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Abstract: Global Navigation Satellite System (GNSS) Radio Occultation (RO) and GNSS
Reflectometry (GNSS-R) are the two major spaceborne GNSS remote sensing (GNSS-RS)
techniques, providing observations of atmospheric profiles and the Earth’s surface. With the
rapid development of GNSS-RS techniques and spaceborne missions, many experiments
and studies were conducted to assimilate those observational data into numerical weather-
prediction models for tropical cyclone (TC) forecasts. GNSS RO data, known for its high
precision and all-weather observation capability, is particularly effective in forecasting
mid-to-upper atmospheric levels. GNSS-R, on the other hand, plays a significant role in
improving TC track and intensity predictions by observing ocean surface winds under
high precipitation in the inner core of TCs. Different methods were developed to assimilate
these remote sensing data. This review summarizes the results of assimilation studies using
GNSS-RS data for TC forecasting. It concludes that assimilating GNSS RO data mainly
enhances the prediction of precipitation and humidity, while assimilating GNSS-R data
improves forecasts of the TC track and intensity. In the future, it is promising to combine
GNSS RO and GNSS-R data for joint retrieval and assimilation, exploring better effects for
TC forecasting.

Keywords: GNSS RO; GNSS-R; tropical cyclone; forecast

1. Introduction
Tropical cyclones (TCs) are deep convective systems often accompanied by destructive

weather conditions, such as strong winds, heavy rainfall, and thunderstorms. Their for-
mation and development are influenced by various meteorological factors. TC forecasting
mainly relies on weather-prediction models, numerically or using artificial intelligence [1,2].
In a recent study, the forecast accuracy results of TCs using various operational numerical
weather prediction (NWP) models are compared. There are three verification criteria: hit,
false alarm, and miss [3]. A hit is a successful prediction where the location is near 5◦ of the
targeted TC and the time is within 24 h of the targeted TC. A miss is the opposite of a hit. A
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false alarm means that a TC forecast is made, but the time and track are incorrect. They
investigated the prediction results of TCs using global NWP models, including the Global
Environmental Multiscale Model of Environment and Climate Change Canada (CMC),
the European Centre for Medium-Range Weather Forecasts global model (ECMWF), the
Environmental Prediction Global Forecast System (GFS) of the American National Centers,
and the Met Office Global Model (UKMET) [4]. Most predictions fell into the false alarm
and miss categories as shown in Figure 1.
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The accurate forecast of a TC relies on a forecast model and an accurate initial guess of
all atmospheric parameters, i.e., the model state. The initial guess is usually generated by a
series, combining the forecast of the model and actual observations called data assimilation.
The data assimilation utilizes actual observations with errors from different platforms and
techniques to correct the model forecast and produce the best estimations of the model state.
Therefore, observations with a large quantity and high accuracy are crucial to weather
forecasts. In the mesoscale and global weather forecast, over 90% of observations are from
satellite platforms. Satellites can provide a large number of observations on a global scale
especially over the ocean using different remote sensing techniques. However, for the
observations of TCs, many optical and microwave remote sensing technique observations
cannot penetrate the cloud and heavy rains near the center of TCs, limiting the forecasting
of the TC track and intensity.

GNSS (Global Navigation Satellite System) remote sensing (GNSS-RS) is a new tech-
nique that has been developed in recent decades. Currently acknowledged GNSS systems
include US GPS, European GALILEO, Russian GLONASS, and Chinese BeiDou, which
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provide real-time, all-weather, anytime, anywhere, and high-precision observations by
transmitting L band signals continuously. They have been broadly applied for positioning,
navigation, and timing [6]. Based on the application and propagation of GNSS signals,
there are mainly two branches of GNSS-RS: GNSS Radio Occultation (RO) and GNSS
Reflectometry (GNSS-R). The former uses the GNSS signals refraction when they pass
through the atmosphere, while the latter utilizes the reflection of the signals on the Earth’s
surface [7].

GNSS RO observations have many advantages, including global coverage, high accu-
racy, high vertical resolution, and insensitivity to clouds and precipitation, allowing for
all-weather observations. For the troposphere, the departure of temperature, pressure, and
potential temperature measured using RO is 0.7 K, 0.15%, and 1.4 K, and also the vertical
resolution can reach 1.5 km [8]. With the development of background information, the
departure becomes smaller as it gets closer to the lower troposphere [9]. For the troposphere
and near the surface, the vertical resolution can reach 0.2 km or even 0.1 km [10]. As long
as there are enough satellites equipped with RO receivers, RO data can achieve denser
global coverage, especially in areas where conventional observation methods are lacking,
such as the poles and oceans. Additionally, RO is a self-calibrating remote sensing tech-
nique and can be regarded as a calibration standard for other observation methods [11,12].
Self-calibrating measures the change in the signal’s properties, such as the phase delay.
Therefore, RO data are traceable to GNSS atomic clocks and have a low bias. Also, it
eliminates the need for instruments and is not affected by aging or environmental changes
of observing instruments. That leads to high long-term stability over decades. By compar-
ing the outputs from other sensors (such as radiometers or hyperspectral sounders) with
RO, biases and drifts can be corrected. Because there is no need for external or repeated
recalibrations, the RO technique is more efficient and cost-effective.

Spaceborne GNSS-R remote sensing also provides global coverage and all-weather
monitoring. Its low cost and rapid revisit are additional advantages, making it an effective
complement to traditional altimetric and scatterometric ocean observations [13]. GNSS-
R measurements operate in the L-band (1–2 GHz), where the lower frequency results
in less rainfall attenuation, increasing the likelihood of observing the inner core of TCs.
Additionally, the smaller size, weight, and power consumption of GNSS-R measurements
make them less costly to manufacture and use [14]. The small satellite constellation offers
better temporal and spatial sampling than conventional techniques. The real-time and near
real-time operational applications require high spatial and temporal sampling rates, such
as operational NWP models, and TC monitoring.

With great advantages, GNSS-RS data from different satellite missions have been as-
similated into different NWP models, where the impact on TC forecasts has been presented
by a number of studies.

This paper will give a comprehensive review of the method and impacts of assimilating
GNSS remote sensing data for TC forecasts. It is organized as follows: Section 2 introduces
the GNSS-RS technique, Section 3 reviews the assimilation of GNSS RO data, Section 4
reviews the assimilation of GNSS-R data, and conclusions and prospects are drawn in
Section 5.

2. Principles of GNSS Remote Sensing Technique
2.1. GNSS RO

When a low LEO satellite equipped with an RO receiver ascends or descends, the
receiver intercepts electromagnetic waves emitted by GNSS satellites that have undergone
atmospheric refraction, which constitutes an occultation event [15]. If the atmosphere were
a vacuum, the propagation path of the radio signals from the GNSS satellite to the LEO
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satellite receiver would be a straight line connecting the two satellites. However, in the real
atmosphere, the radio signals bend toward the region of higher atmospheric refractivity,
creating a curved path. Due to the density of the atmosphere, the atmospheric refractivity
decreases exponentially with altitude, with the refractivity gradient being strongest in
the vertical direction. This gradient is primarily influenced by local weather systems,
particularly by the water vapor field in the lower troposphere. Consequently, the radio
signal path in an occultation event generally bends toward the Earth’s surface, with the
maximum bending occurring near the point where the path is closest to the Earth’s surface.
Figure 2 illustrates the principle of RO.
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The initial data of RO observation are the variation in optical path lengths at two L
band frequencies. Firstly, based on precise orbital positioning and stable atomic clocks, the
variation in the optical path length can be used to determine the excess optical path length.
The excess optical path length is the difference between the optical path length in the real
atmosphere and the vacuum atmosphere, representing the effect of the actual atmosphere
on the optical path. Then, under the assumption of spherical symmetry, the excess optical
path length can be used in conjunction with satellite geometry to determine the bending
angle. After that, through Abel integral inversion (1), the atmospheric refractivity in the
vertical can be derived as Equation (1)

n(r) = exp
(
− 1

π

∫ ∞

r

dα

dr′
dr′√

r′2 − r2

)
(1)

where n(r) is the refractivity with r, r is the distance between the Earth’s center and
observation, and α is the bending angle, which will change by broadcasting through
the atmosphere.

If the influence of atmospheric moisture is neglected, the refractivity can be used to calcu-
late the temperature in dry atmospheric conditions using the hydrostatic Equations (2) and (3)

dp
dh

= −ρg (2)



Remote Sens. 2025, 17, 118 5 of 27

where p is the atmospheric pressure, h is height, ρ is the density of the atmosphere, and g is
gravitational acceleration;

N = n × 106 = 77.6
p
T

(3)

where N is the refractivity index, n is the atmospheric refractivity at a certain height, p is
atmospheric pressure in mbar, and T is the temperature in Kelvin.

If considering the impact of water vapor, to retrieve the moisture, the relationship
among the refractivity index, atmospheric pressure, temperature, and water vapor partial
pressure becomes

N = n × 106 = 77.6
p
T
+ 3.37 × 105 e

T2 (4)

where e is the water vapor partial pressure in mbar. We can analyze a priori temperature
field [16] and then use a one-dimensional variational method to obtain the atmospheric profile.

Figure 3 shows examples of GNSS RO profiles of temperature and humidity for
tropical cyclones.
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Figure 3. Typhoon Hondo in 2008 best-track and co-located ROs (a). TD (tropical depression), TS
(tropical storm), and Cat. 1–4 means 1 min maximum sustained wind speed (m/s) ≤ 17, 18–32, 33–42,
43–49, 50–58, and 58–70 respectively. From the surface to 25 km altitude temperature (b) and specific
humidity (c) profiles in the storm [17].
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2.2. GNSS-R

As the wind blows, the ocean surface becomes rough due to the wind-caused waves.
The GNSS satellite signals illuminate the rough ocean surface and diffuse reflection occurs.
Actually, we can collect the peak value and shape of the reflection waveform to represent the
roughness of the ocean surface. The higher the wind speed, the rougher the ocean surface,
leading to more diffuse reflection. At last, it results in the peak value of the waveform
reduction and waveform edges being flat [18].

The delay-Doppler map (DDM) shown in Figure 4 is a fundamental physical parameter
based on a GNSS-R measurement, and it describes the characteristics of the time and signals.
It is generated by cross-correlating the received signal with a replication of the transmitted
signal, covering a range of delays and Doppler frequencies. DDM is then calibrated into
a bistatic radar cross-section (BRCS) using geometry and the power parameters of the
transmitter and receiver

σ =
Pg(4π)3(Rr)

2(Rt)
2La1La2

Ptλ2GtGr
(5)

where σ is the radar cross-section, Pt is the GNSS transmit power, Pg is the noncoherently
processed scattered signal power, λ is the GNSS signal carrier wavelength, Gt is the antenna
gain of GNSS, Gr is the antenna gain of the receiver, Rr and Rt are the distances to and from
the Earth surface, respectively, and La1 and La2 represent the atmospheric losses along the
signal’s propagation to and from the surface, respectively.
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To retrieve the ocean surface wind speed from the DDM BRCS, a number of algorithms
have been developed [19–21]. Typically, there are two key observables computed using a
3 × 5 delay-Doppler window in DDM, shown in Figure 4b, the normalized bistatic radar
cross-section (NBRCS) and leading-edge slope (LES). The center of the window is usually
the bin nearest the predicted specular point delay, to catch the peak value of reflection, and
the spatial resolution can achieve 25 km [20]. Then, utilizing empirical geophysical model
functions (GMFs) that link the surface speed with NBRCs and LES [22–24], we can derive
the wind speeds. Figure 5 shows the retrieval results of ocean surface wind speeds from
FY-3E for a typhoon in 2023.
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2.3. Spaceborne Missions

The development of GNSS-RO can be traced back to the late 1960s. Initially based on
occultation methods used to explore planetary atmospheres, NASA’s Mariner 10 mission
employed this method to study the atmosphere of Venus [26]. When GPS was launched in
1978, the first GPS meteorology experiment announced RO detecting’s growth [27].

The application of occultation observation technology in meteorology started with
the 1995 GPS/Meteorology experiment. This experiment marked a significant leap from
theory to practice by pioneering the use of the GNSS limb sounding to probe Earth’s
atmosphere [28]. From April 1995 to March 1997, the GPS/MET [29] satellite collected tens
of thousands of occultation profiles. With NASA’s help, the first satellite Orsted [30] from
Denmark launched in 1999. It had the receiver Turbo-Rogue for GPS signals and could
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also obtain the temperature and moisture information vertically through RO detecting.
South Africa also launched the Sunsat [31] with Orsted at the same time. By May 2000,
the experiment had generated over 80 technical reports and scientific papers, providing
the first solid evidence of the accuracy and potential benefits of GPS occultation data.
Building on this success, Germany launched the CHAMP [32] mission in July 2000, further
advancing the field. From February 2001 to October 2008, the CHAMP satellite delivered
around 230 vertical occultation profiles daily, which were crucial for geosciences and
atmospheric research. In November 2000, the SAC-C satellite [33], a collaborative effort
among Argentina, the U.S., and several other countries, aimed to conduct global limb
sounding of the Earth’s neutral atmosphere and ionosphere. Following this, in March
2002, the U.S. and Germany launched the GRACE [34] mission, significantly improving
geoid measurements from the meter scale to the centimeter scale. The same year, Australia
launched FedSat [35]; it received GPS signals to detect the ionospheric electron density
and the atmosphere. Germany continued to contribute to the field with the launch of
the TerraSAR-X [36] satellite in June 2007, equipped with a high-precision dual-frequency
occultation receiver for more accurate orbit determination and atmospheric sounding.
Meanwhile, the U.S.–Chinese Taiwan collaboration led to the launch of the COSMIC mission
in April 2006, which became a key provider of real-time, high-quality occultation data,
crucial for NWP systems [37]. Its successor, COSMIC-2, was launched in June 2019, further
enhancing observations, particularly in tropical regions. In addition to these advancements,
the European MetOp [38] series of polar-orbiting satellites equipped with GRAS receivers
have been providing approximately 600 occultation profiles daily. These data are integrated
into NWP systems, alongside satellite microwave and infrared observations, to improve
weather forecasts [39]. In addition, Spain’s PAZ [40] has great significance for storm
forecasting using the polarimetric RO technique. The information near the freezing level
could potentially be useful for NWP models when assimilating heavy precipitation data.

In the 1990s, people found that the observation could rely on the GNSS-reflected
signals. Martin-Neria proposed the Passive Reflectometry and Interferometry System
(PARIS) [41], which had developed into a pristine GNSS remote sensing technique. Both
the reflected signal and direct signal are received by the satellite receiver, and the delay of
time or phase between them will be used for interferometry. Then, according to the spatial
relation of the satellite, receiver, and specular highlight, we can retrieve the characteristics
of the Earth’s surface, such as sea surface altimetry, which is based on calculating the
time delay between GPS direct signals and reflected signals [42]. Foti used the TDS-1
(Technology Demonstration Satellite-1) carrying the receiver SGR-ReSI launched in 2014
for ocean winds [43]. The receiver had obtained a large amount of 2D DDM data that
nowadays are often utilized to retrieve the ocean winds.

CYGNSS (Cyclone Global Navigation Satellite System) [44] was launched by NASA in
2016 and is the first GNSS-R mission specifically designed to monitor ocean surface winds,
particularly in TC regions, using GNSS signal reflections. In addition to governmental
and institutional projects, commercial companies have also entered the field of GNSS-R.
Spire GNSS-R consists of a series of CubeSats operated by Spire Global, utilizing GNSS-R
technology for Earth observations that includes atmospheric, oceanic, and land surface
parameters [45]. HydroGNSS is a mission funded by the European Space Agency (ESA),
expected to launch by late 2024 or early 2025 [46].

China has also made significant strides in this area. Since 23 September 2013, the
FY-3 series of satellites, equipped with GNOS occultation receivers, have been gradu-
ally launched [47,48]. The data collected by these satellites are now utilized by both the
China Meteorological Administration (CMA) and the European Centre for Medium-Range
Weather Forecasts (ECMWF) for operational assimilation. FY-3/GNOS-II [49], launched in
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2021–2023 and operated by the CMA, is the first operational mission that combines GNSS
RO and GNSS-R measurements from multiple GNSS constellations. The payload design
that integrates GNSS RO and GNSS-R is shown in Figure 6 [50]. This setup marks the first
international realization of integrated GNSS RO and GNSS-R remote sensing, enabling
the simultaneous acquisition of three-dimensional observational data on the ionosphere,
atmosphere, and ocean. To date, more than 5 million occultation event data products
have been accumulated, with over 15 million various profile products provided. These
data products have passed quality assessments by numerous domestic and international
operational and research institutions. The atmospheric occultation refractivity inversion
accuracy of the systems compatible with BeiDou and GPS is better than 1% from 10 km
to 30 km. These products play a crucial role in global and regional weather forecasting,
particularly in regions with high-speed tropical and temperate cyclones, where they ex-
hibit high accuracy. The global ocean surface wind speed data from GNOS-II has been
operationally assimilated into the CMA’s GRAPES NWP system since May 2023 [25,51],
demonstrating a neutral to positive impact on model analysis and forecasting, thereby en-
hancing the accuracy and reliability of weather forecasts. Except for FY-3, China cooperated
with Russia and launched the YH-1/Phobos-Grunt [52] in 2011 for Mars exploration. It
used the RO technique to determine the density of electrons in the Martian ionosphere.
As for BF-1A/B [53] launched in 2019, people have retrieved ocean surface winds, the
sea surface height, and soil moisture using the Earth reflected delay Doppler maps from
it. Tianmu-1 [54] is a commercial constellation with 23 satellites launched in 2023–2024
that provides global, all-weather atmospheric, surface, and ocean surface parameter data.
Table 1 shows spaceborne GNSS RO and GNSS-R missions in chronological order.
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Table 1. List of spaceborne GNSS RO and GNSS-R missions.

Mission Name Country Task Launch Time

GPS/MET USA GNSS RO 1995
Orsted Danmark GNSS RO 1999
Sunsat South Africa GNSS RO 1999

CHAMP Germany GNSS RO 2000
SAC-C Argentina GNSS RO 2000
GRACE Germany GNSS RO 2002
FedSat Australia GNSS RO 2002

UK-DMC UK GNSS-R 2003
COSMIC USA/Chinese Taiwan GNSS RO 2006
MetOp Europe GNSS RO 2006

TerraSAR-X Germany GNSS RO 2007
OCEANSAT-2 Italy GNSS RO 2009

TanDEM-X Germany GNSS RO 2010
YH-1/Phobos-Grunt China/Russia GNSS RO 2011

KOMPSAT Korea GNSS RO 2013

Table 1. Cont.

Mission Name Country Task Launch Time

FY-3C/D China GNSS RO 2013
TDS-1 UK GNSS-R 2014

CYGNSS USA GNSS-R 2016
PAZ Spain GNSS RO 2018

BF-1A/B China GNSS-R 2019
FSSCAT Europe GNSS-R 2020

FY-3E/F/G China GNSS RO/GNSS-R 2021
Spire USA GNSS RO/GNSS-R 2021

Tianmu-1 China GNSS RO/GNSS-R 2023–2024

3. Assimilation and Impact of GNSS RO Data
TCs are typically deep convections, where the height and temperature of the cloud

tops are usually associated with the strength of the system [55,56]. Currently, approximately
20,000 RO data points are assimilated globally every day [57], but it is also a challenge
to obtain high vertical resolution and high-accuracy atmospheric temperature and water
vapor profile observations near the tropopause, especially in severe weather conditions,
such as TCs. In applied early operational forecasting of RO data, only data above an
altitude of 4 km were used. Nowadays, most operational centers still do not assimilate
RO data below the atmospheric ducting/trapping layer, which is characterized by large
gradients in atmospheric refractivity and water vapor in the lower troposphere. However,
lower-level RO observations, particularly in tropical regions, contain valuable information
about atmospheric moisture, making their application extremely important. All-weather
atmospheric information, especially near-surface data under cloudy or rainy conditions, is
crucial for studying and validating theories on the genesis and evolution of TCs.

In fact, RO data are highly accurate in the upper troposphere and lower stratosphere
(UTLS), and many studies have utilized these observations to investigate deep convection
in the UTLS, such as the structure of TCs, and cloud top heights [58]. Biondi et al. [59]
determined cloud top heights using the peak of RO bending angle anomalies and validated
their findings with data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO) and the International Satellite Cloud Climatology Project (ISCCP).
They then utilized RO data to explore the vertical structure of TCs and analyzed the specific
relationship between the cloud top height and TC intensity [60]. We can see the difference
between the RO cloud top heights and the altitudes of the troposphere in Figure 7.
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3.1. Method of Assimilating GNSS RO Data

For assimilating GNSS RO data, here are several methods. The assimilation systems
in forecast models have some generic and popular approaches, including 3DVAR, 4DVAR,
and ensemble Kalman filters (EnKF), for both RO data and GNSS-R data [61–63]. 3DVAR
uses observations and background in models to adjust analyses. It has nice stability and
high computational efficiency, but due to the ignoration of time, its dynamic constraints
are weak. 4DVAR added the time dimension to capture the rapid changes effectively.
However, it is sensitive to background errors and costs many computational resources.
ENKF, based on statistics methods, makes the background errors more suitable to the
real atmosphere, but the ensemble size is limited by the resources. Here is also a choice
to combine the EnKF’s background errors and the variational assimilating method to
improve the results flexibly [64]. As for the operators [65], firstly, we could use 1DVAR
to retrieve the atmospheric temperature and moisture profiles, and then assimilate the
physical information to NWP. In addition, with the application of a forward operator and
adjoint operator [66], choosing the refractivity or bending angle to replace moisture and
temperature could also affect the results of assimilation. The refractivity includes the local
and non-local refractivity [67,68], and the bending angle [69,70] could be derived by the
ray tracer, a model of simulating the local bending angle [71] under Snell’s Law.

The refractivity local operator relies on a certain position in the atmosphere, which
could simplify the computation. However, the non-local operator would consider the
whole signal path, and it captures the cumulative refraction effects across various atmo-
spheric layers on the entire signal propagation path. So, it is significant to perform the
global vertical structures [17]. Also, the non-local refractivity operator provides a way to
derive the bending angle. Different bending angle ray tracers [72] are adapted to differ-
ent atmosphere assumptions. If there is a single point in the atmosphere or at a certain
height, the local bending angle operator is suitable for estimating the bending angle us-
ing less computational cost. 2D ray tracer is for a symmetric and uniform atmosphere,
where the refractivity, temperature, and moisture are changed with the altitude but not
distance horizontally [73]. This means that the signal propagates straightly. The bend-
ing angle 3D ray tracer could describe the atmospheric changes in both directions, and
it could be used in complex situations, such as the unsymmetric temperature gradient.
According to the computing resources and the forecasting problems, we could choose
different settings.
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3.2. Impact of GNSS RO Data

Teng utilized COSMIC-2 data by assimilating GNSS RO data with the Weather Re-
search and Forecasting (WRF) model, resulting in a false alarm ratio reduction by 20%
and an accuracy rate enhancement by 19% [74], as shown in Table 2. The TC formation
mentioned here is the prosperity of a tropical cloud cluster (TCC) into a TC. For each TCC,
two experiments were conducted: GTS, with the assimilation of NCEP conventional obser-
vation data, and EPH, along with the conventional observations, there was the assimilation
of a non-local excess phase operator [75] of GNSS RO data. Miller [76] evaluated the impact
of assimilating RO bending angles from COSMIC-2 on Hurricane Weather Research and
Forecasting (HWRF) TC forecasts. The results showed that COSMIC-2 assimilation led to a
significant 8–12% reduction, statistically, in the mean absolute error for the minimum cen-
tral ocean level pressure in lead times of 36, 54, 60, and 108–120 h forecasts. Figures 8 and 9
illustrate that the area near the Central American landmass seemed to be the origin of low-
to-mid-troposphere dry air intrusion, which invaded the Zeta circulation on the eastern side
in the beginning 18 h of the free forecast. This dry air intrusion was more obvious in the C2
experiment, identical to the analysis differences. The difference between the C2 and Control
experiment was the assimilation of COSMIC-2 bending angles. The Control assimilated
all obtainable observations and excluded RO data, while the C2 involved the COSMIC-2
bending angles. Mueller [77] utilized simulated refractivity with conventional observations,
such as radiance, temperature, and humidity, to perform a cycle forecast experiment and
then assessed the potential impact on the TC track, maximum ocean surface wind speed,
and integrated kinetic energy (IKE) forecasts. The results indicated that the global track
forecasts have little relationship with GNSS RO data, but the wind speed and IKE forecasts
had been actually slightly degraded at the lead time of 30 h to 60 h. Masaru [78] assimilated
simulated low-latitude GPS RO refractivity using a mesoscale 4-dimension variational data
assimilation system and found that RO data with robust characteristics and high accuracy
are profitable for the TC forecast presented in Figures 10 and 11. Experiment MA_RO
assimilated GPS RO data; additionally, it performed more specifically in TCs’ structure
and was more similar to the best track. Chen’s study showed the impact of assimilating
GNSS RO local refractivity and the bending angle on a typhoon that passed over Chinese
Taiwan [79]. The forecast results at a 60–15 km resolution revealed that GNSS RO data
actually improved the prediction of the TC track, as shown in Figure 12. Compared with
refractivity, assimilation with bending angles had better performance, particularly for wind.
In the experiments, NODA had no assimilation, GTS assimilated conventional data and
satellite radiance without GNSS RO data, REF was GTS with GPS refractivity data, and
BND was GTS with GPS bending angle data. For precipitation, we could see in Figure 13
that GNSS RO data helped a lot in finding the center location of the maximum rainfall but
still had the potential to forecast the precipitation altitude.

Summarizing the above cases, we also found that the forecasts at the initial time of
mid-level moisture around the disturbance centers were increased after the assimilation
of GNSS RO data. For developing cases, it also increased low-level vorticity, while for
non-developing cases, it reduced vorticity throughout most of the troposphere. The current
NCEP forecast system showed that the impact of COSMIC-2 RO data on NWP is significant
in the upper troposphere and lower stratosphere [80], similar to analyses from the U.S. Navy
system [81] and the ECMWF system. However, ECMWF also showed that GNSS RO data
had improved the moisture and precipitation forecasts below a 5 km altitude [82], although
there appeared to be considerable uncertainty in the troposphere below a 2 km altitude.
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Table 2. 2 × 2 contingency tables and various skill scores of TC forecasts formation for GTS (as-
similating conventional data) and EPH (GNSS RO data in addition to GTS). Hit rate: hits/(hits
+ misses). Specificity: correct negatives/(false alarms + correct negatives). False alarm ra-
tio: false alarms/(hits + false alarms). False alarm rate: false alarms/(false alarms + cor-
rect negatives). Bias score: (hits + false alarms)/(hits + misses). Accuracy rate: (hits + correct
negatives)/(hits + misses + false alarms + correct negatives). Threat score: hits/(hits + misses + false
alarms). Sensitivity to RO: proportion of GNSS RO data assimilation improved performance cases in
total categories [74].

Observation
Total Hit Rate Specificity

False
Alarm
Ratio

False
Alarm
Rate

Bias
Score

Accuracy
Rate

Threat
ScoreDeveloping Non-

Developing

GTS
Forecast

Detected 4 (hits) 11 (false
alarms) 15 0.44 * 0.52 * 0.73 * 0.48 * 1.67 0.50 * 0.20 *

Non-
detected 5 (misses) 12 (correct

negatives) 17

EPH
Forecast

Detected 7 (hits) 8 (false
alarms) 15 0.78 * 0.65 * 0.53 * 0.35 * 1.67 0.69 * 0.41 *

Non-
detected 2 (misses) 15 (correct

negatives) 17

Total 9 23 32 / / / / / / /
Sensitivity to RO 0.33 0.13 0.19 / / / / / / /
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Figure 8. (a–c) The Control Hurricane Zeta forecasts initialized at 1200 UTC 26 Oct, respectively, at 
12, 24, and 30 h. (d–f) The C2 (Control with RO bending angle) Hurricane Zeta 12, 24, and 30 h 
Figure 8. (a–c) The Control Hurricane Zeta forecasts initialized at 1200 UTC 26 Oct, respectively,
at 12, 24, and 30 h. (d–f) The C2 (Control with RO bending angle) Hurricane Zeta 12, 24, and 30 h
forecasts initialized at 1200 UTC 26 Oct, respectively. (a–f) figures have horizontal wind vectors on
the forecasts. (g–i) SSMIS 91-GHz color composite imagery, at 2225 UTC 26 Oct, 1058 UTC 27 Oct,
and 0030 UTC 28 Oct, respectively. In (h), the NHC best track center is marked by a white triangle at
1200 UTC 27 Oct (21.38N, 89.08W) [76].
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Figure 9. (a) The HWRF Control Hurricane Zeta horizontal wind vectors (m/s) at 750 mbar with
layer-averaged RH (shade, %) at 700–800 mbar from the cycled analysis initialized at 1200 UTC 26 Oct.
(b,c) As in (a), but for the 12 and 18 h verification times, respectively. (d–f) As in (a–c), but for the
HWRF C2 forecast. The dry tongue is highlighted by the black rectangular boxes [76].
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Figure 10. (a–c) is for GA (the JMA global analysis), MA (analysis by the Meso 4D-Var system), and
MA_RO (the same as MA but RO data were assimilated additionally), the distributions of sea-level
pressure (hPa), surface wind vectors (m/s), and accumulated precipitation (shade, mm) in a 3 h
period at 0000 UTC 31 July 2007 from NHM forecasts using different background fields [78].

Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 28 
 

 

 
Figure 11. Time series of the central pressure predicted by NHM of typhoon Usagi, for GA, MA, 
MA_RO, and Besttrack data [78]. 

 
Figure 12. (a) The black dot is the best track from observations, and others are the simulated tracks 
for NODA (the initial condition from NCEP), GTS (assimilating conventional and satellite radiance 
data), REF (GTS along with RO refractivity), and BND (GTS along with RO bending angle), respec-
tively. The area in the dashed square is zoomed as shown at the upper-right corner with the details 
of the tracks. (b) As in (a), but the tracks during 5–7 Jul [79]. 

Figure 11. Time series of the central pressure predicted by NHM of typhoon Usagi, for GA, MA,
MA_RO, and Besttrack data [78].



Remote Sens. 2025, 17, 118 15 of 27

Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 28 
 

 

 
Figure 11. Time series of the central pressure predicted by NHM of typhoon Usagi, for GA, MA, 
MA_RO, and Besttrack data [78]. 

 
Figure 12. (a) The black dot is the best track from observations, and others are the simulated tracks 
for NODA (the initial condition from NCEP), GTS (assimilating conventional and satellite radiance 
data), REF (GTS along with RO refractivity), and BND (GTS along with RO bending angle), respec-
tively. The area in the dashed square is zoomed as shown at the upper-right corner with the details 
of the tracks. (b) As in (a), but the tracks during 5–7 Jul [79]. 

Figure 12. (a) The black dot is the best track from observations, and others are the simulated tracks for
NODA (the initial condition from NCEP), GTS (assimilating conventional and satellite radiance data),
REF (GTS along with RO refractivity), and BND (GTS along with RO bending angle), respectively.
The area in the dashed square is zoomed as shown at the upper-right corner with the details of the
tracks. (b) As in (a), but the tracks during 5–7 Jul [79].
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Figure 13. (a) Observation, (b) NODA, (c) GTS, (d) REF, and (e) BND, the accumulated rainfall (mm)
during 0000 UTC 7–8 Jul 2016. Text at the bottom right is the location and amount of the maximum
rainfall (mm) [79].
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4. Assimilation and Impact of GNSS-R Data
Compared to atmospheric profiles provided by GNSS RO, ocean surface winds ob-

served by GNSS-R are more visually interpretable and thus can provide direct information
on the location, intensity, and structure of TCs. Therefore, GNSS-R wind data can be used to
directly monitor TCs [83–85]. To improve TC forecasts of NWP models, GNSS-R wind ob-
servations need to be assimilated into NWP models. GNSS-R wind speeds can modify the
first guess through assimilation and then improve forecasting. NASA’s CYGNSS constella-
tion, consisting of eight satellites, aims to use GNSS-R ocean surface wind observations to
improve the trajectory and intensity forecasts of TCs. This assimilation can significantly
impact the accuracy of weather forecasts and climate models [79–83]. By integrating these
data, we can more accurately understand and predict extreme weather events, like TCs,
thereby enhancing the reliability of forecasts.

4.1. Method of Assimilating GNSS-R Data

Methods of assimilating GNSS-R ocean surface wind data are generally similar to
those of assimilating conventional wind observations. Due to the characteristics of GNSS-R
signals, they usually have no wind direction information. A Variational Analysis Method
(VAM) can combine GNSS-R wind speeds with wind vectors offered by a priori background
and completes a near-surface vector wind field. Studies have shown that using assimilation
systems and the VAM to assimilate either simulated or actual CYGNSS wind speed data is
effective [86,87]. Except the VAM, we can also just assimilate the retrieved ocean surface
wind speeds without directions. In addition, a popular assimilation method to improve
forecasts is data thinning. GNSS-R ocean surface wind speed observations are crowded,
with a distance of 6 km between each point, which is much smaller than the model resolu-
tion. Therefore, data thinning is usually implemented to avoid overfitting. Typically, we
either select the nearest observation to the grid center or use the average of all GNSS-R
data points within the grid for assimilation. The difference between these methods will be
described next.

4.2. Impact of GNSS-R Data

A number of Observing System Simulation Experiments (OSSEs) have been conducted
to validate the impact of assimilating GNSS-R data on typhoon forecasting [86–89]. OSSEs
involve comparing the forecast outcomes with and without the assimilation of GNSS-R
data. GNSS-R winds are simulated from a hurricane nature run (NR) that is realistic, with
the error characteristics probably presenting in reality. This method helps determine the
effectiveness of GNSS-R data in improving the accuracy and reliability of TC track and
intensity predictions, thereby assessing its operational value in meteorological applications.

McNoldy assimilated CYGNSS wind speeds using the Gridpoint Statistical Interpo-
lation 3-Dimensional Variational (GSI-3DVAR) system, so that the TC structure, intensity,
and position, together with large-scale variables, were all enhanced. The results high-
lighted the potential value of CYGNSS ocean surface wind speed data, and incorporating
directional information can further enhance the accuracy of TC analyses and forecasts [89].
Zhang utilized the HWRF model and GSI system to evaluate the influence of assimilating
CYGNSS ocean surface winds in a regional OSSE framework. The results revealed that
adding GYGNSS data can actually improved the simulation’s representation of the TC
track and intensity, especially for the accuracy of ocean surface winds, inner-core structures,
and surface fluxes forecasts. During the entire 72 h simulation, the minimum sea level
pressure (MSLP) and surface maximum wind (MSW) errors had a 23% and 40% reduction,
respectively, compared with the control experiment [88]. Figure 14 shows the time series of
MSLP and MSW and also gives a track error bar of the experiments. Leidner assimilated
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simulated VAM-CYGNSS wind vectors using the GSI 3DVAR system and HWRF model.
The results indicated that the assimilation of VAM-CYGNSS wind vectors had reduced
the MSW error by 2–5 kt (1 kt = 0.51 m/s) and reduced the MSLP error by 2–5 hPa [86].
The elevation in the intensity forecast was more significant than the reduction of the track
error, and the improvement was also more consistent. Annane’s experiments were similar
to the above; the OSSE framework made use of the HWRF model and GSI system. To
estimate the impact of assimilating CYGNSS winds and the difference in whether to add
wind directions, CYGNSS winds were separated into scalar winds and wind vectors. In the
simulation, the data assimilation cycles of 1, 3, and 6 h intervals were tested. At last, the
3 h interval assimilation was consistently best. In addition, CYGNSS scaler wind speeds
improved the intensity forecasts in the first 48 h, resulting in a 2–5 hPa reduction for MSLP
and a 2–6 kt elevation for MSW. As shown in Figure 15, the assimilation of CYGNSS wind
vectors had a more significant effect on the 10 m wind field and structures in the HWRF
model than assimilating wind speeds alone [87].
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Figure 14. (a,b) are time series of MSLP and MSW, respectively, during the cycled DA period, 1200 UTC
1 to 0600 UTC 4 Aug 2005. Red for CTRL (assimilating simulated conventional observations), pink and
blue for GYGNSS SUPO (CTRL plus CYGNSS speeds and thinning data to one per grid box, closest
point kept) and THIN (SUPO but speeds averages kept), respectively, and black for NR. (c–f) As in
(a,b), but for track, track errors, MSLP, and MSW, respectively, between 0600 UTC 4 and 0000 UTC
6 Aug 2005. Different colored numbers mean the absolute error average of track and intensity in the
whole analysis or simulation [88].
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Figure 15. (a,d,g) 6 h; (b,e,h) 3 h; and (c,f,i) 1 h DA cycling experiments for average storm forecast
error. Averaged errors/deviations are colored by OSSE experiment: CNTL (conventional observation
assimilated) is black/gray, CYG (CNTL plus CYGNSS speeds) is red/light red, and VAM (CNTL plus
CYGNSS VAM vectors) is blue/light blue [87].

There are also studies that assimilate real CYGNSS wind speed observations in Observ-
ing System Experiments (OSEs). Li employed the WRF Data Assimilation (WRFDA) system,
integrating 3D and 4D hybrid variational techniques, to assimilate CYGNSS wind speed dur-
ing the Madden–Julian oscillation (MJO) event over the Indian Ocean. In Figures 16 and 17,
the results indicated that CYGNSS data had a positive impact on wind fields [90]. However,
the influence of CYGNSS data rapidly diminished within 4 h after assimilation. Further-
more, CYGNSS data had a limited impact on precipitation forecasts. Mueller assimilated
the CYGNSS scalar winds and vector winds utilizing a global data assimilation and fore-
casting system and found, in the first 60 h, a significant track forecasting improvement
of 20–40 km. In the forecast of MSW, a few degradations of 2 kt would appear at some
lead times, especially at the beginning of 24 h [91], but at most lead times, there was no
statistically significant impact. Pu’s experiments were performed using the HWRF model
and a GSI- 3DEnVar system [92]. Compared with the influence of Advanced Scatterometer
(ASCAT) wind, assimilating CYGNSS data into a hurricane-forecasting model could refine
track and intensity forecasts at the beginning of the simulation (within 48 h) with a suitable
thinning distance application. Furthermore, the inner-core symmetric structure forecasts
performed better when using the CYGNSS data.
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track and intensity, both can improve the accuracy of forecasts, but RO data perform better 
in track forecasting, while GNSS-R data contribute more to the TC intensity forecasting. 
This is because RO data have a high resolution in vertical and can characterize atmos-
pheric circulation in more detail, and GNSS-R data convey more ocean surface infor-
mation, such as the major factor of intensity, the surface wind speed. 

Figure 16. TC intensity in time series for (a) MSLP and (b) MSW from JTWC best track data,
CTRL (a WRF regional simulation), DA_cyg_fd (assimilating CYGNSS fully developed seas wind
speed), DA_cyg_lf (assimilating CYGNSS young seas/limited fetch wind speed), and DA_com
(assimilating combined IMERGE rainfall, ASCT vector wind, and CYGNSS wind speed) at 0000 UTC
on 6–9 January 2018 [90].
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on 8 January 2018 [90].

5. Discussion
Tables 3 and 4 summarize the studies of assimilating GNSS RO and GNSS-R data,

respectively. In summary, both GNSS RO data and GNSS-R data have positive impacts on
TC forecasting, although they influence different aspects of forecasts. We cannot compare
the assimilation results between RO data and GNSS-R data directly as there are no data
aiming at the same TC, and the type or size of data are not comparable either. However,
in a comparison of Tables 3 and 4, we can find that RO data contribute to moisture and
precipitation forecasts more effectively than GNSS-R data. Only combined with other
observations, GNSS-R winds will positively impact precipitation forecasting. For the TC
track and intensity, both can improve the accuracy of forecasts, but RO data perform better
in track forecasting, while GNSS-R data contribute more to the TC intensity forecasting.
This is because RO data have a high resolution in vertical and can characterize atmospheric
circulation in more detail, and GNSS-R data convey more ocean surface information, such
as the major factor of intensity, the surface wind speed.
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Table 3. Summary of studies assimilating GNSS RO data.

Title NWP Model and
DA System Assimilation Method Impact

Potential Impacts of Radio
Occultation Data Assimilation on
Forecast Skill of Tropical Cyclone
Formation in the Western North

Pacific [74]

WRF, 3DVAR Using nonlocal excess phase
operator of GNSS RO data

RO data had an impact on
moisture forecasts, and

increased low-level vorticity
for developing cases.

Evaluating the Impacts of
COSMIC-2 GNSS RO Bending
Angle Assimilation on Atlantic
Hurricane Forecasts Using the

HWRF Model [76]

HWRF, 3DEnVAR
With local forward operator

NCEP Bending Angle
Model (NBAM)

RO data assimilation were
more effective in correcting

water vapor bias.

Impact of Refractivity Profiles from
a Proposed GNSS-RO Constellation
on Tropical Cyclone Forecasts in a

Global Modeling System [77]

GDAS/GFS, 3DEnVAR Using simulated RO
refractivity from nature run

RO data had more effects on
wind speed and IKE forecasts

than global track forecasts.

Impact of Assimilation of GPS
Radio Occultation Refractivity on
the Forecast of Typhoon Usagi in

2007 [78]

JMA, 4DVAR Using RO refractivity

RO data had a positive impact
on the forecast of a TC at the

formative and developing
stages and improved the

dynamic fields.
An Impact Study of GNSS RO Data

on the Prediction of Typhoon
Nepartak (2016) Using a

Multiresolution Global Model with
3D-Hybrid Data Assimilation [79]

MPAS, 3DVAR/EnKF With local RO refractivity
and bending angle operators

Assimilation with bending
angle had better performance
than refractivity, in particular

for the wind forecast.

Understanding the impact of
assimilating

FORMOSAT-7/COSMIC-2 radio
occultation refractivity on tropical
cyclone genesis: Observing system

simulation experiments using
Hurricane Gordon (2006) as a case

study [93]

WRF, 3DVAR Refractivity profiles

Assimilating RO data helped
to capture the genesis and
development in TC’s core

region with abundant
moisture and vorticity.

Impacts of Radio Occultation Data
on Typhoon Forecasts as Explored

by the Global MPAS-GSI
System [94]

MPAS, 3DVAR/EnKF Local bending angle and
refractivity

The TC track prediction was
improved with RO data,
especially using bending

angle data, but RO data had
fewer impacts on the TC

intensity forecasts.

Table 4. Summary of studies assimilating GNSS-R ocean surface wind data.

Title NWP Model and
DA System

Simulated or Real
Observations Assimilation Method Impact

Impact of Assimilating
CYGNSS Data on
Tropical Cyclone

Analyses and Forecasts
in a Regional OSSE

Framework [89]

WRF, 3DVAR Simulated
Only wind speed was

assimilated, thinning to
the grid

CYGNSS surface wind data
could improve the analyses
of the TC position, structure,

and intensity.

Impact of CYGNSS
Ocean Surface Wind
Speeds on Numerical

Simulations of a
Hurricane in Observing

System Simulation
Experiments [88]

HWRF, 3DVAR Simulated Only wind speed was
assimilated

CYGNSS winds had great
potential to improve

hurricane track and intensity
simulations.
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Table 4. Cont.

Title NWP Model and
DA System

Simulated or Real
Observations Assimilation Method Impact

Variational Analysis of
Simulated Ocean Surface
Winds from the Cyclone

Global Navigation
Satellite System
(CYGNSS) and

Evaluation Using a
Regional OSSE [86]

HWRF, 3DVAR Simulated VAM vectors used for
assimilation

CYGNSS winds improved
intensity and track forecasts,

especially for intensity.
VAM-CYGNSS wind vectors
played a more effective role

in forecasting structures.

A Study of the HWRF
Analysis and Forecast
Impact of Realistically

Simulated CYGNSS
Observations

Assimilated as Scalar
Wind Speeds and as

VAM Wind Vectors [87]

HWRF,
EnKF/3DVAR Simulated VAM vectors used for

assimilation

VAM CYGNSS vectors
improved the TC intensity

and structure forecasts more
than only assimilating
CYGNSS wind speed.

A Study on Assimilation
of CYGNSS Wind Speed

Data for Tropical
Convection during 2018

January MJO [90]

WRF, 4DEnVAR Real

Only wind speed was
assimilated, with

inflated observation
errors by a factor of 5

CYNSS data had a positive
impact on the TC intensity

and track forecasts and also
improved wind and

precipitation fields when
assimilated with combined

satellite data.

Impact of
CYGNSS-Derived Winds

on Tropical Cyclone
Forecasts in a Global and

Regional Model [91]

HWRF,
3/4DEnVAR Real

VAM vectors used for
assimilation, thinning
observations to 25 km

Assimilation of CYGNSS
wind speed showed large
improvements in the track,
Vmax, and minimum sea

level pressure.
CYGNSS-derived vector

winds helped the TC
structure simulation to be

more organized and
symmetrical.

Impacts of Assimilating
CYGNSS Satellite

Ocean-Surface Wind on
Prediction of Landfalling

Hurricanes with the
HWRF Model [92]

HWRF, 3DEnVAR Real
Only wind speed was
assimilated, thinning
observations to 25 km

CYGNSS-retrieved ocean
surface winds had positive
impacts on the predicted

track and intensity and also
performed better in

precipitation forecasts than
ASCAT data.

Utilizing various methods to assimilate RO data leads to different impacts. The
assimilation of bending angles performs better than refractivity and atmospheric profiles; it
retains more information and needs more complicated observation operators. Assimilating
refractivity or atmospheric profiles loses information inevitably due to the assumptions
during the retrieval, but the operators used are concise. The assimilation of bending
angles is significant for the global forecasts because the long propagation path can carry
a cumulative effect, and the assimilation of refractivity or atmospheric profiles is more
suitable for regional models and low layers. For the assimilation of GSNSS-R wind data,
there are differences between assimilating GNSS-R wind speeds directly and VAM wind
vectors. The TC structures are better described by VAM wind vectors. The assimilation
involving wind directions makes the TC structure more organized than only assimilating
wind speeds. The assimilation of VAM vectors also has a more positive impact on improving
the accuracy of track and intensity forecasts. Wind data thinning also plays an important
role in assimilation, and it helps reduce the risk of overfitting, although some information
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is lost. We also found that by adjusting the observation errors, it might be possible to retain
more GNSS-R wind speed data while improving the analyses and forecasts.

RO data assimilation is evolving towards multivariable and hybrid methods. How-
ever, challenges remain: different operators adapt to different atmospheric layers, adding
complexity to models, and are bound to lose a certain amount of information. Moreover,
in advanced bending angle assimilation, the nonlinearity of the cost function causes some
optimization problems. GNSS-R data assimilation is a relatively new approach in TC
forecasting. Aside from assimilating the wind speed, we can consider assimilating more
raw data, such as DDM and NBRCS, to reduce observation errors for TC intensity forecasts,
which requires the creation of more complex observation operators. Moreover, the research
and analysis of GNSS-R observation errors have not been extensively studied, and further
research in this area is needed.

6. Conclusions and Future Prospects
GNSS RO and GNSS-R technologies, with their unique advantages, effectively supple-

ment the spatial and temporal limitations of traditional observation methods, particularly
in the marine domain. Consequently, GNSS RS data have significantly improved the fore-
casting of typhoons. This article mainly reviews the assimilation applications of occultation
and reflectometry observations in typhoon forecasting.

The article briefly introduces the principles of RO and GNSS-R, existing satellite
missions, and their advantages, such as global coverage, high precision, and all-weather
capability. It discusses the benefits that GNSS remote sensing data bring to typhoon fore-
casting. In the realm of TC monitoring, RO is one of the solutions to the longstanding
issue of forecast errors. Assimilating RO data has significantly enhanced the predictions of
TC intensity and trajectory, with data from below 6 km and the UTLS region aiding this
improvement. At the early stages of a TC, data below 6 km are crucial due to RO’s high
vertical resolution, and UTLS data impact forecasts over three days or more. Additionally,
the analysis of simulated TC vertical structures has reconstructed critical structures, espe-
cially the eye, eyewall, and rainbands, because RO data provide more accurate initial fields
of moisture and temperature. The assimilation of RO in regions with high gradients of
moisture and temperature remains challenging. However, the new method of a non-local
excess phase operator has somewhat resolved this issue, further improving TC predictions.
With denser RO data, TCs can be predicted more accurately.

GNSS-R in the field of TC detection mainly focuses on wind speed observations.
Assimilating GNSS-R data has shown effectiveness in forecasting TC intensity and trajectory.
The assimilation of CYGNSS wind data is more effective in improving path predictions,
offering greater potential in representing vortex structures compared to conventional data
assimilation and also aids in medium-range path forecasting. Ideally, the corresponding
hurricane forecasts are improved within a 1-day timeframe, reducing errors in 0–48 h
hurricane intensity predictions. The assimilation of VAM-CYGNSS vector winds can reduce
MSW errors by 1–2.5 m/s and MSLP errors by 2–5 hPa. Statistical results of CYGNSS data
assimilation are comparable to ASCAT, with reduced bias and root mean square errors.
Currently, we hardly pay attention to the ocean surface wind speed error settings, but
the error settings are important in the assimilation. In addition, there’s nearly no study
considering the correlation of ocean surface wind speed errors in data assimilation [14,95].
There is a potential that VAM is a good method to add directions for wind, but it has not
been demonstrated in operational use. In this review article, most studies only evaluate the
assimilation impact for one TC case, and researchers are encouraged to explore multiple
TC scenarios for which results are more significant for operational use.
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Finally, to serve TC forecasts better, the potential of RO and GNSS-R has been ex-
plored. People can develop methods for assimilating RO data by incorporating not only
atmospheric physical variables and refractivity but also bending angles, thereby reducing
errors while exploring new assimilation techniques. Additionally, more advanced RO
technologies, such as polarized occultation, could be developed, which would enhance pre-
cipitation forecasts and provide better observations of TC structures. Regarding GNSS-R,
currently, most studies only assimilate the GNSS-R ocean surface wind. Efforts can be made
to assimilate GNSS-R NBRCS or even DDM [96,97] to capture more information from the
lower-level observation. This method needs a more complex observation operator with its
tangent linear operator, and we should supply the information, including satellite geometry,
GNSS transmitting power, and receiver antenna parameters, which can usually be obtained
from the GNSS-R Level 1 product. Furthermore, we can conduct the joint assimilation
of RO and GNSS-R data, especially using data from GNSS-RO/R integrated missions,
like the FY-3 series, where these two types of data complement each other, providing the
potential to obtain more comprehensive forecasts of the TC intensity, trajectory, structure,
and precipitation.
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