [Google Scholar] [CrossRef]
- Derrien, M.; Le Gléau, H. MSG/SEVIRI Cloud Mask and Type from SAFNWC. Int. J. Remote Sens. 2005, 26, 4707–4732. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, C.; Fan, H. Spatiotemporal Distributions of Cloud Properties over China Based on Himawari-8 Advanced Himawari Imager Data. Atmos. Res. 2020, 240, 104927. [Google Scholar] [CrossRef]
- Amato, U.; Antoniadis, A.; Cuomo, V.; Cutillo, L.; Franzese, M.; Murino, L.; Serio, C. Statistical Cloud Detection from SEVIRI Multispectral Images. Remote Sens. Environ. 2008, 112, 750–766. [Google Scholar] [CrossRef]
- Stubenrauch, C.J.; Rossow, W.B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Girolamo, L.D.; Getzewich, B.; Guignard, A.; Heidinger, A.; et al. Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel. Bull. Am. Meteorol. Soc. 2013, 94, 1031–1049. [Google Scholar] [CrossRef]
- Stephens, G.L.; Vane, D.G.; Boain, R.J.; Mace, G.G.; Sassen, K.; Wang, Z.; Illingworth, A.J.; O’connor, E.J.; Rossow, W.B.; Durden, S.L.; et al. THE CLOUDSAT MISSION AND THE A-TRAIN: A New Dimension of Space-Based Observations of Clouds and Precipitation. Bull. Am. Meteorol. Soc. 2002, 83, 1771–1790. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.R.; McCormick, M.P. CALIPSO Mission: Spaceborne lidar for observation of aerosols and clouds. In Proceedings of the Lidar Remote Sensing for Industry and Environment Monitoring III, Hangzhou, China, 23–27 October 2002; SPIE: Washington, DC, USA, 2003; Volume 4893, pp. 1–11. [Google Scholar]
- Rossow, W.B.; Zhang, Y. Evaluation of a Statistical Model of Cloud Vertical Structure Using Combined CloudSat and CALIPSO Cloud Layer Profiles. J. Clim. 2010, 23, 6641–6653. [Google Scholar] [CrossRef]
- Stephens, G.; Winker, D.; Pelon, J.; Trepte, C.; Vane, D.; Yuhas, C.; L’Ecuyer, T.; Lebsock, M. CloudSat and CALIPSO within the A-Train: Ten Years of Actively Observing the Earth System. Bull. Am. Meteorol. Soc. 2018, 99, 569–581. [Google Scholar] [CrossRef]
- Dolinar, E.K.; Dong, X.; Xi, B. Evaluation and Intercomparison of Clouds, Precipitation, and Radiation Budgets in Recent Reanalyses Using Satellite-Surface Observations. Clim. Dyn. 2016, 46, 2123–2144. [Google Scholar] [CrossRef]
- Yao, B.; Teng, S.; Lai, R.; Xu, X.; Yin, Y.; Shi, C.; Liu, C. Can Atmospheric Reanalyses (CRA and ERA5) Represent Cloud Spatiotemporal Characteristics? Atmos. Res. 2020, 244, 105091. [Google Scholar] [CrossRef]
- Danchovski, V. Summertime Urban Mixing Layer Height over Sofia, Bulgaria. Atmosphere 2019, 10, 36. [Google Scholar] [CrossRef]
- Romps, D.M. Exact Expression for the Lifting Condensation Level. J. Atmos. Sci. 2017, 74, 3891–3900. [Google Scholar] [CrossRef]
- Karlsson, K.-G.; Stengel, M.; Meirink, J.F.; Riihelä, A.; Trentmann, J.; Akkermans, T.; Stein, D.; Devasthale, A.; Eliasson, S.; Johansson, E.; et al. CLARA-A3: The Third Edition of the AVHRR-Based CM SAF Climate Data Record on Clouds, Radiation and Surface Albedo Covering the Period 1979 to 2023. Earth Syst. Sci. Data 2023, 15, 4901–4926. [Google Scholar] [CrossRef]
- Schimanke, S.; Ridal, M.; Le Moigne, P.; Berggren, L.; Undén, P.; Randriamampianina, R.; Andrea, U.; Bazile, E.; Bertelsen, A.; Brousseau, P.; et al. CERRA Sub-Daily Regional Reanalysis Data for Europe on Single Levels from 1984 to Present. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.622a565a?tab=overview(accessed on 24 May 2023).
- Schimanke, S.; Ridal, M.; Le Moigne, P.; Berggren, L.; Undén, P.; Randriamampianina, R.; Andrea, U.; Bazile, E.; Bertelsen, A.; Brousseau, P.; et al. CERRA Sub-Daily Regional Reanalysis Data for Europe on Pressure Levels from 1984 to Present. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.a39ff99f?tab=overview(accessed on 24 May 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Czernecki, B.; Głogowski, A.; Nowosad, J. Climate: An R Package to Access Free In-Situ Meteorological and Hydrological Datasets For Environmental Assessment. Sustainability 2020, 12, 394. [Google Scholar] [CrossRef]
- Hufkens, K.; Stauffer, R.; Campitelli, E. The Ecwmfr Package: An Interface to ECMWF API Endpoints. Available online: https://zenodo.org/records/7004985(accessed on 15 May 2023).
- Pierce, D. Ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files. Available online: https://cirrus.ucsd.edu/~pierce/ncdf/ (accessed on 15 May 2023).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Pebesma, E.; Bivand, R. Spatial Data Science: With Applications in R; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Carslaw, D.C.; Ropkins, K. Openair—An R Package for Air Quality Data Analysis. Environ. Model. Softw. 2012, 27, 52–61. [Google Scholar] [CrossRef]
- Schulzweida, U. CDO User Guide. Available online: https://code.mpimet.mpg.de/projects/cdo/embedded/index.html (accessed on 20 May 2023).
- Xian, T.; Guo, J.; Zhao, R.; Su, T.; Li, Z. The Impact of Urbanization on Mesoscale Convective Systems in the Yangtze River Delta Region of China: Insights Gained from Observations and Modeling. J. Geophys. Res. Atmos. 2023, 128, e2022JD037709. [Google Scholar] [CrossRef]
- Vo, T.T.; Hu, L.; Xue, L.; Li, Q.; Chen, S. Urban Effects on Local Cloud Patterns. Proc. Natl. Acad. Sci. USA 2023, 120, e2216765120. [Google Scholar] [CrossRef]
- Xu, G.; Fu, S.; Liu, J.; Shang, R.; Luo, Y. A Satellite Observational Study of Topographical Effects on Daytime Shallow Convective Clouds. Remote Sens. 2023, 15, 5542. [Google Scholar] [CrossRef]
- Craven, J.P.; Jewell, R.E.; Brooks, H.E. Comparison between Observed Convective Cloud-Base Heights and Lifting Condensation Level for Two Different Lifted Parcels. Weather. Forecast. 2002, 17, 885–890. [Google Scholar] [CrossRef]
- Martucci, G.; Milroy, C.; O’Dowd, C.D. Detection of Cloud-Base Height Using Jenoptik CHM15K and Vaisala CL31 Ceilometers. J. Atmos. Ocean. Technol. 2010, 27, 305–318. [Google Scholar] [CrossRef]
- Williams, A.P.; Schwartz, R.E.; Iacobellis, S.; Seager, R.; Cook, B.I.; Still, C.J.; Husak, G.; Michaelsen, J. Urbanization Causes Increased Cloud Base Height and Decreased Fog in Coastal Southern California. Geophys. Res. Lett. 2015, 42, 1527–1536. [Google Scholar] [CrossRef]
- Wang, J.; Rossow, W.B.; Zhang, Y. Cloud Vertical Structure and Its Variations from a 20-Yr Global Rawinsonde Dataset. J. Clim. 2000, 13, 3041–3056. [Google Scholar] [CrossRef]
- Free, M.; Sun, B.; Yoo, H.L. Comparison between Total Cloud Cover in Four Reanalysis Products and Cloud Measured by Visual Observations at U.S. Weather Stations. J. Clim. 2016, 29, 2015–2021. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danchovski, V. Impact of Urbanization on Cloud Characteristics over Sofia, Bulgaria. Remote Sens. 2024, 16, 1631. https://doi.org/10.3390/rs16091631
Danchovski V. Impact of Urbanization on Cloud Characteristics over Sofia, Bulgaria. Remote Sensing. 2024; 16(9):1631. https://doi.org/10.3390/rs16091631
Chicago/Turabian StyleDanchovski, Ventsislav. 2024. "Impact of Urbanization on Cloud Characteristics over Sofia, Bulgaria" Remote Sensing 16, no. 9: 1631. https://doi.org/10.3390/rs16091631
APA StyleDanchovski, V. (2024). Impact of Urbanization on Cloud Characteristics over Sofia, Bulgaria. Remote Sensing, 16(9), 1631. https://doi.org/10.3390/rs16091631