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Abstract: The conventional Structural Health Monitoring (SHM) framework focuses on
individual structures. However, preliminary studies are required at a large territorial scale
to effectively identify the most vulnerable elements. This becomes particularly challeng-
ing in urban settings, where numerous buildings of varied shapes, ages, and structural
conditions are closely spaced from one another. A twofold task is therefore required: the
automated identification and differentiation of various structures, coupled with a ranking
system based on perceived structural risk, here assumed to be linked to their deforma-
tion patterns. It integrates displacement measurements acquired through the Differential
Synthetic Aperture Radar Interferometry (DInSAR) technique, specifically employing the
full-resolution Small Baseline Subset (SBAS) approach coupled with Hierarchical Cluster-
ing. The effectiveness of this method is successfully demonstrated and validated in two
selected areas of Rome, Italy, serving as case studies. The results of this vast-area scale
monitoring can be used to select the constructions that need a more in-depth assessment.

Keywords: machine learning; Hierarchical Clustering; Differential Interferometric
Synthetic Aperture Radar (DInSAR); Small Baseline Subset (SBAS); COSMO-SkyMed;
QGIS; built environment

1. Introduction
Satellite-based Structural Health Monitoring (SHM) is an area of research that has

gained significant attention from structural engineers in the last few years. For exam-
ple, satellite interferometry has been recently utilised to monitor slow-moving landslides
impacting buildings [1], assess the structural integrity of bridges [2–5] and school build-
ings [6], and observe subsidence caused by tunnel excavation [7]. Nevertheless, despite
these successful applications, various limitations still hinder the widespread adoption of
satellite data; for instance, almost all studies are based on land subsidence analysis and
not directly on the buildings themselves. Furthermore, the potentially damaging effects of
subsidence are almost always only linked to one mechanism.

Following the processing of satellite data, the interpretation of structural behaviour
is of fundamental importance, also in relation to the types of actions whose effects on
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structures can be effectively monitored using interferometric techniques. In fact, it is
evident that satellite data, the frequency of which depends on the satellite’s passage over
the area of interest and varies from a few days to a few weeks, provide good results in
observing slowly evolving phenomena.

During their useful life, constructions interact first and foremost with the geological
and environmental context in which they are built. Consequently, in addition to gravity
loads and earthquakes, constructions are also subject to additional actions induced on the
structure by environmental, meteorological, and subsurface instability phenomena, which
are independent of the presence of the structure itself and which can generate displacements
in the structure that can also be monitored using the interferometric technique. Therefore, to
obtain an overall view of the actions that can determine movements that can be monitored
by satellite interferometry, it is essential to know, on the one hand, the characteristics of the
structure and, on the other hand, the geological context of the subsoil and the environmental
context in which the construction itself is inserted.

Finally, it is evident that the interpretation phase of understanding structural behaviour
through satellite data analysis is a complex activity since, if conducted incorrectly or even
with reference to an unsuitable time horizon, it could lead to incorrect assessments of
structural behaviour. Importantly, remote sensing measurements must be associated with
individual buildings to provide specific and detailed information at the level of the single
structure. This is not trivial in densely built areas like highly urbanised city centres.

Automating this task is crucial, as the current manual approach is excessively labour-
intensive and time-consuming. This automatic identification process is essential for en-
abling further analyses, particularly the ranking of buildings based on their deformation
history over recent years. Ultimately, this information can be used to identify the most
at-risk structures.

This automated identification and preliminary ranking is, essentially, a machine
learning problem, based on Knowledge Extraction from the provided dataset of satellite-
borne interferometric measurement time histories.

This framework was first put forward in [8], where a DBSCAN-based method was
proposed and validated. Then, in [9], the ADAfinder tool was applied to EGMS data for
the Structural Health Monitoring of urban settlements.

Departing from these previous research works, here a Hierarchical Clustering (HC)-
based alternative is proposed and benchmarked against the results of those previous works.
The key conceptual and practical aspects are concisely discussed, relying on a real case
study as a guided example of an actual implementation.

This work proposes using satellite data combined with machine learning tools to
quickly assess the deformation condition of the entire urban headquarters by using satellite
data as the sole input.

The clustering methodology is briefly introduced in Section 2. A description of the
specific case studies follows in Section 3. A walkthrough application is then presented in
Section 4, with all the intermediate steps and results for the automatic building identification
for these two areas (both selected within the city of Rome, Italy, using the COSMO-SKY
MED data presented in [10]). These results of the HC methodology include a direct
comparison with the previously proposed (DBSCAN-based) approach as well. Then, two
ranking methods and their application for selecting the buildings with the highest priority,
based on different expected damaging mechanisms, are presented for the two case study
areas in Section 5. The Conclusions end this paper.
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2. Materials and Methods
In the following paragraphs, the Small Baseline Subset Differential Synthetic Aperture

Radar Interferometry (SBAS-DInSAR) technique [11,12] and the Hierarchical Clustering
algorithm are briefly recalled to keep this article concise. More details about the specific
aspects can be found in the reference sources.

2.1. Overview of the SBAS-DInSAR Technique

In the last decades, new-generation radar systems with very high resolution (VHR)
have been developed, particularly TerraSAR-X and COSMO-SkyMed, with a spatial reso-
lution of a few square metres. At the same time, Structural Health Monitoring has seen
significant advancements, with satellite-based techniques like DInSAR enriching moni-
toring capabilities. DInSAR can measure ground motion phenomena such as landslides,
subsidence, earthquakes, or volcanic activity with millimetre-scale precision by processing
a time series of SAR satellite acquisitions. This enables, for example, monitoring of the
stability of slopes, mining areas, buildings, and infrastructure. The advantages of utilising
such techniques lie in the possibility of remote monitoring without introducing on-site
instrumentation. DInSAR is based on static monitoring and gives velocity maps and time
series of displacements at territorial and local scales. Its non-intrusive nature allows for
continuous monitoring without disrupting bridge operations, and it enables the exploration
of historical data for trend analysis and proactive maintenance. SAR technology aboard
orbiting satellites delivers high-resolution, weather-independent imagery of Earth’s surface.
DInSAR uses SAR technology to generate interferograms, which provide information on
the phase differences between SAR images acquired at different times and from different
orbital positions. These data can be used alone or in combination with other physically
attached SHM instrumentations, if available.

The Small Baseline Subset (SBAS) methodology [11] is an established advanced DIn-
SAR technique that can be used to obtain information on the temporal and spatial pattern
of LOS-projected displacement components observed by radar, generating displacement
time series and mean velocity maps with subcentimetre accuracy [10]. The SBAS approach
is based on a large number of SAR images acquired in the studied area during a specific
time interval and is based on the proper selection of interferometric SAR data pairs used to
generate multiple temporal differential interferograms. Each of these represents the phase
difference (depurated from the topographic contribution of the surface by exploiting a 1 arc
second SRTM (30 m) Digital Elevation Model related to the investigated area) between two
SAR images collected from the same location at different time steps [12,13]. Specifically, the
selected pairs are characterised by a slight difference between the acquisition trajectories
and a relatively short time interval between the related SAR, which allows mitigating noise
effects, often referred to as decorrelation effects, that affect the generated interferograms
and thus maximise the spatial density of DInSAR measurement points, which are known as
Persistent Scatterers (PSs). Moreover, the selected DInSAR interferograms may be affected
by additional, undesired phase patterns superimposed on the deformation signals due
to possible orbital inaccuracies, which may impair the final quality of DInSAR ground
displacement measurements. Such phase artifacts induced by possible orbital errors can
be approximated with a linear (or quasi-linear) phase ramp in both azimuth and range
directions, often referred to as “orbital ramps”, which are easily estimated and compensated
for in the SBAS processing [14]. Regarding the general accuracy of the full-resolution SBAS
DInSAR products in the radar LOS, the resulting accuracy is on the order of 1–2 mm/y for
what concerns the mean deformation velocity value and 5–10 mm on the single deformation
measurement. These average accuracy values have been achieved by means of several



Remote Sens. 2025, 17, 128 4 of 21

extensive comparative analyses between SBAS-DInSAR and in situ measurements (GPS,
precision levelling, inclinometers. . .) in large areas on Earth [12,14,15].

To summarise, this satellite data-based technique [12] provides displacement and
velocity measurements for Persistent Scatterers (PSs), which are reflective targets on the
ground. The measurements pertain to the satellite’s ascending (ASC) and descending (DES)
acquisition geometries, which can be combined to determine the actual direction and value
of each PS’s displacement/mean velocity vector. As previously mentioned, PSs retrieved
from the COSMO-SkyMed constellation were used in this analysis, focusing on the period
from 2011 to 2019. Both ascending and descending orbits were utilised to maximise the
spatial density of the information.

2.2. Hierarchical Clustering

Hierarchical Clustering (HC) belongs to the family of the so-called unsupervised
learning algorithms. Among this group, HC is well-known for its ability to agglomerate
data from the bottom up into a multilevel hierarchy. The implementation used here adheres
to the standard definition (see [16], Algorithm 6.4.1) and involves three consecutive steps.
First, the distance between every pair of objects in the dataset is calculated. Next, all objects
are organised into a binary hierarchical cluster tree based on maximum proximity and a
linkage function. Finally, the data are partitioned by “cutting” the complete hierarchical
tree at a specified height determined by a user-defined threshold.

HC has been applied for many years for pole clustering in Automated Operational Modal
Analysis—see, e.g., its uses in unsupervised dynamic identification, reported in [17,18]. In
this specific application, instead, the ‘objects’ are the PSs, and the ‘distance’ is intended to be
the Euclidean distance between them.

Three options were considered for the linkage function:

1. single (i.e., the shortest distance);
2. complete (farthest distance);
3. average (unweighted average distance) linkage.

Based on some preliminary tests, the single linkage function provided the best results
and was therefore selected.

Similarly, after some preliminary tests, the minimum cluster distance was selected
as the discriminant for the threshold setting. Its value was set according to the average
distance between buildings in the areas of interest to return homogeneous clusters that
actually represent the underlying buildings and their shapes.

2.3. Complete Flowchart of the Proposed Methodology

This section presents the methodology developed for defining and analysing at-risk
buildings in urban areas through integrating satellite interferometric data and advanced
machine learning techniques. The flowchart of the methodology, shown in Figure 1,
illustrates the key steps of the process, which are divided into four fundamental phases:

➢ Acquisition and Processing of Satellite Data (red box): This step involves acquiring and
processing SAR images for the area of interest over the relevant period (2011–2019).
The images are processed using a multi-temporal DInSAR technique (specifically, the
high-resolution SBAS-DInSAR algorithm) to obtain spatially dense maps of coherent
measurement points, known as Persistent Scatterers (PSs).

➢ Clustering and Identification of Buildings (green box): In this phase, the Hierarchical
Clustering algorithm is applied to the processed data, allowing the grouping of
measurement points corresponding to each individual building in the area of interest.
This process enables the automatic identification of buildings.
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➢ Deformation Analysis of Buildings (yellow box): This step involves analysing the
deformation evolution of each identified building over the observation period. The
analysis focuses on the velocity trends and deformation characteristics for each build-
ing group, to identify those at higher risk of damage due to subsidence or instability.

➢ Priority Ranking (blue box): Based on the deformation analysis, buildings are ranked
according to their relative risk levels. A distortion index is calculated for each
building, allowing for the prioritisation of those requiring in situ monitoring or
further investigation.
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The aspects related to the acquisition and processing of satellite data, as well as the
Hierarchical Clustering identification process, are addressed in Sections 2.1 and 2.2. The
remaining blocks of the procedure, focusing on deformation analysis and priority ranking,
are described in greater detail in Section 5.

3. The Two Case Study Areas
The two areas of interest, named Area 1 (Figure 2a) and Area 2 (Figure 2b), are both

included in the densely urbanised area. In particular, the case study areas are part of the
city centre of the municipality of Rome (Italy), which has already been investigated in many
previous studies on multi-temporal interferometric processing—see, e.g., [15,19–21]. In
particular, the full-resolution SBAS-DInSAR approach [12] has been applied to two sets of
SAR images collected from March 2011–March 2019 from ascending (ASC) and descending
(DES) orbits, Stripmap mode (with a 3 m × 3 m ground resolution) by the sensors of the
COSMO-SkyMed (CSK) constellation, and this evidenced some differential subsidence on
the buildings in the selected areas [8].
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(circa 41◦51′42′′ N 12◦29′10′′ E). Bottom row: the respective PS distributions. In (c,d), blue denotes
ascending and yellow denotes descending orbits. Data retrieved from Google Earth (https://earth.
google.com/web/, last accessed 23 December 2024) and COSMO-SkyMed (https://earth.esa.int/
eogateway/missions/cosmo-skymed, last accessed 23 December 2024).

The available 129 ASC (frame HI-05) and 107 DESC (frame HI-03) CSK SLC images
were paired to generate the overall sequences of interferometric SAR data pairs, consisting
of a total of 392 ascending and 332 descending DInSAR interferograms, respectively. The
differential interferograms were selected by imposing a maximum perpendicular baseline
of about 1000 m and a maximum temporal baseline of 1800 days to limit the decorrelation
effects and maximise the number of coherent pixels. Moreover, we used precise satellite
orbital information and the 1 arcsec Shuttle Radar Topography Mission (SRTM) DEM of the
study area (about 30 m of spatial resolution) to remove the topographic phase component
from the DInSAR sequence. Finally, the generated DInSAR interferograms were unwrapped
and subsequently inverted through the full-resolution SBAS-DInSAR approach [12], thus
allowing us to retrieve the deformation time series (and the corresponding mean velocity
measurements) for each PS.

More specifically, Area 1 and Area 2 include, respectively, 19 and 7 buildings. That
is to say, Area 1 encompasses more structures, all of which are relatively well-separated
and have simple shapes. In contrast, Area 2 contains fewer buildings, but they are larger
and have more complex shapes. The building stock mainly consists of framed reinforced
concrete structures. However, the choice was made just to cover different shapes and
different heights without focusing on the representation of different structural typologies.
Figure 2c,d also display the raw satellite data superimposed on the map obtained from
the QGIS platform, an open-source software widely used for spatial data visualisation and
analysis [22].

https://earth.google.com/web/
https://earth.google.com/web/
https://earth.esa.int/eogateway/missions/cosmo-skymed
https://earth.esa.int/eogateway/missions/cosmo-skymed
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Importantly, as is discussed later, Area 1 was purposefully chosen to allow for direct
comparability with the aforementioned DBSCAN-based technique, as this was the same
application reported for validation in [8].

Conversely, Area 2 shows a completely different shape of the urban context; to this
aim, the real potential of this procedure is to have reliable results in areas that present very
different shapes between them (such as Area 1 and Area 2).

4. Building Identification and Shape-Finding Results
As mentioned at the beginning of this paper, the first aim of the proposed clustering

technique was to automatically identify the data points corresponding to the same building.
In turn, this enables automated and unsupervised building identification, including their
number and—as especially relevant for Area 2—their actual shape in the plan view.

Thanks to the many reflective surfaces on the buildings, many PSs shown in Figure 2c,d
correspond to actual structures. However, as a preliminary step, PSs referring to the ground
surface between buildings must be removed. For this purpose, the information retrieved
from the cumulative topographic distribution of the PSs can be exploited. In fact, for
obvious reasons, building-related PSs will be localised at higher points. However, the
difficulty lies in efficiently discriminating between these two groups in an unsupervised
fashion. The maximum first derivative—indicating the maximum local difference—was
chosen to automate this selection procedure to determine the cut-off height δ. As illustrated
in Figure 3a,b, this corresponds to 34–36 m for Area 2 and slightly less (22–24 m) for Area 1.
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Figure 3. Topographic cumulative distribution of PSs for Area 1 (a) and Area 2 (b). The red dots
indicate the cut-off height δ. The results with removed PSs are shown in (c,d), respectively.

Figure 4a,b superimpose the PSs to the actual map view by showing the overall
view of the buildings with the points that belong to them (marked with different colours).
Figure 4c,d report the results of the HC applied to the selected PSs.
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from [8]. (f) 3D view of the detail marked in red in (b).

More specifically, Figure 4c shows (in Area 1) an automatic rectangular shape ap-
proach, similar to what was reported in [8]. This more conventional technique fits well
with the specificities of this first case study, as most buildings have a regular square or
rectangular plan.

Instead, Figure 4d shows a more advanced approach, with the plan view shape not
dictated a priori but instead inferred from the datapoints themselves. This is achieved
by automatically encircling the most external elements belonging to the same cluster.
This automatic shape-finding approach returns very accurate results, considering the
peculiarities of this second case study.

As shown in Figure 4a, all the structures in Area 1 are correctly located, and their
overall shape is correctly guessed. On the other hand, in Area 2, eight clusters appear
instead of the expected seven. Indeed, the structure highlighted by the red ellipse in
Figure 4b is misidentified as two detached buildings. The motivation is clearly visible
in the 3D view of the building complex (Figure 4f). The small, two-story high portion
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enclosed between the two larger, seven-story high side parts reflected very few PSs, making
it almost invisible to the satellite. This aspect, unfortunately, constitutes one of the inherent
and unavoidable limitations of using satellite data. The complexity and diversity of the
environments observed can often generate challenges in the process of data acquisition and
interpretation, with phenomena such as shadows generated by adjacent structures that can
reduce the reliability and completeness of the information obtained.

To conclude, Figure 4e reports the results of the first area as retrieved from [8], i.e.,
with the previously proposed DBSCAN-based approach. From a direct comparison of the
results on Area 1, it is possible to appreciate how the proposed HC-based approach and the
previous DBSCAN-based algorithm returned similar identifications, both consistent with
the expected results.

An additional approach explored was the reduction of the cut-off height δ. However,
lowering the cut-off value risks including some points associated with the ground surface
between buildings, thus complicating the clustering process.

In fact, adopting a cut-off height of 32 m (i.e., 34 m–2 m) resulted in an incoherent
clustering outcome due to the excessive inclusion of points referring to the ground surface.
Conversely, using a cut-off height of 34 m made it possible to include the few points related
to the two-story section enclosed between the taller side parts, allowing the clustering
process to correctly identify the entire building as a single cluster, thereby improving the
overall accuracy of the model.

Lowering the cut-off height allowed for resolving the issue of cluster separation, as
shown in Figure 4b. However, this choice also led to including points associated with the
ground rather than the buildings. This is clearly visible in Figure 5b, where some points
located on the street are included in the cluster marked by red diamonds and the one
indicated by purple triangles.
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This case represents an uncommon configuration, where a low-rise building is situated
between two significantly taller structures. Therefore, in such circumstances, it is necessary
to accept the compromise of including some ground-related points in the analysis to ensure
the accurate identification of the buildings.

The approach is based on using the maximum first derivative, indicative of the maxi-
mum local variation, for determining the cut-off height, which provides sufficiently accurate
results in cases where the analysed area exhibits limited elevation differences and is char-
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acterised by multi-story buildings. Under such conditions, the cut-off height value is
applicable with good approximation to each point within the examined area.

A more accurate solution for determining the cut-off height is by using a digital terrain
model (DTM), which provides a detailed three-dimensional representation of the earth’s
surface. The DTM allows for a more precise capture of elevation variations, thereby en-
hancing the accuracy of measurements in areas characterised by complex or heterogeneous
topographies. In particular, by knowing the topographic value associated with each PS and
subtracting the ground altitude provided by the DTM, it is possible to obtain the relative
topographic value, which represents the height of the point relative to the ground. This
methodology significantly improves the reliability of the results by reducing the noise
associated with PSs belonging to the ground.

Although not explored in depth in this article, a different approach utilising the digital
terrain model (DTM) may offer interesting insights for future research. It could contribute
to further improving the accuracy of results, particularly in complex topographic contexts.

5. Building Prioritisation Results
At this step, each cluster—which, it should be reminded, contains data points collected

from both ascending and descending orbits—was proven to correctly correspond to an
individual building.

Having achieved the first main goal of this research work (building shape definition),
the next step involved selecting the structure that required in situ investigation with the
highest priority. In this context, a first ranking criterion is proposed based on differential
subsidence and the potential distortion induced by this phenomenon. Then, a second,
complementary criterion, based instead on the total average displacements, is also reported
and discussed. The advantages and limitations of both strategies are discussed.

It is important to note that both the proposed ranking methodologies compare each
building’s current state with that of the other buildings in the same area. That is, they do
not compare a building’s current state with its previous condition, such as in the procedures
for early warning and risk assessment proposed by, e.g., [23,24].

For both strategies, it is firstly necessary to calculate the Up–Down (U-D) and East–
West (E-W) components of velocities (from now on, VUD and VEW). This can be achieved by
considering pairs of data points from ascending and descending orbits. Therefore, the data
points need to be paired or omitted if pairing is not possible. Note that the N-S component
is intentionally omitted here since the SAR sensor is not quite sensitive to the measurement
of the components along this direction due to the lateral view and the near-polar orbit
trajectories of the satellite system [10]. Nevertheless, this is known to result in a limited
error in the approximation. In this sense, an initial analysis of the relative distances between
all the PSs from the two orbits was conducted to make a preliminary selection. Specifically,
the data obtained from the Italian COSMO-SkyMed satellite constellation have known
precision values: 1–2 m in the N-S direction, 2–3 m in the E-W direction, and 1–2 m in
the U-D (vertical) direction, as discussed in more detail in [10]. Therefore, datapoint pairs
with planimetric and altimetric distances exceeding these specified error values must be
excluded, while all others can be retained for the subsequent operations.

For these remaining datapoint pairs, the velocity values VUD and VEW were calculated
by inverting the following simplified relationships [10]:{

vASC ∼= vEW,ASC · nEW,ASC + vUD · nUD,ASC

vDES ∼= vEW,DES · nEW,DES + vUD · nUD,DES
(1)
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where nEW,ASC, nUD,ASC, nEW,DES, and nUD,DES are the directional cosines of the sensor
line of sight (LOS). As mentioned, this relationship holds for pairs of spatially coincident
ascending orbit (ASC) and descending orbit (DES) points.

At this step, the values can be averaged. The resulting mean is then associated with a
new point, which does not correspond to either of the two original PSs in the pair but is
instead located at an intermediate coordinate between them.

For what concerns Area 1, Figure 6a,b report these results for, respectively, the U-D
and E-W mean velocities. As can be seen from Figure 6c,d, the comparison with the results
of the DBSCAN approach retrieved from [8] is remarkable, especially considering that the
criterion for selecting points related to buildings is slightly different, as the approach used
in [8] employed the DTM to determine the cut-off height.
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This analysis indicates an ongoing deformation phenomenon in Area 1, characterised
predominantly by U-D displacements (more specifically, by a downward movement). This
displacement is more pronounced in the SE corner of the map and diminishes moving
toward the NW corner. This pattern is attributed to subsidence, a geological process
involving the slow and gradual sinking of the soil. These findings are consistent with those
of [8], though are not detailed here for brevity.

From the perspective of structural integrity, downward rigid roto-translation is not
inherently the most critical issue. Differential displacements are a more accurate indicator
of structural risk, as they induce strain within the structure, potentially causing damage.
Therefore, the maximum and minimum velocity components in the E-W (VEW,max, VEW,min)
and vertical (VUD,max, VUD,min) directions were considered for each cluster. The second case
is more critical due to the larger displacements. From this enhanced analysis, the second
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building from the left in the first row from the top was identified as the one exhibiting the
highest differential total displacements.

Conversely, the last building of the fourth row experiences the lowest level of total
differential displacement. Interestingly, the building at the highest risk is located in the
area with the least sinking (upper left corner), while the one with the least differential
displacements is in the region with the highest total subsidence (lower right corner).

These observations confirm that a global analysis of deformations, even using remotely
sensed satellite data, can provide a comprehensive overview of the expected behaviour
of target structures and identify potentially hazardous situations. This approach can help
prioritise in situ surveys and offer valuable information for integrating detailed studies of
buildings in the area.

For what concern Area 2, Figure 7a,b report the results according to the same conven-
tions seen in Figure 6.
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First of all, it is possible to observe that this second area is subjected to much less in-
tense rigid motion, especially in the vertical direction. That is to say, it is not as significantly
affected by subsidence phenomena. In this case, the large V-shaped building in the centre of
the inspected area is the one affected by the (relatively) highest differential displacements,
while the triangular-shaped building in the upper right is the one less affected.

As already mentioned before, to complement the previous analysis, a study was
conducted to establish an internal priority list, also assigning a level of attention to each
building in the analysed area. To facilitate data management, each building was assigned
an identification code, as shown in Figure 8a,b, which pertain respectively to Area 1 and
Area 2.

5.1. Distortion-Based Priority Ranking

The first proposed strategy involves, after acquiring the vertical velocity values (VUD),
calculating a distortion index for each building. That is here defined as the difference
between the maximum (VUD,max) and minimum (VUD,min) values of VUD, normalised
by the length (L), which represents the physical distance between the corresponding
measurement points:

D =
∆VUD

L
=

VUD,max − VUD,min

L
(2)

This index measures the variation of vertical displacement over the spatial separation
between the considered points, providing a detailed assessment of the degree of deforma-
tion experienced by the buildings. The more stable the trend of the DInSAR displacements
is, the more precise will be the proposed approach. The results of this methodology are
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shown in Figure 8c,d. It should be remarked that this normalisation in itself may not
guarantee the identification of the actual maximum value of the distortion. However, this
approach constitutes a necessary assumption for implementing a method that offers a
quantitative and valuable parameter for an initial assessment of the priority level while
remaining computationally efficient. The alternative would be to examine all possible
combinations of distances and vertical velocity differences between the points of each
building; however, this task would be significantly more complex and computationally
demanding for large areas.
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Once the distortion index was determined, a classification was applied, based on the
sum of the mean (µDI) and standard deviation (-σDI) of the distortion index for each area.
This method is commonly used to identify values that significantly deviate from the trend
of the analysed population; assuming a normal distribution, it corresponds to a confidence
interval of circa 84%. Buildings with a distortion index exceeding the threshold value were
classified as buildings requiring a higher level of attention, marked with an * next to the
Priority Rank. This classification highlights, in relative terms, the buildings within the area
that require more attention than the others (independently of the global risk level of the
whole inspected area). Table 1 reports the mean (µDI) and standard deviation (-σDI) values
for the two analysed areas.

Table 1. Mean (µDI) and standard deviation (-σDI) values of the distortion index for buildings in
Areas 1 and 2 (values in cm/y).

Area µDI -σDI Threshold

1 −0.30 −0.46 −0.76
2 −0.14 −0.09 −0.23
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In general, it is possible that using the standard deviation may result in some false
positives or false negatives. However, given the specific nature of the data available, it
remains the most suitable and feasible approach for our case. Establishing specific absolute
thresholds is too dependent on other parameters like the structural types of the buildings.

Tables 2 and 3, pertaining respectively to Area 1 and Area 2, present the results of this
analysis, ordered in descending order of distortion (and, therefore, of priority). Unfortu-
nately, no benchmark or target value is available, as the buildings are not instrumented
with physically attached sensors. However, it is well known from different works in the
literature [20,22] that the displacements found are absolutely compatible with the presence
of a subsidence phenomenon that has been ongoing for many years in the area.

Table 2. Distortion index and Priority Ranks for buildings in Area 1, including vertical velocity
measurements (values in cm/y, length in metres, distortion index in ‰). The * marks building
exceeding the threshold value and thus classified as requiring a higher level of attention.

ID Cluster VUD,max VUD,min ∆VUD L Distortion
Index (‰) Priority Rank

1.15 −0.26 −0.07 −0.19 1.09 −1.68 1 *
1.13 −0.32 −0.17 −0.15 1.09 −1.38 2 *
1.01 −0.23 −0.07 −0.16 3.30 −0.50 3
1.05 −0.27 −0.17 −0.10 1.97 −0.49 4
1.02 −0.28 −0.03 −0.25 5.97 −0.43 5
1.08 −0.35 −0.16 −0.19 7.89 −0.25 6
1.04 −0.26 −0.16 −0.10 5.83 −0.17 7
1.17 −0.32 −0.16 −0.16 11.42 −0.14 8
1.03 −0.24 −0.11 −0.13 12.74 −0.10 9
1.07 −0.22 −0.14 −0.08 8.62 −0.10 10
1.10 −0.19 −0.11 −0.08 9.04 −0.08 11
1.12 −0.34 −0.19 −0.15 18.55 −0.08 12
1.06 −0.24 −0.11 −0.13 20.37 −0.06 13
1.09 −0.35 −0.18 −0.17 28.38 −0.06 14
1.14 −0.36 −0.24 −0.12 20.52 −0.06 15
1.18 −0.40 −0.24 −0.16 35.37 −0.05 16
1.11 −0.25 −0.13 −0.12 31.81 −0.04 17
1.16 −0.29 −0.17 −0.12 36.85 −0.03 18
1.19 −0.47 −0.42 −0.05 20.98 −0.02 19

Table 3. Distortion index and Priority Ranks for buildings in Area 2, including vertical velocity
measurements (values in cm/y, length in metres, distortion index in ‰). The * marks building
exceeding the threshold value and thus classified as requiring a higher level of attention.

ID Cluster vUD,max vUD,min ∆VUD L Distortion
Index Priority Rank

2.07 −0.11 0.10 −0.21 6.37 −0.33 1 *
2.04 0.16 −0.11 0.27 14.41 0.18 2
2.05 −0.10 −0.04 −0.06 3.53 −0.17 3
2.03 0.07 −0.03 0.10 9.64 0.10 4
2.02 0.09 −0.07 0.16 18.59 0.08 5
2.01 0.07 −0.06 0.13 28.43 0.05 6
2.06 0.09 −0.06 0.15 35.53 0.04 7

The analysis of the two areas reveals significant differences in terms of deformative
behaviour and building vulnerability. Area 1 exhibits more pronounced settlement values
than Area 2, with values reaching −0.47 cm/year, indicating a more marked subsidence
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phenomenon. This translates into higher distortion indices relative to Area 2, where vertical
velocities are more moderate.

The proposed approach allowed the identification of two buildings in Area 1, des-
ignated by ID numbers 1.13 and 1.15, and one in Area 2, identified by ID number 2.07,
with the highest priority level. Once more, it is essential to recall and emphasise that the
priority level is assessed in relative terms within each area: a building with a maximum
attention level requires greater attention compared to other buildings in the same area
without necessarily implying an absolute criticality. In other words, the analysis highlights
the structures that need priority monitoring within the local context rather than making
a direct comparison between different areas, thereby contributing to the optimisation of
resources and mitigation actions.

The results obtained for Area 1 show a variation in vertical velocities of about
−2 mm/year over short distances of 1.09 m. To verify the reliability of these findings,
a statistical test was performed to identify potential outliers, analysing the differences
in vertical velocities (∆VUD) between the maximum and minimum values, as well as the
lengths (L). With a 90% confidence interval, the test identified a single outlier, which does
not correspond to the two main clusters (1.15 and 1.13), which show differential settlements
of −1.9 and −1.5 mm/year over distances of 1.09 m.

As shown in Figure 9a, related to Area 1, these results indicate that the obtained value
is not an outlier and, therefore, the data are statistically valid. Moreover, the same test was
also replicated for Area 2, as shown in Figure 9b, where, with a 90% confidence interval, no
outliers were identified.

From a scientific perspective, this deformation rate could be consistent with the onset
of a subsidence phenomenon, which, although having a relatively low magnitude, might
manifest over limited areas with significant effects on vertical ground deformation [25].

In this context, the observed phenomenon aligns with the findings of Stramondo
et al. [21], who conducted a study on the surface movements of buildings and urban
structures in the city of Rome. Their work highlighted subsidence phenomena of modest
magnitude yet very localised, causing significant vertical deformations and differential
settlement similar to those found in the analysed area.
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undergone renovation, making it challenging to determine any damage directly associated
with the observed deformations.

It is also crucial to consider that this distortion could also result from errors related to
the accuracy of InSAR data. Although InSAR is widely used for large-scale deformation
monitoring, it is subject to inherent limitations such as spatial resolution and uncertainties
arising from the separation between measurement points. These errors can cause distortions
in the results that do not necessarily reflect the physical reality of the ground. Additionally,
the lack of ground-based instrumentation for data validation makes it challenging to verify
the true nature of the observed distortion, whether due to a subsidence phenomenon or
inaccuracies in the measurement of deformations. Therefore, the results should be interpreted
as a preliminary indication rather than a definitive assessment of the site conditions.

Despite these potential uncertainties, the methodology was designed to provide a
preliminary and scalable assessment of the at-risk areas. This means that the methodology
is intended to address large areas, offering an initial screening of potentially vulnerable
buildings to direct resources and monitor actions to less prioritised structures. Although
the method may present issues, particularly for isolated buildings or areas with more
complex deformation phenomena, it still provides a valuable tool for rapidly identifying
structures requiring more in-depth evaluation.

This classification methodology based on the relationship between angular distortion
and risk or damage shares some conceptual similarities with approaches proposed in previ-
ous studies. For instance, Sanabria et al. [26] introduced a system to classify buildings based
on their structural damage level—negligible, medium, and high—using the maximum
differential settlement and the maximum angular distortion along the line of sight (LOS).
Although this approach provides valuable insights for assessing structural vulnerability, its
application to the present study would require the availability of cumulative displacement
data, which are not available in our case, where the assessment is based on the distortion
index calculated for individual buildings using vertical velocity measurements.

On the other hand, Milillo et al. [27] developed a methodology to assess structural
damage induced by tunnelling, based on greenfield settlement models (in the absence
of buildings), deflection ratios (∆/L), and a modification factor (MF) to account for the
soil–structure interaction. However, since this method refers to ground-based points rather
than building-specific data, it does not apply to the context of our study.

Finally, the differential subsidence approach discussed by Cigna and Tapete [28] offers
a complementary perspective by using subsidence gradients and angular distortions to
identify risk areas for urban infrastructures. While helpful in characterising rapid tran-
sitions between different soil types (soft or solid) and the associated surface fault risks,
this methodology focuses on ground characteristics rather than direct building deforma-
tions, thus differentiating it from our approach, which considers the distortion index on
a building scale. Other noteworthy examples may include the differential deformation
maps proposed by Ezquerro et al. [29] or, very recently, Shahbazi et al. [30]. However, all
these approaches are potentially subject to the same issues encountered here, i.e., potential
excessive distortions due to single-point measurement errors.

5.2. Total Average Subsidence-Based Priority Ranking

In addition to the classification previously described, a second classification is considered
and reported. This alternative and complementary ranking considers other potential dam-
aging mechanisms and is based on the average vertical velocity (VUD,av) for each building.
This approach was performed both for comparative purposes, to compare the results obtained
with those of the classification based on the maximum and minimum vertical velocity values,
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and to provide a complementary view of structural behaviour over time, offering a more
balanced perspective of different damaging mechanisms caused by soil deformation.

The average deformation velocity (VUD,av) for each building is calculated as the mean
of the vertical velocity (VUD) values recorded at the different measurement points corre-
sponding to the building. This approach distinguishes itself from the previous analysis,
which was based on maximum and minimum values that, while providing useful indica-
tions, might be influenced by temporary or localised phenomena. In contrast, the average
velocity allows for consideration of the overall deformation trend over time, reducing the
impact of isolated value peaks that do not reflect the overall behaviour of the structure.

Although differential settlements represent a higher risk to the safety of the build-
ings, absolute settlement, while not immediately hazardous, may signal the presence of
widespread subsidence phenomena that could, over time, affect the functionality and
stability of the structures.

In this context, buildings with VUD,av values exceeding a defined threshold are consid-
ered to have a higher level of attention. This threshold is established based on the sum of
the mean (µAVV) and standard deviation (−σAVV) of each area’s average velocity values,
using a methodology similar to that employed for the distortion index-based classification.
Buildings with an average velocity exceeding this threshold are labelled as “high priority”
for monitoring, as their deformation may evolve into more serious issues over time if not
adequately tracked. The mean (µAVV) and standard deviation (−σAVV) values for the two
analysed areas are reported in Table 4. According to these thresholds, the high-priority
buildings are indicated in Tables 5 and 6 with an * next to their respective level.

Table 4. Mean (µAVV) and standard deviation (σAVV) values of the average vertical velocity in Areas 1
and 2 (values in cm/y).

Area µAVV −σAVV Threshold

1 −0.23 −0.07 −0.30
2 −0.01 −0.02 −0.03

Table 5. Priority Rank for buildings in Area 1 based on average vertical velocity (in cm/year).
The * marks building exceeding the threshold value and thus classified as requiring a higher level
of attention.

ID Cluster VUD,av Priority Rank

1.19 −0.44 1 *
1.18 −0.32 2 *
1.14 −0.31 3 *
1.09 −0.29 4
1.13 −0.28 5
1.08 −0.26 6
1.12 −0.26 7
1.16 −0.24 8
1.17 −0.23 9
1.05 −0.22 10
1.04 −0.22 11
1.11 −0.20 12
1.07 −0.19 13
1.03 −0.19 14
1.15 −0.18 15
1.10 −0.16 16
1.06 −0.15 17
1.02 −0.15 18
1.01 −0.13 19
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Table 6. Priority Rank for buildings in Area 2 based on average vertical velocity (in cm/year).
The * mark building exceeding the threshold value and thus classified as requiring a higher level
of attention.

ID Cluster VUD,av Priority Rank

2.05 −0.07 1 *
2.03 0.01 2
2.01 −0.01 3
2.06 0.00 4
2.02 0.00 5
2.07 0.00 6
2.04 0.00 7

Adopting this additional classification thus enriches the overall analysis, providing
another complementary tool for planning and implementing prevention and mitigation
actions. The combination of the two approaches—analysis based on the distortion index and
the analysis of average velocity—offers a comprehensive view of structural health, as well
as a valuable contribution to resource management and the prioritisation of interventions
in the monitored areas.

The average deformation velocity (VUD,av) values recorded for Area 2 are significantly
lower than those of Area 1, indicating a higher overall stability of the region, as previously
observed in Figure 6a,b, respectively, for Area 1 and Area 2. Specifically, the majority
of the clusters in Area 2 exhibit velocity values close to zero, indicating minimal or no
settlement. This behaviour suggests that deformations over time are extremely limited,
with any potential subsidence phenomena being negligible or virtually non-existent.

This second approach, based on average velocities, allowed for the identification of
three buildings in Area 1, designated by the ID numbers 1.19, 1.18, and 1.14, and one build-
ing in Area 2, identified by the ID number 2.05, with the highest level of attention needed.

To summarise, the distortion-based priority ranking presented in Section 5.1 high-
lighted two buildings in Area 1 and one in Area 2 that have higher-than-expected distortion
indices (yet not high enough to be seen as unrealistic statistical outliers). Instead, the
total average subsidence-based priority ranking presented here in Section 5.2 identified
another set of buildings (three in Area 1 and one in Area 2) that exhibit high average
deformation velocity. This second classification provides an additional tool to optimise the
management of priorities. It may ensure that buildings with uniform and relatively less
severe settlements that are potentially evolving into structural issues over the long term are
also closely monitored.

The next steps in preventive maintenance for these highest-priority buildings would be
to arrange in situ surveys in the near future, listing the target buildings for periodic checks,
and, if needed, the installation of an array of physically attached sensors for permanent
and continuous monitoring. However, these next steps fall outside this paper’s scope and
will be addressed in future analyses.

6. Conclusions
The issue of the interpretation of structural behaviour following the processing of

satellite data is of fundamental importance, also in relation to the types of actions whose
effects on structures can be effectively monitored using interferometric techniques. It is,
in fact, evident that satellite data, the frequency of which depends on the passage of the
satellite over the area of interest and varies from a few days to a few weeks, provide good
results in the case of the observation of slowly evolving phenomena. In contrast, they are
currently less effective for evaluating phenomena whose evolution may be faster.
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During their useful life, constructions interact first and foremost with the geological
and environmental context in which they are built. Consequently, in addition to gravity
loads and earthquakes, constructions are also subject to additional actions induced on
the structure by environmental, meteorological, and subsurface instability phenomena,
which are independent of the presence of the structure itself and which can, in any case,
generate displacements in the structure that can also be monitored using the interferometric
technique. Therefore, to obtain an overall view of the actions that can determine movements
that can be monitored by satellite interferometry, it is important to know, on the one hand,
the characteristics of the structure and, on the other hand, the geological context of the
subsoil and the environmental context in which the construction itself is inserted.

This contribution reports the results of a newly proposed approach for satellite data-
based Structural Health Monitoring. This proposal combines machine learning and Knowl-
edge Extraction to automatically identify civil buildings, estimate their shapes in the plan
view, and select the ones most likely at risk of damage due to ground subsidence. In
particular, the methodology developed and presented here integrates remote sensing mea-
surements (Persistent Scatterers in SBAS-DInSAR products) and the unsupervised learning
technique known as Hierarchical Clustering. This clustering process enables the automatic
recognition and grouping of buildings based on their deformation patterns. The proposed
algorithm was successfully applied to two specific areas in Rome, Italy, using data from the
COSMO-SkyMed SAR satellite constellation over the 2011–2019 period.

Two methodologies are presented and proposed for building prioritisation: a first
one, based on differential subsidence and distortion, and a second one, based on total
subsidence velocity. They can be seen as complementary approaches for assessing the
structural vulnerabilities of the monitored buildings. The analysis of the distortion index
enables the identification of buildings characterised by significant localised deformations,
providing an effective tool for highlighting issues related to structural stability. In contrast,
the approach based on the average vertical velocity offers a comprehensive perspective on
the deformation behaviour over time, proving particularly useful for detecting large-scale
subsidence phenomena and identifying buildings susceptible to significant settlements.

These approaches allowed for the definition and comparison of two distinct internal
priority rankings for interventions, assigning each building a relative level of attention. This
method optimises the use of resources for field monitoring and facilitates the identification
of the most critical points destined for further investigation. However, the two procedures
yielded different results, highlighting how different damage mechanisms may affect distinct
areas. Specifically, buildings 1.13, 1.15, and 2.07 appear more at risk of distortion-induced
damage, while buildings 1.14, 1.18, 1.19, and 2.05 seem more at risk of total subsidence.

In conclusion, integrating satellite interferometric techniques and machine learning
algorithms represents a significant advancement in the structural monitoring of urban
areas. The proposed methodology, capable of automatically identifying buildings and
prioritising those at greater risk, is an effective tool to support the planning of mitigation
and preventive maintenance interventions. Future works will further assess the capabilities
of this promising technique to select and prioritise critical constructions within complicated
built environments.
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