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Abstract: This study introduces a new machine learning-based algorithm for the retrieving significant
wave height (SWH) using synthetic aperture radar (SAR) images. This algorithm is based on
the azimuthal cut-off wavelength and was developed in quad-polarized stripmap (QPS) mode in
coastal waters. The collected images are collocated with a wave simulation from the numeric model,
called WAVEWATCH-III (WW3), and the current speed from the HYbrid Coordinate Ocean Model
(HYCOM). The sea surface wind is retrieved from the image at the vertical–vertical polarization
channel, using the geophysical model function (GMF) CSARMOD-GF. The results of the algorithm
were validated against the measurements obtained from the Haiyang-2B (HY-2B) scatterometer,
yielding a root mean squared error (RMSE) of 1.99 m/s with a 0.82 correlation (COR) and 0.27 scatter
index of wind speed. It was found that the SWH depends on the wind speed and azimuthal cut-off
wavelength. However, the current speed has less of an influence on azimuthal cut-off wavelength.
Following this rationale, four widely known machine learning methods were employed that take the
SAR-derived azimuthal cut-off wavelength, wind speed, and radar incidence angle as inputs and
then output the SWH. The validation result shows that the SAR-derived SWH by eXtreme Gradient
Boosting (XGBoost) against the HY-2B altimeter products has a 0.34 m RMSE with a 0.97 COR and a
0.07 bias, which is better than the results obtained using an existing algorithm (i.e., a 1.10 m RMSE
with a 0.77 COR and a 0.44 bias) and the other three machine learning methods (i.e., a >0.58 m RMSE
with a <0.95 COR), i.e., convolutional neural networks (CNNs), Support Vector Regression (SVR) and
the ridge regression model (RR). As a result, XGBoost is a highly efficient approach for GF-3 wave
retrieval at the regular sea state.

Keywords: significant wave height; GF-3; machine learning; azimuthal cut-off wavelength; WW3

1. Introduction

It is widely recognized that the sea surface wave plays a crucial role in marine dy-
namics, especially in climate change. The wave has been traditionally measured using an
electro-magnetic current meter and an acoustic Doppler current meter. However, these
observations have significant limitations, especially regarding marine research over large
spatial coverage. Thanks to advancements in computer science and oceanography the-
ory, numeric wave models such as WAVEWATCH-III (WW3) [1] and Simulation Wave
Nearshore (SWAN) [2] have been developed. However, these models typically have a
coarse spatial resolution of 10 km, limiting the hindcasting wave application for regional
studies on marine science, especially in coastal waters.

Monitoring the sea surface in near real-time has become a crucial area of research
thanks to the increasing popularity of remote-sensing technology for earth observation
since the 1970s. Currently, the remote-sensed products are officially released, including sea
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surface wind from a scatterometer [2], significant wave height (SWH) from an altimeter [3],
and wave spectrum from Surface Wave Investigation and Monitoring (SWIM) onboard
Chinese–French Oceanography SATellite (CFOSAT) [4,5]. However, monitoring nearshore
waves with high precision remains a challenge for the remote sensing community, although
two high-frequency phased-array radars [6] can detect swell and current in coastal areas.
Synthetic aperture radar (SAR), an advanced sensor with acceptable spatial resolution
(i.e., 1 m for TerraSAR-X [TS-X] and TanDEM-X [TD-X]) [7], can significantly retrieve
atmospheric–marine dynamics, especially in tropical cyclones [8,9], and detect targets on
the sea surface [10].

The geophysical model function (GMF) in vertical–vertical (VV) polarization, ini-
tially designed for wind retrieval from a scatterometer [11], can also be used for SAR
wind retrieval. The co-polarized (VV and horizontal–horizontal (HH)) GMFs have been
further improved through SAR measurements, i.e., C-SARMOD for Sentinel-1 (S-1) [12],
C-SARMOD2 [13] for RADARSAT-2 (R-2), and CSARMOD-GF for Gaofen-3 (GF-3) [14].
Other studies have been conducted for wind retrieval using the SAR-derived azimuthal
cut-off wavelength [15,16] and theoretical backscattering model [17]. However, due to
the saturation of the co-polarized SAR backscattering signal at the regular sea state [18]
and at a strong wind speed of >25 m/s (i.e., cyclonic wind profile), GMF usually in-
verts cross-polarized vertical–horizontal and horizontal–vertical images [19,20] using a
machine learning method [21]. Several algorithms have been developed for co-polarized
SAR wave retrieval based on a sea surface mapping mechanism, following the intro-
duction of the Max-Planck Institute Algorithm (MPI) [22] and several co-polarized SAR
wave retrieval algorithms based on a sea surface mapping mechanism. These algorithms
include a semiparametric retrieval algorithm (SPRA) [23], partition rescaling and shift
algorithm [24], parameterized first-guess spectrum method (PFSM) [25], and fully polari-
metric technique [26,27]. Additionally, empirical models [28,29] and machine learning
techniques [30,31] have been implemented for retrieving wave parameters from SAR im-
ages directly, without calculating the complex model transfer functions (MTFs) of the
mapping mechanism.

In sea surface imaging, the motion between the sea surface and the SAR satellite can
make waves at a length smaller than the specific value in the azimuth direction unde-
tected [32]. This phenomenon is called the azimuthal cut-off wavelength caused by unique
velocity bunching. SAR wind [33] and wave retrieval algorithms [29] have been developed
based on azimuthal cut-off wavelength. Let us consider the ENVISAT-ASAR image in
the Agulhas Current region as an example [34]; the Doppler shift frequency represented
by the Doppler centroid anomaly (DCA) in the range direction [35,36] is correlated with
backscattering roughness of upper ocean dynamics, such as wind, wave, and current speed.
However, previous studies [37,38] have reported significant differences between theoretical-
based and SAR-measured cut-off wavelengths observed through ENVISAT-ASAR and
GF-3 imageries acquired in wave mode. As a result, it is worth investigating the influence
of the current on the azimuthal cut-off wavelength.

In this work, 3000 GF-3 images were collected in China’s coastal waters. Our goal
was to investigate the dependence of SWH on upper oceanic dynamics, such as the sea
surface wind speed and azimuthal cut-off wavelength. After analyzing the data, the SWH
retrieval algorithm for SAR was developed based on machine learning. The remainder of
this study is organized as follows: Section 2 describes the dataset, including SAR images
and auxiliary data. Section 3 presents the SAR wave retrieval algorithm methodology,
particularly emphasizing studying the dependence of upper oceanic dynamics on the
SWH. The applicability of the SWH retrieval algorithm is confirmed in Section 4, and the
conclusion is summarized in Section 5.
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2. Datasets

This section describes GF-3 SAR images taken in the China Seas. Additionally, the
auxiliary data are presented, i.e., European Centre for Medium-Range Weather Forecasts
reanalysis (ERA-5) wind, HYCOM current, and the products from Haiyang-2B (HY-2B).

2.1. GF-3 Image

The GF-3, which operates in 12 imaging modes [19], has released the data since August
2016. It is a part of the Dragon Programme, a collaboration project between the large-scale
scientific and technological cooperation project between the Chinese Ministry of Science and
Technology and the European Space Agency in Earth observation. The calibration method
for GF-3 processed as a Level-1A (L-1A) production is presented in the following equation:

σ0 = PI2
(

M
32, 767

)2
− N [dB] (1)

where σ0 is normalized radar cross section (NRCS); PI is the pixel intensity of SAR raw
data; and M and N are the external calibration constant and the offset factor for a specific
imaging mode, respectively, stored in the annotated file. In total, 3000 images acquired in
quad-polarized stripmap (QPS) mode with swath coverage of 100 km and a standard pixel
of 25 m were collected from 2019 to 2022. Figure 1 shows a quick look at a VV-polarized
image after establishing calibration, in which the wind streaks are visible. This image was
taken at 9:44 UTC on 29 September 2021, and the incidence angle ranged from 39.68◦ to
40.85◦, following the descending direction. The frame of all images is illustrated in Figure 2,
in which the black and blue rectangles represent the spatial coverage of images.
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2.2. Auxiliary Data

GF-3 satellite image retrieval algorithms for wind and wave [27] have been developed.
One such algorithm is the co-polarized GMF CSARMOD-GF, specifically adapted for GF-3
to address calibration issues [14]. The fundamental principle behind the GMF CSARMOD-
GF is to establish the relationship between the NRCS and a wind vector, stated as follows:

σ0 = B0(1+B1 cos φ + B2cos 2φ
)

(2)

where B0, B1, and B2 are the functions of wind speed U10 at 10 m above the sea surface
and incidence angle, θ; and φ is the wind direction relative to flight orientation. In GMF,
when two unknown variables are present, prior information on wind direction from a
0.25◦ gridded ERA-5 is directly employed. The image is divided into sub-scenes with
215 × 215 pixels (~5 km) in the pretreatment process. Figure 3 depicts a two-dimensional
SAR spectrum at a spatial scale between 800 m and 3 km extracted from the image in
Figure 1. The red line represents wind direction with 180◦ ambiguity. Then, the true
wind direction is obtained by referring to the ERA-5 wind field (Figure 4) at 10:00 UTC on
29 September 2021. In this figure, the black rectangle represents the spatial coverage of the
image in Figure 1.

Validating the SAR-derived wind and wave is crucial for the result’s accuracy. To
validate this, operational products from HY-2B are used, including the wind from a scat-
terometer with a spatial resolution of 12.5 km and the SWH with a spatial resolution of
10 km, following the footprint of the altimeter. For instance, Figure 5a,b show the wind and
wave maps from the HY-2B scatterometer and altimeter on 25 October 2020. Moreover, the
distances between SAR retrievals from the sub-scenes on the image and the measurements
from HY-2B are within 3 km. The time differences are each less than 1.5 h. The WW3
model stimulates the waves with 0.05◦ grids at intervals of 0.5 h, treating ERA-5 wind and
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water depth from the General Bathymetric Chart of the Oceans (GEBCO) as forcing fields.
Our previous studies have shown the reliability of this model, showing the model settings
of WW3 and validation of hindcasted simulation in our earlier studies [1]. The numeric
circulation models can be used for current simulation, i.e., the Princeton Ocean Model [39].
Its upgraded version is called the Stony Brook Parallel Ocean Model [40], Finite-Volume
Community Ocean Model [41], and HYbrid Coordinate Ocean Model (HYCOM) [42]. For-
tunately, the current data from the HYCOM reanalysis system are publicly available to
investigators worldwide, making them an accessible and reliable resource. The spatial
resolution of the HYCOM current is 0.08◦ grid at intervals of 3 h each day. Figure 6a,b
present the examples of HYCOM’s current map at 9:00 UTC on 29 September 2021, and
the WW3-simulated SWH map at 10:00 UTC on 29 September 2021, in which the black
rectangle represents the spatial coverage of the image in Figure 1.
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3. Methodology

This section presents the wave retrieval algorithms from VV-polarized SAR images,
presenting the theoretical calculation of azimuthal cut-off wavelength associated with wave
spectrum. The SWH retrieval algorithms based on machine learning are proposed after
studying the dependence of upper oceanic dynamics on the azimuthal cut-off wavelength.
The general processing flow diagram of the methodology is presented in Figure 7. Firstly,
the wind speed, azimuthal cut-off wavelength and radar incidence angle are obtained from
the GF-3 images, which re-collocated with the SWH simulated by the WW3. Secondly,
those matchups are treated as the dataset for developing the SWH retrieval algorithms
based on machine learning models. In addition, the measurements from the HY-2B are
used for validating the SAR-derived wind speeds and SWHs.
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3.1. SAR Wave Retrieval Algorithm

As mentioned earlier, SAR wave retrieval can be performed using a theoretical-based
scheme, an empirical model, or an intelligent algorithm. The theoretical-based scheme,
also known as PFSM, combines the benefits of MPI and SPRA algorithms to invert wave
spectrum from VV-polarized GF-3 image. The critical aspect of the PFSM algorithm is
the separation of the SAR intensity spectrum in the dimension of wave number, and the
threshold ks [43] is estimated by

ks =

[
2.87 gV2

R2U4
10 cos2 ϕ

(
sin2 ϕ sin2 θ + cos2 ϕ

)]0.33

(3)

where R is the slant distance, V is the flight velocity, g is gravitational acceleration, ϕ is the
wave propagation direction relative to the radar look orientation, θ is the radar incidence
angle, and U10 is the wind speed. Here, the SAR-derived wind speed, U10, is derived from
(3). Figure 8a displays the SAR-derived wind map corresponding to the image in Figure 1.
Moreover, a statistical analysis was conducted through more than 1000 matchups between
SAR retrievals and products of the HY-2B scatterometer, as depicted in Figure 8b. Our
findings show a 1.99 m/s root mean squared error (RMSE), a 0.82 correlation (COR), and a
0.27 scatter index (SI) of wind speed, indicating the reliability of that SAR-derived wind for
this study.

The portion of an SAR intensity spectrum at the wave number, k, greater than threshold,
ks, corresponds to the wind wave, obtaining the dominant velocity, cp, and propagation
wave direction, ϕp. Afterward, the discretized values, i.e., 0.8cp ≤ cp ≤ 1.2cp at intervals of
0.1 m/s and (ϕp − 20◦) ≤ ϕp ≤ (ϕp + 20◦) at intervals of 1◦, were used. Then, SAR-derived
wind speeds are used in the wave spectrum, called the Elfouhaily model [44]. Those wave
spectra and mapping MTFs stimulate the intensity spectra, and the best-fit first-guess wave
spectrum corresponds to the minimum difference between the simulated and SAR intensity
spectra. The wind wave spectrum is inverted by minimizing the cost function, J, expressed
as follows:

J =
∫ [

Tk − Tk
]2dk + µ

∫ { [
Fk − Fk

][
C − Fk

]}2

dk (4)

where Tk is the inverted wave spectrum; Tk is the best-fit first-guess wave spectrum; Fk is
the SAR intensity spectrum; Fk is the mapped intensity spectrum; µ indicates the weight
coefficient; and C is constant as 0.001, ensuring the computational convergence. The process
involves inserting the swell spectrum by reversely solving the SAR intensity spectrum at a
wave number, k, smaller than the threshold, ks. Lastly, the wave spectrum is a composite of
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the wind wave and the swell. After applying FFT-2, the two-dimensional SAR intensity
spectrum of the sub-scene in Figure 3a at a spatial scale between 60 m and 1 km is shown
in Figure 9a. The one-dimensional wave spectrum derived from SAR is presented in
Figure 9b. The SAR-derived result is duplicated with the true wave spectrum because of
the 180-degree ambiguity of the SAR intensity spectrum.
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intensity spectra. The wind wave spectrum is inverted by minimizing the cost function, J, 
expressed as follows: 

J = ∫[Tk  Tഥk]2dk + µ ∫ ቄ[Fk  Fതk]
[C  Fഥ k]

ቅ
2

dk    (4) 

where Tk is the inverted wave spectrum; Tഥk is the best-fit first-guess wave spectrum; Fk is 
the SAR intensity spectrum; Fതk is the mapped intensity spectrum; µ indicates the weight 
coefficient; and C is constant as 0.001, ensuring the computational convergence. The pro-
cess involves inserting the swell spectrum by reversely solving the SAR intensity spec-
trum at a wave number, k, smaller than the threshold, ks. Lastly, the wave spectrum is a 
composite of the wind wave and the swell. After applying FFT-2, the two-dimensional 
SAR intensity spectrum of the sub-scene in Figure 3a at a spatial scale between 60 m and 
1 km is shown in Figure 9a. The one-dimensional wave spectrum derived from SAR is 
presented in Figure 9b. The SAR-derived result is duplicated with the true wave spectrum 
because of the 180-degree ambiguity of the SAR intensity spectrum. 

Figure 8. (a) SAR-derived wind map corresponding to the image in Figure 1, and (b) a comparison
between SAR retrievals and wind speeds of the HY-2B scatterometer.

Remote Sens. 2024, 16, 1644 9 of 18 
 

 

  
(a) (b) 

Figure 9. (a) Two-dimensional SAR intensity spectrum of the sub-scene in Figure 3a at a spatial scale 
between 60 m and 1 km. (b) The one-dimensional SAR-derived wave spectrum. 

3.2. Dependence of Upper Oceanic Dynamics on the Azimuthal Cut-Off Wavelength 
In practice, the azimuthal cut-off wavelength, λ, is estimated by fiĴing it to the nor-

malized one-dimensional spectrum based on a Gaussian function, G(kx), as described in 
the following equation: 

G(kx)= expቊπ ൬
kx

kc
൰

2

ቋ     (5)

where kx is the wavenumber in the azimuthal direction, and kc = 2π/λ [45]. Note that ve-
locity bunching represented by azimuthal cut-off wavelength is independent of polariza-
tion [38]. As a result, the azimuthal cut-off wavelength in VV-polarization was only used. 

Figure 10a,b depict the relationships between the SWH and two variables: wind 
speed for a 1 m/s bin and azimuthal cut-off wavelength for a 1 m bin. Unsurprisingly, 
wind speed is correlated with the SWH (COR = 0.56) because the sea state is determined 
by wind stress. As a result, the NRCS was included in the empirical wave retrieval algo-
rithm (i.e., CWAVE). Additionally, the azimuthal cut-off wavelength is correlated with the 
SWH (COR = 0.50). This behavior is more apparent in the tropical cyclones following the 
fetch- and duration-limited features [46]. Similarly, Figure 10c shows the dependence of 
current speed on azimuthal cut-off wavelength, indicates that the COR (= 0.11) is quite 
weak because the current has less influence on azimuthal cut-off wavelength. 

Figure 9. (a) Two-dimensional SAR intensity spectrum of the sub-scene in Figure 3a at a spatial scale
between 60 m and 1 km. (b) The one-dimensional SAR-derived wave spectrum.



Remote Sens. 2024, 16, 1644 9 of 17

3.2. Dependence of Upper Oceanic Dynamics on the Azimuthal Cut-Off Wavelength

In practice, the azimuthal cut-off wavelength, λ, is estimated by fitting it to the
normalized one-dimensional spectrum based on a Gaussian function, G(kx), as described in
the following equation:

G(kx) = exp

{
π

(
kx

kc

)2
}

(5)

where kx is the wavenumber in the azimuthal direction, and kc = 2π/λ [45]. Note that
velocity bunching represented by azimuthal cut-off wavelength is independent of polariza-
tion [38]. As a result, the azimuthal cut-off wavelength in VV-polarization was only used.

Figure 10a,b depict the relationships between the SWH and two variables: wind speed
for a 1 m/s bin and azimuthal cut-off wavelength for a 1 m bin. Unsurprisingly, wind speed
is correlated with the SWH (COR = 0.56) because the sea state is determined by wind stress.
As a result, the NRCS was included in the empirical wave retrieval algorithm (i.e., CWAVE).
Additionally, the azimuthal cut-off wavelength is correlated with the SWH (COR = 0.50).
This behavior is more apparent in the tropical cyclones following the fetch- and duration-
limited features [46]. Similarly, Figure 10c shows the dependence of current speed on
azimuthal cut-off wavelength, indicates that the COR (=0.11) is quite weak because the
current has less influence on azimuthal cut-off wavelength.
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3.3. Development of SWH Retrieval Algorithm

Advanced techniques such as machine learning are becoming increasingly integral to
the development of SAR wind technology in the era of artificial intelligence [47] and wave
retrieval [29,31] algorithms. In a recent study [9], three machine learning schemes were
applied for wind retrieval in tropical cyclones. In this study, the four machine learning
methods, i.e., eXtreme Gradient Boosting (XGBoost), convolutional neural networks (CNN),
Support Vector Regression (SVR), the ridge regression model (RR), were used to develop
the new SWH retrieval algorithm. Detailed information on the four methods is described
as follows.

In principle, XGBoost uses the multiple decision trees generated by gradient lifting.
Then, a strong classifier is employed to improve each decision tree’s accuracy in the
iterations. Moreover, the second-order gradient information and regularization can avoid
over-fitting effectively and offer better computing efficiency. Hu et al. [9] presented the
details of the XGBoost process, and the hyperparameters used in the XGBoost model are
listed in Table 1.

Table 1. The Hyperparameters used in XGBoost.

Hyperparameter Value

max_depth 50
n_estimators 300

Gamma 0.1
Subsample 0.9

min_child_weights 3
reg_lambda 1
reg_alpha 0.001
Gamma 0.1

As one of the representative algorithms of deep learning, the CNN is a class of feed-
forward neural networks that contains convolutional computation and a deep structure.
The CNN network model is constructed by stacking multiple convolutional layers, pooling
layers, and fully connected layers to learn the features of the input data and ultimately
make regression predictions. The convolutional layer extracts features from the input
data through convolutional operations, and the pooling layer conducts a dimensionality
reduction to extract important feature information. Finally, the fully connected layer
integrates the features obtained by integrating the convolutional and pooling layers for the
final regression prediction.

SVR is a machine learning algorithm for solving regression problems. Firstly, the
kernel function is used to obtain the high-dimensional spatial characteristics of the original
data, and then the loss function is used to evaluate the difference between the predicted
value and the real value. In order to avoid the overfitting problem, the model is adjusted by
the gradient descent optimization algorithm and the regularization parameter. At the same
time, the boundary parameters are set to define a tolerable range. Therefore, by setting
different parameters, SVR can be adapted to various scientific problems.

In general, RR is a linear model that deals with regression problems. Compared with
the traditional linear regression model, the regularization term and the complexity of the
model can be optimized by adjusting the regularization parameter. A larger regularization
parameter reduces the complexity of the model and avoids the overfitting problem. In
addition, when the features of input data are multicollinear, the ridge regression model can
improve the stability and reliability of the model.

Our work has datasets consisting of 40,000 matchups and 2000 images available in the
training process using four machine learning methods. As reported in a recent study [48],
the SAR features under 15 polarization modes are used in the development of GF-3 wave
retrieval based on XGBoost and are quite complex to implement. In contrast, the azimuthal
cut-off wavelength caused by velocity bunching is independent of the imagining mode
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and polarization. In our work, the inputs of this model include the azimuthal cut-off
wavelength, SAR-derived wind speed by GMF CSARMOD-GF, and radar incidence angle.
The output is the SWH. Figure 11 exhibited the training process performance, indicating
that the XGBoost eventually converges and that approximately 0.30 m RMSE and the CNN
eventually converges and that approximately 0.58 m RMSE is achieved as the iteration
approaches 200. However, the SVR and RR have no iteration process. Figure 11c shows
the SHAP values highlighted by the feature value. It was found that the wind speed and
azimuthal cut-off wavelength have the greatest impact on the XGBoost model.
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4. Results and Discussion

This section proposes an algorithm applied for 1000 images, presents the validation
against HY-2B measurements, and discusses the error analysis.

4.1. Validation

The machine learning-based algorithm for SWH retrieval was implemented for the
other 1000 images. Afterward, the retrievals from SAR were compared with the measure-
ments obtained from the HY-2B altimeter and the simulations generated by the WW3
model. The HY-2B swath covering the SAR scenes is collected, and the temporal difference
between them is less than 1.5 h, revealing over 600 matchups for validation and error
analysis. Figure 12a shows the retrieval result from several along-track images at 9:44 UTC
on 29 September 2021, where the gaps are caused by an invalid azimuthal cut-off wave-
length. The color circles represent the footprints of the HY-2B altimeter, and the black
rectangles represent the spatial coverage of the image corresponding to Figure 1. Figure 12b
shows that the retrieval results are consistent with those from HY-2B footprints concerning
latitude. Therefore, the case study at SWH up to 1 m preliminarily confirmed that SWH
could be practically inverted from the SAR image.
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to Figure 1.

Based on Figure 13a, the statistical analysis conducted at SWH goes up to 5 m. The
results show that the RMSE of SWH determined by the XGBoost model is 0.34 m and
has a 0.97 COR and a 0.07 m bias, which is an improvement over the PFSM algorithm
(Figure 13b), achieving a 1.10 m RMSE with a 0.77 COR and a 0.44 bias. Moreover, this
result is also better than those achieved by other machine learning methods, i.e., a RMSE
of a 0.58 m and a COR of 0.94 by CNN (Figure 13c), a RMSE of a 0.77 m, and a COR of
0.91 (Figure 13d) by RR and a RMSE of a 0.62 m and a COR of 0.95 by SVR (Figure 13e). It
was concluded that the XGBoost has the best performance at the SWH retrieval from GF-3
images. Additionally, this algorithm has the advantage of high computational efficiency
without requiring the calculation of complex MTFs. However, it should be noted that the
PFSM algorithm seems to overestimate the values at a weak sea state (SWH < 0.5 m) due to
the absence of the wind term in MTFs.

4.2. Discussion

Figure 14 exhibits the variations in the bias (SAR retrievals by the XGBoost minus
HY-2B measurements) regarding SAR-derived azimuthal cut-off wavelength, SAR-derived
wind speed, and SWH measured by the HY-2B altimeter. The results show that the bias
within −0.5 m varies with the SAR-derived azimuthal cut-off wavelength. When the SAR-
derived wind speed increases, the bias rate does not show much of a change. According to
the findings, the bias tends to decrease when the HY-2B altimeter measures the SWH and is
less than 2 m. However, it increases as the SWH reaches 5 m. When the SWH ranges from
3 m to 4 m, the bias varies at 0.30 m, which aligns with the outcome of the training process.
Based on this, it is concluded that XGBoost is a reliable method for SAR wave retrieval.
The limitation of the proposed algorithm is a lack of samples in the training and validation
dataset at an extreme sea state (>7 m). This indicates that, in the case of extreme sea state,
the trained XGBoost is not suitable for SAR wave retrievals. In the future, this issue can be
solved using images acquired during a tropical cyclone.
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5. Conclusions

SAR is well recognized as an effective sensor for sea surface monitoring with an ac-
ceptable spatial resolution. Over time, theoretical and empirical algorithms related to wind
and wave retrieval from SAR images have been developed and maturely implemented for
C-band SAR, i.e., S-1 [12] and GF-3 [17]. Additionally, a DCA-based algorithm empirically
inverts SAR current velocity in the radar look direction [34–36]. However, the SAR wave
retrieval accuracy necessitates further improvements aimed at marine-time awareness.
Under this circumstance, this study aimed to develop a machine learning-based SAR wave
retrieval algorithm after analyzing the dependences of the azimuthal cut-off wavelength
on sea state, i.e., wave and current.

Based on the information provided, 3000 GF-3 images were acquired in QPS mode
and collocated with wave simulations, using the WW3 model and currents provided by
HYCOM. The GMF CSARMOD-GF was used to invert the wind. Then, the retrievals were
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validated against the measurements from the HY-2B scatterometer. The results show a
1.99 m/s RMSE with a 0.82 COR and a 0.27 SI of wind speed. These images were collocated
with a wave simulation, using the WW3 model, in which ERA-5 wind was treated as
a forcing field. The dependence of WW3-simulated SWH on SAR-derived wind speed,
azimuthal cut-off wavelength, and HYCOM current speed was studied. The linear relation
between SWH, azimuthal cut-off wavelength, and wind speed was observed at the regular
sea state (COR > 0.5). However, the current speed has less influence on the azimuthal
cut-off wavelength (COR = 0.11). Based on this finding, the four well-known machine
learning methods (i.e., XGBoost, CNN, SVR, and RR) were applied to develop a SAR wave
retrieval algorithm through 2000 images collocated with WW3-simulated SWH. In the
training process, XGBoost eventually converges to be about 0.30 m RMSE, and the CNN
eventually converges, and that is approximately 0.58 m RMSE as the iteration approaches
200. However, the SVR and RR have no iteration process. The validation of SWH inverted
from 1000 images by XGBoost against the measurements from the HY-2B altimeter yields a
0.34 m RMSE with a 0.97 COR. In contrast, the RMSE of SWH is 1.10 m, with a 0.77 COR,
using the PFSM algorithm; the RMSE of SWH is 0.58 m, with a 0.94 COR, using the CNN;
the RMSE of SWH is 0.77 m, with a 0.91 COR, using the RR; and the RMSE of SWH is
0.62 m, with a 0.95 COR, using the SVR algorithm. The analysis results indicated that the
XGBoost has the best performance at the SWH retrieval from GF-3 images.

Since 2018, tropical cyclones have been captured by S-1 during the Satellite Hurricane
Observation Campaign [16]. In the literature, the wind speed and SWH are explicitly related
following the fetch- and duration-limited features inside a tropical cyclone [46]. Future studies
will explore machine learning adopted for SAR wave retrieval during tropical cyclones.
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