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Abstract

:

Climate-driven water challenges in the Pacific Northwest necessitate precise irrigation for sustainable vineyard management. In such scenarios, conservation of water using different approaches, including subsurface irrigation, becomes critical. Detecting crop water status becomes key to evaluating and managing such approaches. This study examines how multispectral, thermal, and hyperspectral proximal sensing data depict irrigation-induced variations in stomatal conductance in Cabernet Sauvignon vineyards during 2016 and 2017. The roles of individual and combined sensing modalities were analyzed, with key contributions including the identification of indices that characterize stomatal conductance. Data were collected at the following growth stages: 80 and 44 days before harvest (DBH) in 2016; and 64, 44, and 8 DBH in 2017. The vegetation indices analyzed included the green normalized difference vegetation index (GNDVI) and leaf area index (LAI) from multispectral data, crop water stress index (CWSI) from thermal data, and normalized difference spectral indices (NDSI) from hyperspectral data. Pearson’s correlations at 80 and 44 DBH (2016) showed significant relationships between normalized stomatal conductance and multispectral indices (LAI: r = 0.59 to 0.66, GNDVI: r = 0.41 to 0.50, both p < 0.01). NDSI pairs (1380 nm with 1570 nm, 1570 nm with 1810 nm) at 80 DBH showed significant correlations (r = −0.27, 0.31, both p < 0.05). In 2017, the thermal data showed the strongest correlation with normalized stomatal conductance (r = −0.83) at 44 DBH. In the same year, NDSI pairs exhibited stronger correlations than multispectral indices as the DBH decreased (1380 nm with 1570 nm: r = −0.58 to −0.69, 1570 nm with 1810 nm: r = 0.64 to 0.48, both p < 0.05). Combining LAI with these NDSI pairs improved stomatal conductance predictions (2016: R2 = 0.37–0.50; 2017: R2 = 0.51–0.63, both p < 0.01). These results demonstrate the precision of a multimodal sensing approach, particularly integrating multispectral and hyperspectral data, to improve irrigation strategies and promote sustainable viticulture.
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1. Introduction


Viticulture faces mounting challenges from climate change, particularly in the western United States, where a shift towards warmer, more arid conditions is becoming increasingly prevalent [1,2]. Traditionally, grape-growing climates were classified as warm or hot if the average temperature during the seven-month growing season (April to October) ranged between 17 °C and 21 °C, while temperatures above 24 °C were considered too extreme for optimal grape cultivation [3]. However, recent observations from 2021 and 2022 align with the temperature extremes once projected for the late 21st century, with days surpassing 35 °C as no longer an anomaly [4,5]. This trend towards more frequent exceedingly hot days during the growing season is severely impacting the viability of wine grape cultivation in numerous United States regions [6].



Compounding these temperature challenges is the viticulture sector’s reliance on winter snow accumulation for summer irrigation, a system now jeopardized by climate-induced changes [1]. Diminished snowpack levels and premature melt-offs are altering the timing and availability of irrigation water, exacerbating drought vulnerability [7]. By addressing the twin challenges of climate change and water scarcity, the sector is actively seeking strategies to sustain wine grape cultivation’s viability, productivity, and financial sustainability [8,9].



Research in viticulture has prioritized optimizing water use to address these challenges. Efforts include developing drought-tolerant varieties (both scions and rootstocks) [10,11,12], enhancing soil moisture through mulching and cover crops [13,14], and refining canopy management [15,16]. Advances in irrigation techniques, such as regulated deficit irrigation and partial root-zone drying, aim to minimize water use while maintaining vine vitality and grape quality [17]. Complementing these agronomic strategies, technological advancements have introduced decision-support systems that aim to optimize irrigation scheduling by integrating environmental data and soil moisture measurements, often obtained from automated weather stations and soil moisture sensors [18,19,20].



While these strategies provide valuable tools for managing water resources, they often overlook critical physiological indicators of stress, particularly those occurring at the leaf level. Soil moisture sensors focus on root water uptake but do not capture the spatial variability of plant physiological states, leading to gaps in understanding how grapevines respond to water scarcity. Factors such as soil type, sensor placement, and management practices further limit the accuracy and applicability of these tools [21,22]. To bridge these gaps, focusing on physiological indicators such as stomatal conductance is essential.



Stomatal conductance, a fundamental physiological parameter, provides precise insights into plant water stress responses. It quantifies the exchange of carbon dioxide and water vapor through the stomata [23]. During a water deficit, abscisic acid (ABA) production induces stomatal closure, reducing stomatal conductance to conserve water. This reduction directly affects photosynthesis, transpiration, and leaf temperature. As a dynamic indicator of water stress, stomatal conductance effectively links physiological responses to environmental conditions, offering scalable and accurate measure of grapevine water status.



Recent advancements in remote sensing have introduced effective tools for assessing vine water stress by capturing spatial variability in stomatal conductance. Thermal imaging, in particular, has demonstrated its value by leveraging the inverse relationship between leaf temperature and stomatal conductance across numerous crops, including strawberry [24], olive [25,26], almond [27], and peach and nectarine [28]. The crop water stress index (CWSI), derived from unmanned aerial vehicle (UAV) thermal imagery, has been shown to correlate strongly with photosynthetic rate and stomatal conductance in grapevines, emphasizing its applicability across varieties [29]. Expanding on the use of thermal indices, Pagay and Kidman [30] evaluated the CWSI, the stomatal conductance index, and the canopy-to-ambient temperature difference in Cabernet Sauvignon and Shiraz. Their findings indicated that the CWSI was more strongly correlated with stem water potential and stomatal conductance during warmer, drier seasons, while the stomatal conductance index and canopy-to-ambient temperature difference were more effective under cooler, wetter conditions. The relevance of thermal imaging for evaluating vine water stress has been further substantiated by other studies exploring similar indices [31,32].



Building on the insights provided by thermal imaging, multispectral imaging has emerged as another valuable tool for assessing vine water stress. Espinoza et al. [33] employed UAVs equipped with multispectral cameras and found significant correlations of normalized stomatal conductance with the normalized difference vegetation index (NDVI, r = 0.56) and the green normalized difference vegetation index (GNDVI, r = 0.65). These findings affirm the pivotal roles of the NDVI and GNDVI in monitoring water stress. López–García et al. [34] expanded upon this by correlating visible and multispectral vegetation indices, including the NDVI, GNDVI, green cover canopy, green leaf index, renormalized difference vegetation index, and visible atmospherically resistant index, with the stem water potential. Their results highlighted strong correlations for the green leaf index (R2 = 0.80), green cover canopy (R2 = 0.73), and visible atmospherically resistant index (R2 = 0.72), emphasizing these indices’ effectiveness in assessing water stress.



While multispectral imaging focuses on canopy reflectance, hyperspectral imaging provides granular spectral data across broader wavelengths, detecting subtle physiological changes linked to water stress. Loggenberg et al. [35] reported 83% accuracy with the random forest algorithm for water stress detection. In a complementary study, Zovko et al. [36] harnessed hyperspectral imaging alongside partial least squares-support vector machines to assess drought stress in grapevines. Conducted over various irrigation levels, this research achieved remarkable accuracy, with a drought stress classification accuracy of over 97%.



Despite the extensive use of multispectral, thermal, and hyperspectral imaging in monitoring water stress in vineyards, these methods are often applied individually, providing only fragmented insights into vine physiological responses. Furthermore, most studies rely on remote sensing that, while effective for large-scale monitoring, lacks the spatial and temporal resolution necessary to capture fine-scale plant–water interactions. Proximal sensing addresses these limitations by enabling detailed, close-range monitoring of stress indicators under variable conditions. This study introduces a novel framework that integrates multispectral, thermal, and hyperspectral data collected over two years under conditions with and without predominant water stress. Using an agricultural utility vehicle (AUV) for multispectral and thermal imaging and a spectroradiometer for hyperspectral measurements, this approach evaluates the individual and combined contributions of these methods to characterize water stress and its relationship to stomatal conductance. By bridging the gaps between single-method approaches and large-scale remote sensing, this framework offers a comprehensive understanding of water-stress dynamics, advancing the precision and effectiveness of vineyard water management strategies.




2. Materials and Methods


2.1. Experimental Design


The experiment was conducted over the 2016 and 2017 growing seasons (April to September) in a commercial block of Cabernet Sauvignon (Vitis vinifera L.) at Kiona Vineyards, located on Red Mountain near Benton City, WA, USA (46°16′59.1″N, 119°26′31.9″W). Spanning 0.44 ha, the experimental site featured Hezel loamy fine sandy soil. A split-plot design (Supplementary Materials, Figure S1) was implemented in 2016 (and revised in 2017), as reported by Espinoza et al. [33], to assess the effects of irrigation method (subsurface irrigation, continuous/pulse irrigation), irrigation rate (15% to 100% of evapotranspiration, ET), and depth (surface to 90 cm) on vine water stress. The two irrigation patterns evaluated were continuous (constant flow) or pulsed (delivered every two hours) irrigation. Subplots were subdivided into four irrigation levels, relative to a grower-defined baseline rate: 100% (Control), 60% (High), 30% (Medium), and 15% (Low).



Sub-subplots were defined by irrigation depth, with subsurface drip lines installed at depths of 30 cm, 60 cm, and 90 cm. These depths capture variability in water availability, with 30 cm reflecting shallow moisture (greater variability, higher evaporation potential), and 60 cm and 90 cm representing more stable moisture availability at depth, requiring deeper root access. The irrigation rates were to introduce stress gradually, while the maximum depth was selected in accordance with studies indicating that most grapevine roots are concentrated within 80 cm [37,38,39]. The experimental layout consisted of 60 plots arranged in a 6 × 10 grid, each plot containing three rows of five vines. Treatment-specific data were collected from the central three vines in the middle row, which served as representative vines for analysis.



The experimental framework in 2017 followed a similar split-plot design with two modifications (Supplementary Materials, Figure S2). Irrigation levels were set to 100% (Control), 80% (High), 60% (Medium), and 40% (Low) to simulate a broader range of water stress. An additional irrigation depth of 0 cm (surface application) was included alongside the previous depths of 30 cm, 60 cm, and 90 cm. This addition was made to assess the influence of surface-applied water, particularly in scenarios where evaporation is more pronounced. All plots received continuous irrigation throughout the growing season. Further details are provided in Ma et al. [40,41].




2.2. Data Collection


Table 1 describes the dates of data acquisition and corresponding days before harvest (DBH) alongside the growth stages.



High-resolution multispectral and thermal images were captured using an AUV, a modified John Deere Gator™ XUV590i (John Deere, Moline, IL, USA) equipped with an imaging sensor setup as described in Figure 1. The AUV was outfitted with a retractable mast (FM50-25, Floatagraph Technologies, Santa Barbara, CA, USA), elevating the imaging sensors 7 m above the ground. The imaging suite comprised a customized multispectral digital camera (NiteCanon ELPH110, LDP LLC, Carlstadt, NJ, USA) and a thermal infrared camera, Tau 2 640 (Teledyne FLIR LLC, Wilsonville, OR, USA). The multispectral camera was configured to capture images in the near infrared (NIR), green (G), and blue (B) bands. This setup facilitated geo-referenced interval shooting, manually triggered to optimize image acquisition timing. The multispectral camera produced 8-bit JPG images at a resolution of 16.1 megapixels (4608 × 3456), while the thermal camera generated 8-bit JPG images at a resolution of 32,000 pixels (640 × 512). To ensure radiometric consistency across data collection periods, multispectral reflectance was corrected using a white reference panel (Spectralon Reflectance Standard, Labsphere, North Sutton, NH, USA) that was present within the field of view of each image. Moreover, in 2017, dry cloth and wet cloth (cotton—black for maximum heat absorption and wet cloth was made damp with water) were used within the field of view of each thermal image for estimating the CWSI. All data were stored on an onboard SD card.



Concurrent with image capture, stomatal conductance and leaf hyperspectral data were collected between 11:00 AM and 2:00 PM on the same days. Stomatal conductance was measured using a porometer (Porometer SC1, Decagon Devices, Pullman, WA, USA) on two leaves per plot. Hyperspectral reflectance data were collected from three leaves per plot using a spectroradiometer (SVC HR-1024i, Spectra Vista Corporation, Poughkeepsie, NY, USA) to maintain consistency across years. Data collection used a leaf clip (LC-RP PRO, Spectra Vista Corporation) and a fiber optic cable to capture reflectance from 350 to 2500 nm. The system measured reflectance data across the 350 to 2500 nm range, with spectral resolutions of ≤3.5 nm at 700 nm, ≤9.5 nm at 1500 nm, and ≤6.5 nm at 2100 nm. The system has an in-built white reference panel for automated white reference correction prior to the hyperspectral reflectance measurement. Calibration was performed often to address sensor drift, ensuring sensor accuracy across data collection.





3. Data Extraction and Analysis


3.1. Multispectral and Thermal Data Processing


Figure 2 illustrates the data processing workflow for multispectral and thermal imaging, encompassing steps from image acquisition with an AUV to the correlation of computed indices with normalized stomatal conductance. Stomatal conductance was normalized by calculating the ratio of each stomatal conductance reading to the maximum stomatal conductance recorded on the respective data collection date (Equation (1)).


    N o r m _ g   s   =      g   s         m a x _ g   s         



(1)




where




	
Norm_gs = Normalized stomatal conductance;



	
gs = Measured stomatal conductance (mmol. m−2s−1);



	
max_gs = Maximum stomatal conductance on data acquisition date (mmol. m−2s−1).
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Figure 2. Workflow for multispectral and thermal data processing in vineyard monitoring. The process begins with image acquisition using an AUV, followed by image calibration, segmentation, and index calculation for multispectral data, temperature normalization, and CWSI calculation for thermal data. Both workflows converge to correlate computed indices with normalized stomatal conductance. 
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Multispectral imagery from each plot was processed using the MATLAB Image Processing Toolbox (MathWorks, Natick, MA, USA). Each image was calibrated against a reference panel to ensure consistency. Following calibration, the region of interest (ROI) in each image, primarily representing vine canopies, was segmented utilizing color-based thresholds in the CIE LAB color space. From these ROIs, two vegetation indices were derived: the green normalized difference vegetation index (GNDVI) (Equation (2)) [42,43] and the leaf area index (LAI) (Equation (3)) [44].


  G N D V I =    ( N I R − G r e e n )     ( N I R + G r e e n )       



(2)




where




	
NIR = Reflectance in the near-infrared region;



	
Green = Reflectance in the green region.










  L A I =      N   c a n o p y         N   t o t a l         



(3)




where




	
Ncanopy = Number of pixels with GNDVI > 0.1 (canopy pixels);



	
Ntotal = Total number of pixels in the image region of interest (ROI).








Thermal imagery was utilized to compute the crop water stress index (CWSI) using two distinct normalization methods (Equation (4)). In 2016, the normalization used the observed maximum (TM1) and minimum (TM2) canopy temperatures within each thermal image. In 2017, a more refined method was applied, where the canopy temperature was normalized using fixed dry (TM1) and wet (TM2) reference surfaces, providing consistent temperature bounds. Canopy-averaged CWSI values were subsequently correlated with normalized stomatal conductance to evaluate the thermal response to irrigation treatments [33].


  C W S I =        T   c a n o p y   −   T   M 2       T   M 1   −   T   M 2         



(4)




where




	
Tcanopy = Canopy temperature;



	
TM1 = Maximum image canopy temperature (2016) or the temperature of the dry reference (2017);



	
TM2 = Minimum image canopy temperature (2016) or the temperature of the wet reference (2017).









3.2. Hyperspectral Data Processing


Hyperspectral data were processed using Matlab (Mathworks, Natick, MA, USA). The data were binned every 10 nm such that the spectral reflectance from 350 to 2500 nm was recorded with a 10 (±5) nm interval (216 total spectral features). Following this, the spectral data were normalized using Euclidean length or vector magnitude, where each vector refers to the hyperspectral data of an individual sample. Finally, three replicate sample spectral data from each canopy (treatment block) were averaged and further analyzed utilizing the corresponding stomatal conductance data. The spectral reflectance data were utilized to estimate the normalized difference spectral indices (NDSI) [45] using Equation (5), computed from every combination of two spectral bands:


  N D S I =    (   R   k   −   R   n   )     (   R   k   +   R   n   )       



(5)




where




	
Rk and Rn represent the reflectance at the k-th and n-th spectral bands, respectively, with k < n.








This NDSI dataset computed from 2016 and 2017 datasets at different time points was correlated with normalized stomatal conductance data, and NDSI showing significant correlation (p < 0.001) with normalized stomatal conductance data for each time point were identified. The ANOVA test was performed to confirm that these NDSI showed significant differences in treatment (irrigation rate). All results were inferred at a 5% significance level.




3.3. Statistical Analysis


Comprehensive statistical analyses, including two–way ANOVA, Pearson correlation, and regression analysis, were conducted using R (4.3.3, R Foundation for Statistical Computing, Vienna, AT) and RStudio (2024.04.3, Posit Software PBC, MA, USA). Prior to analysis, data pre-processing was conducted to ensure accuracy and inter-annual consistency. Outliers were evaluated using scatterplot and interquartile range methods for each variable. Missing data points were assessed by reviewing replicate measurements within treatment plots. If partial replicates were missing, the remaining replicates were averaged; if all replicates were missing, the data point was excluded.



The main effects and interactions of irrigation depth and rate on stomatal conductance were assessed, and the relationships between vegetation indices, thermal metrics, NDSI and stomatal conductance were explored. Additionally, bidirectional stepwise regression was used to identify the best predictors of stomatal conductance within and across the hyperspectral, multispectral, and thermal datasets.





4. Result and Discussion


4.1. Ground Reference Data


Analysis using two-way ANOVA indicated that irrigation depth (comparing the control to depths of 30, 60, and 90 cm, with no significant differences detected among the latter depths) significantly influenced stomatal conductance in 2016 (80, 44 DBH: all p < 0.05) but not in 2017 (64, 44, 8 DBH: all p > 0.10). In contrast, irrigation rate consistently affected stomatal conductance in 2016 (80, 44 DBH: both p < 0.01) and 2017 (64, 8 DBH: both p < 0.05, 44 DBH: p = 0.052). The lack of significant interaction between depth and rate (p > 0.36 for all growth stages) underscores the independent and stable influence of irrigation rate, justifying its focus as the primary variable of interest in this study.



It was observed that stomatal conductance variability in terms of the coefficient of variation (CV) at 80 DBH (2016) increased significantly under reduced irrigation regimes (High irrigation rate CV: 17%, Medium irrigation rate CV: 26%, Low irrigation rate CV: 25%) relative to optimal irrigation conditions (Control CV: 12%). At 44 DBH (2016), the variability within the control treatment was 39%, while at other irrigation rates (low to high irrigation rates), the CV ranged from 23 to 30%. Despite the mitigating effects of natural rainfall, some variability in stomatal conductance under stress persisted. At 64 DBH (2017), the CV in stomatal conductance values in control and high irrigation levels was around 13%, while at medium and low irrigation rate treatments, it was about 26–34%. This trend continued into 44 DBH (2017) and 8 DBH (2017), where the control treatments showed the least variability in stomatal conductance values (7–12%), while the corresponding variability in the other irrigation rates was higher (High irrigation rate CV: 16–33%, Medium irrigation rate CV: 22–35%, Low irrigation rate CV: 20–26%). The higher variability in crop performance associated with drought stress has also been observed in other crops, such as wheat, where Veloo et al. [46] attributed this to differences in plant responses to drought effects. In grapevines, stomatal conductance exhibits a threshold-based response to water deficits, closing sharply within a narrow range of water potentials across genotypes [47]. Despite genotypic differences in stomatal sensitivity, this universal threshold behavior amplifies physiological variability under differing irrigation rates, as minor variations in water availability disproportionately affect stomatal regulation. Nevertheless, given the variability in stomatal conductance in the data, the datasets were suitable to evaluate the relationship between the remote sensing data with stomatal conductance values.



The effect of irrigation rates was further analyzed with box plots illustrating stomatal conductance distributions across various irrigation rates and time points as presented in Figure 3. It can be observed that the control and high irrigation rate had similar stomatal conductance values, while the medium and low irrigation rates had similar stomatal conductance values in 2016. In 2017, the median stomatal conductance values were similar across the control, high, and medium irrigation rates, except for the low irrigation rate, which had lower values, especially during 8 DBH (2017). The pronounced impact of irrigation rate in year 2016 is consistent with the findings from Espinoza et al. [33], while the absence of such effects in year 2017 is as reported by Chakraborty et al. [48]. The lower water stress in 2017 could be attributed to higher total precipitation during the growing season (approximately 70 mm in 2017 compared to 39 mm in 2016) (Supplementary Materials, Figure S3). This increased precipitation may have reduced the effectiveness of various irrigation strategies by maintaining elevated soil moisture levels. These results are consistent with those reported by Ma et al. [40,41].




4.2. Multispectral, Thermal, and Hyperspectral Data Analysis


4.2.1. Multispectral and Thermal Data Analysis


The relationships between the LAI, GNDVI, and CWSI with normalized stomatal conductance were assessed. Table 2 summarizes the year-to-year differences in correlation coefficients between these traits.



Multispectral data analysis reveals distinct trends in the relationship between the LAI, GNDVI, and stomatal conductance. In 2016, the LAI exhibited strong positive correlations with normalized stomatal conductance at 80 and 44 DBH (both p < 0.01), while the GNDVI showed moderate correlations at 80 DBH (r = 0.50, p < 0.01) that weakened at 44 DBH (r = 0.41, p < 0.01) (Table 2, Figure 4). In 2017, the correlations for both the LAI and GNDVI were weak and statistically non-significant at 64, 44, and 8 DBH. This decline in correlation strength aligns with other observations, where increased rainfall likely masked treatment-induced differences in vine water stress.



Unlike prior studies that emphasized the GNDVI as a key index for water stress detection [34,49], this study identifies the LAI as a more robust indicator of stomatal conductance, particularly under controlled treatment conditions. The LAI reflects the leaf surface area, a direct determinant of transpiration and photosynthesis, which may explain its stronger relationship with stomatal regulation. By contrast, the GNDVI, which assesses chlorophyll content, captures overall vine health but is more sensitive to environmental factors such as rainfall and canopy shading. These findings highlight the distinct functional roles of the LAI and GNDVI, with the LAI providing a more direct physiological link to water stress, especially under conditions with clear treatment differentiation [50,51].



Thermal data analysis revealed differences in the CWSI calculation methods: adaptive method (max–min pixel normalization within images) (2016) and dry–wet reference normalization (2017). The shift to the dry–wet method was informed by prior studies, including Gonzalez-Dugo and Zarco-Tejada [52], who highlighted the influence of relative humidity and sensor precision on CWSI variability, and Katimbo et al. [53], who demonstrated that CWSI sensitivity increases as soil water depletion surpasses 80%, emphasizing the need for stable reference points. This shift yielded a stronger negative correlation with stomatal conductance in 2017 (r = −0.83) compared to 2016 (r = −0.70) (Table 2, Figure 5), demonstrating the improved sensitivity and reliability of the dry–wet reference method. In general, it was observed that lower irrigation rates resulted in higher canopy temperature (thus higher CWSI data) and lower normalized stomatal conductance.



Our comparative analysis highlights the limitations of adaptive normalization methods. Zhou et al. [54] observed no significant correlation between thermal data and stem water potential when using an adaptive approach, underscoring its instability. In contrast, the dry–wet reference method employed in our study yielded stronger associations with stomatal conductance, indicating that reference-based normalization offers greater consistency in assessing vine water status. The inclusion of fixed dry and wet references provided more stable CWSI estimates, particularly during the wetter 2017 growing season, where the maximum and minimum canopy temperatures may not have been fully captured within individual images.



Canopy temperature, a widely recognized indicator of water stress, was negatively correlated with stomatal conductance in this study, consistent with the findings from Park et al. [28], who reported a determination coefficient (R2 = 0.82) for this relationship in nectarine and peach orchards. Similar trends have been observed in viticulture, as Araújo-Paredes et al. [55] found moderate correlations (R2 = 0.58) between canopy temperature and stem water potential using UAV-mounted thermal cameras. Unlike UAV-based methods, this study employed an AUV-mounted thermal camera, achieving higher spatial resolution (0.56 cm/pixel) and consistent observation angles. This proximal sensing approach reduces the wind-induced image instability observed in UAV systems and supports high-frequency monitoring, improving the precision of canopy temperature measurements for stomatal conductance assessment.




4.2.2. Hyperspectral Data Analysis


The analysis of various NDSI computed from diverse datasets demonstrated a robust correlation with normalized stomatal conductance data. There was a high variability in the number of statistically significant NDSI correlated with stomatal conductance across datasets (Supplementary Materials, Figures S4 and S5). At 80 and 44 DBH (2016), 194 and 6 NDSI exhibited significance at p < 0.05, respectively. A marked increase was observed in 2017, with 493, 794, and 1036 NDSI at 64, 44, and 8 DBH (2017), respectively. While the number of NDSI fluctuated between years, the number of NDSI features evidencing significant treatment differences (p < 0.001) remained relatively consistent in 2016, with only five NDSI significant at 44 DBH (2017). This trend continued in 2017, where approximately 270, 735, and 1025 NDSI at 64, 44, and 8 DBH (2017) exhibited significant treatment effects at p < 0.001.



From each dataset (five in total), the top 20 NDSI with the highest correlations were selected for further analysis. The spectral wavelengths occurring at high frequencies (>5) in different regions of the spectra (to avoid collinearity) were selected from the wavelength combinations. The five prominent spectral bands were 1380 nm, 1420 nm, 1570 nm, 1810 nm, and 1890 nm, situated within the short-wave infrared (SWIR) spectral region. These bands coincide with regions of significant water absorption between 1300 and 2500 nm, which exhibit a pronounced sensitivity to variations in leaf water content [36,56]. The relationship between these spectral bands and stomatal conductance underscores the influence of leaf water status on vine physiological responses.



This refined selection facilitated a more targeted quantitative analysis. By computing NDSI for each possible pair using these selected spectral bands, ten NDSI were analyzed: NDSI1 [1380 nm, 1420 nm], NDSI2 [1380 nm, 1570 nm], NDSI3 [1380 nm, 1810 nm], NDSI4 [1380 nm, 1890 nm], NDSI5 [1420 nm, 1570 nm], NDSI6 [1420 nm, 1810 nm], NDSI7 [1420 nm, 1890 nm], NDSI8 [1570 nm, 1810 nm], NDSI9 [1570 nm, 1890 nm], and NDSI10 [1810 nm, 1890 nm]. Pearson’s correlation analysis revealed dynamic relationships between various NDSI and stomatal conductance at different time points (Figure 6).



At 80 DBH (2016), significant correlations were observed for most NDSI, suggesting initial vine adaptation to reduced irrigation through decreased stomatal conductance [57]. This phase indicates proactive water loss management strategies by the vines. By 44 DBH (2016), the absence of significant correlations suggests a stabilization of physiological responses, supported by a reduced sensitivity of both stomatal conductance and chlorophyll fluorescence to prolonged water stress [58].



During 64, 44, and 8 DBH (2017), increased rainfall significantly impacted the correlations. Notably, NDSI8 showed a strong positive correlation at 64 DBH (2017) (r = 0.64, p < 0.001), indicative of an immediate adaptive response to environmental changes, whereas NDSI2 demonstrated a pronounced negative correlation by 8 DBH (2017) (r = −0.69, p < 0.001), reflecting a delayed physiological adjustment over the season. Additionally, the significant negative correlations for NDSI3 (r = −0.38 to −0.52, p < 0.05) during these periods suggest that increased rainfall compensated for reduced irrigation, maintaining vine hydration. The consistent physiological responses across various irrigation treatments, particularly for NDSI2 and NDSI8, underscore the uniform adaptability of vines to both natural rainfall and managed irrigation practices. This suggests that vines modulate their physiological responses dynamically, integrating the combined effects of rainfall and irrigation [58].



The 1570 nm spectral band, central to both NDSI2 and NDSI8, demonstrates a strong correlation with stem water potential within the pivotal 1500–1700 nm range, highlighting its relevance in evaluating vine hydration [59]. This wavelength, alongside the 1380 nm and 1890 nm bands in NDSI2 and NDSI8, respectively, enables detailed monitoring of vine physiological adaptations, particularly in stomatal conductance. Additionally, Rapaport et al. [60] emphasize the critical nature of the 1500 nm region for reflecting water availability, a key factor in regulating stomatal activity and assessing grapevine water status.





4.3. Comparative Analysis of Multispectral, Hyperspectral, and Combined Data


Bidirectional stepwise regression, optimized with the Akaike Information Criterion (AIC), was used to evaluate the predictive capacity of hyperspectral and multispectral indices for modeling stomatal conductance across the 2016 and 2017 growing seasons. This approach combines the canopy level measures with leaf level measures. Predictors included NDSI1–NDSI10, LAI, and GNDVI, both individually and in combination. Table 3 summarizes the predictive performance of key indices (LAI, GNDVI, NDSI2, NDSI3 and NDSI8) and the best predictor set (LAI + NDSI2 + NDSI8) across both years.



In 2016, the LAI was the strongest predictor from the multispectral indices at both 80 DBH (R2 = 0.44, adjusted R2 = 0.43; p < 0.001) and 44 DBH (R2 = 0.35, adjusted R2 = 0.34; p < 0.001). The GNDVI, though weaker, remained statistically significant at both 80 DBH (R2 = 0.25, adjusted R2 = 0.23; p < 0.01) and 44 DBH (R2 = 0.17, adjusted R2 = 0.15; p < 0.01). When the LAI and GNDVI were combined, the model showed moderate predictive strength at both time points (80 DBH: R2 = 0.44, adjusted R2 = 0.42; 44 DBH: R2 = 0.36, adjusted R2 = 0.33; both p < 0.001). The hyperspectral indices showed mixed results: at 80 DBH, NDSI8 (R2 = 0.09, adjusted R2 = 0.08; p = 0.02) and NDSI2 (R2 = 0.08, adjusted R2 = 0.06; p = 0.04) were borderline significant, but neither were significant at 44 DBH (p > 0.05). NDSI3 and all NDSI combinations were not significant at either time point (all p > 0.05).



For the 2017 growing season, hyperspectral indices revealed distinct trends in the predictive power of NDSI. NDSI2 increased as DBH decreased (64 DBH: R2 = 0.34, adjusted R2 = 0.32; 44 DBH: R2 = 0.39, adjusted R2 = 0.37; 8 DBH: R2 = 0.47, adjusted R2 = 0.46; all p < 0.001), while NDSI8 showed the opposite trend (64 DBH: R2 = 0.42, adjusted R2 = 0.40; 44 DBH: R2 = 0.34, adjusted R2 = 0.32; 8 DBH: R2 = 0.23, adjusted R2 = 0.21; all p < 0.01). NDSI3 maintained moderate predictive power across all time points (64 DBH: R2 = 0.15, adjusted R2 = 0.13; 44 DBH: R2 = 0.15, adjusted R2 = 0.12; 8 DBH: R2 = 0.27, adjusted R2 = 0.25, all p < 0.05). Among the combinations, NDSI2 + NDSI8 consistently showed the strongest predictive power at all stages (64 DBH: R2 = 0.57, adjusted R2 = 0.55; 44 DBH: R2 = 0.44, adjusted R2 = 0.41; 8 DBH: R2 = 0.51, adjusted R2 = 0.47; all p < 0.01). Multispectral indices (both LAI and GNDVI, and their combinations) were not significant at 64, 44, or 8 DBH (all p > 0.10).



The integration of hyperspectral and multispectral data enhanced model accuracy across growth stages. At 80 DBH (2016), the LAI + NDSI2 + NDSI8 combination demonstrated strong predictive power (R2 = 0.50, adjusted R2 = 0.47; p < 0.001), remaining the best predictor at 44 DBH (2016) (R2 = 0.37, adjusted R2 = 0.34; p < 0.001). In 2017, the same model showed high performance at 64 DBH (R2 = 0.63, adjusted R2 = 0.60; p < 0.01), with strong results continuing at 44 DBH (R2 = 0.51, adjusted R2 = 0.47; p < 0.01) and 8 DBH (R2 = 0.52, adjusted R2 = 0.48; p < 0.001). Furthermore, reinforcing our findings, Maimaitiyiming et al. [61] highlighted the effective use of NDSI for estimating stomatal conductance, particularly noting that NDSI calculated with bands at 603 nm and 558 nm exhibited a high correlation (R2 = 0.72) with stomatal conductance, surpassing traditional indices. This aligns with our results, suggesting that the strategic integration of specific NDSI can significantly enhance predictive capabilities.



Our findings, supported by previous studies, show that, while individual hyperspectral or multispectral datasets provide valuable insights under specific conditions, combining these data sources consistently improves model stability and predictive accuracy. This improvement is particularly notable during the earlier growth stages in 2017, despite the lack of treatment effects.





5. Summary and Discussion


This study demonstrates that integrating multispectral, thermal, and hyperspectral data enabled stomatal conductance assessment in Cabernet Sauvignon vineyards over two growing seasons in the Pacific Northwest, USA. Proximal sensing facilitated spatial and temporal monitoring of water stress, with the LAI, NDSI2 [1380 nm, 1570 nm], and NDSI8 [1570 nm, 1810 nm] identified as key predictive indices. In 2016, the LAI was the strongest predictor, while in 2017, NDSI2 and NDSI8 outperformed other indices under minimal treatment effects. Combining these indices (LAI + NDSI2 + NDSI8) enhanced early-season water stress detection, while thermal data (CWSI) captured stress under severe drought, supporting precision irrigation strategies. These indices enable viticulturists to adjust irrigation schedules based on early stress detection, supporting water conservation and yield stability.



The AUV-based platform offers a practical alternative to UAV-based vineyard monitoring, enabling continuous, weather-independent data collection with consistent observation angles. The system integrates multispectral (LAI, GNDVI) and thermal (CWSI) sensors for real-time stress detection throughout the growing season, while hyperspectral data (NDSI2, NDSI8) are collected via a portable spectroradiometer for leaf-level insights. Implementation requires a standard utility vehicle with mounting brackets for sensor attachments and minimal hardware modifications. Cost components include sensor procurement, mounting brackets, and optional vehicle modifications (medium-to-high initial investment relative to UAVs with comparable sensor payloads). Unlike UAVs, AUVs avoid airspace restrictions and recurring operational fees, reducing regulatory burdens and long-term costs. Routine system checks and periodic calibration are recommended to maintain sensor accuracy, with ongoing operational demands limited to data collection and storage. By enabling in-field, real-time stress detection, this platform supports dynamic irrigation scheduling, minimizing water use and operational costs.



Despite promising results, certain methodological limitations must be addressed. The shift from max–min normalization (2016) to dry–wet reference normalization (2017) for thermal data improved sensitivity but introduced variability in baseline temperature references, affecting inter-annual comparability. Rainfall in 2017 likely masked irrigation effects, reducing the detectability of changes in stomatal conductance. Sub-canopy variability remains a challenge, as canopy architecture and leaf shading may bias sensor-derived indices. Addressing these issues may require segmentation methods to improve sub-canopy resolution and standardized normalization protocols to ensure consistency across seasons. Moreover, there is a potential for other stress conditions to mask the spectral responses. This may require more sophisticated machine learning techniques for image-based classification. Future work should prioritize validation of the framework across diverse climates (arid, semi-arid, Mediterranean) and grape cultivars with differing physiological traits (e.g., leaf morphology, transpiration dynamics) to assess generalizability. Broader testing is recommended to ensure robustness across these conditions. Research should further investigate the role of the LAI, NDSI2, NDSI8, and CWSI in defining dynamic irrigation thresholds and integrating these indices into decision-support systems for automated irrigation control. Embedding this approach into automated systems with real-time environmental data could further optimize irrigation scheduling, supporting sustainable viticulture under climate variability.
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Figure 1. Imaging sensor setup and field data collection using an AUV deployed in the vineyard for image acquisition. The inset picture comprised of sensor configuration on the retractable mast, featuring a thermal infrared camera and a modified multispectral digital camera. 
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Figure 3. Boxplot of normalized stomatal conductance data with respect to different irrigation rates at different growth stages across seasons 2016 and 2017. The letters a, b, and c are from ANOVA posthoc test, where same letters indicate similar mean normalized stomatal conductance. Note: DBH = days before harvest. 
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Figure 4. Scatterplots showcasing Pearson’s correlation coefficients of features extracted from the AUV multispectral data with normalized stomatal conductance. Note: DBH = days before harvest. 
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Figure 5. Correlation of the crop water stress index (CWSI) extracted from the AUV thermal data with normalized stomatal conductance. Note: Data are from 80 days before harvest (DBH) in 2016 (top) and 44 days before harvest in 2017 (bottom). 






Figure 5. Correlation of the crop water stress index (CWSI) extracted from the AUV thermal data with normalized stomatal conductance. Note: Data are from 80 days before harvest (DBH) in 2016 (top) and 44 days before harvest in 2017 (bottom).



[image: Remotesensing 17 00137 g005]







[image: Remotesensing 17 00137 g006] 





Figure 6. Heatmap showcasing Pearson’s correlation coefficients of NDSI features with normalized stomatal conductance. Note: Significance levels are indicated as follows: *** p < 0.001, ** 0.001 ≤ p < 0.01, * 0.01 ≤ p < 0.05. No asterisk is used where p ≥ 0.05, indicating non-significant correlations; DBH = days before harvest. 
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Table 1. Data acquisition dates and growth stages during data collection.
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Year

	
Date

	
DBH

	
Growth Stages






	
2016

	
6 July

	
80

	
Bunch closure




	
16 August

	
44

	
Veraison (onset of ripening)




	
2017

	
2 August

	
64

	
Berry development (10 mm diameter)




	
22 August

	
44

	
Veraison (onset of ripening)




	
27 September

	
8

	
Ripening











 





Table 2. Correlation coefficients (r) of the LAI, GNDVI, and CWSI with normalized stomatal conductance across 2016 and 2017.
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Year

	
DBH

	
LAI (r)

	
GNDVI (r)

	
CWSI † (r)






	
2016

	
80

	
0.66 *

	
0.50 *

	
−0.70 *




	
44

	
0.59 *

	
0.41 *

	
-




	
2017

	
64

	
0.07

	
0.13

	
-




	
44

	
0.00

	
0.24

	
−0.83 *




	
8

	
−0.07

	
0.27

	
-








Note: Significance levels are indicated as follows: * 0.01 ≤ p < 0.05. No asterisk is used where p ≥ 0.05, indicating non-significant correlations; DBH = days before harvest. † CWSI normalization using max–min temperature in 2016 and dry–wet reference temperature in 2017.













 





Table 3. Predictive power (R2) of key indices for modeling stomatal conductance across 2016 and 2017.






Table 3. Predictive power (R2) of key indices for modeling stomatal conductance across 2016 and 2017.





	
Year

	
DBH

	
LAI

(R2)

	
GNDVI

(R2)

	
NDSI2

(R2)

	
NDSI3

(R2)

	
NDSI8

(R2)

	
LAI + NDSI2 + NDSI8

(R2)






	
2016

	
80

	
0.44 **

	
0.25 *

	
0.08 *

	
0.03

	
0.09 *

	
0.50 **




	
44

	
0.35 **

	
0.17 *

	
0.03

	
0.04

	
0.00

	
0.37 **




	
2017

	
64

	
0.01

	
0.02

	
0.34 **

	
0.15 *

	
0.42 **

	
0.63 **




	
44

	
0.00

	
0.06

	
0.39 **

	
0.15 *

	
0.34 **

	
0.51 **




	
8

	
0.00

	