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Abstract: In order to improve the spatiotemporal coverage of satellite Chlorophyll-a (Chl-a)
concentration products in marginal seas, a physically constrained deep learning model
was established in this work to reconstruct sea surface Chl-a concentration in the Bohai
and Yellow Seas using a Long Short-Term Memory (LSTM) neural network. Adopting
the permutation feature importance method, time sequences of several geographical and
physical variables, including longitude, latitude, time, sea surface temperature, salinity, sea
level anomaly, wind field, etc., were selected and integrated to the reconstruction model
as input parameters. Performance inter-comparisons between LSTM and other machine
learning or deep learning models was conducted based on OC-CCI (Ocean Color Climate
Change Initiative) Chl-a product. Compared with Gated Recurrent Unit, Random Forest,
XGBoost, and Extra Trees models, the LSTM model exhibits the highest accuracy. The
average unbiased percentage difference (UPD) of reconstructed Chl-a concentration is
11.7%, which is 2.9%, 7.6%, 10.6%, and 10.5% smaller than that of the other four models,
respectively. Over the majority of the study area, the root mean square error is less than
0.05 mg/m3 and the UPD is below 10%, indicating that the LSTM model has considerable
potential in accurately reconstructing sea surface Chl-a concentrations in shallow waters.

Keywords: sea surface chlorophyll-a concentration; reconstruction; Long Short-Term
Memory; deep learning

1. Introduction
Chlorophyll-a (Chl-a) is the main indicator for evaluating the biomass of phytoplank-

ton and measuring marine primary productivity [1,2]. The photosynthesis of marine
phytoplankton not only provides a driving force for the material cycle of marine ecosys-
tems but also has a profound impact on global climate change as a key link to the global
carbon cycle [3]. Monitoring sea surface Chl-a concentration is of great significance for
ecological protection and marine scientific research and applications [4,5].

Compared with traditional in situ measurements, spaceborne ocean color sensors,
such as SeaWiFS (Sea-viewing Wide Field-of-view Sensor), MODIS (Moderate-resolution
Imaging Spectroradiometer), COCTS (Chinese Ocean Color and Temperature Scanner),
etc., regularly observe global Chl-a concentration with high spatial resolution. However,
observations based on optical sensors are often affected by cloud cover, aerosols, and sun
glint, resulting in a large amount of data gaps and severely reducing the spatiotemporal
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continuity of the data [2]. This limitation has greatly weakened the application potential of
water color remote sensing technology. Therefore, the effective reconstruction of missing sea
surface Chl-a concentration using information of relevant marine environmental variables
such as sea surface temperature (SST) or salinity (SSS) is of great significance for improving
quantitative remote sensing observations and their applications.

Traditional Chl-a concentration reconstruction approaches include the optimal inter-
polation (OI), empirical orthogonal functions (EOF), data-interpolating EOF (DINEOF), or
multivariate DINEOF [6–9]. When dealing with data loss issues, these techniques mainly
estimate missing data by utilizing the values of surrounding pixels or rely on iteratively
extracting spatiotemporal feature patterns from data time series. However, if there is too
much missing data in the selected area (e.g., over 55%), it will be difficult to effectively
utilize these algorithms for data reconstruction.

With the rapid development of artificial intelligence technology, machine learning or
deep learning methods have also been used to fill gaps in satellite ocean color measure-
ments [10–16]. Due to their powerful ability in data mining and capturing the complex
nonlinear relationships between sea surface Chl-a and other environmental factors in spatial
and temporal dimensions, these methods are highly suitable for solving data reconstruction
problems with large amounts of missing data. Based on SST and sea surface height (SSH)
data, Jouini et al. [17] used the Self Organizing Maps (SOM) method to reconstruct the
missing data of daily sea surface Chl-a concentration in the Northwestern Atlantic Ocean.
Xing et al. [18] applied the Extreme Gradient Boosting algorithm to reconstruct MODIS
Chl-a products in data missing areas of the Northwest Pacific. Various environmental
variables such as latitude, longitude, photosynthetically active radiation, and microwave
sensor-observed significant wave height, sea surface wind field (SSW) and SSS were used as
input factors. Compared with the original MODIS product, the coverage of reconstructed
data was greatly improved, and there was no significant decrease in data quality. Based
on the Data Interpolation Convolutional Autoencoder (DINCAE) method, Luo et al. [19]
estimated sea surface Chl-a concentration in the Bohai and Yellow Seas. Compared with
DINEOF, the DINCAE algorithm exhibits higher accuracy and efficiency in this region.
Recently, a convolutional neural network (CNN) was used for global Chl-a data reconstruc-
tion from information of multi-physical variables [20], as it is capable of extracting complex
variable features from both temporal and spatial domains. Ye et al. [21] developed a deep
learning model, namely OI-SwinUnet, which combines the advantages of OI and SwinUnet
to reconstruct daily MODIS Chl-a concentration data in the South China Sea.

Geographical factors (latitude and longitude of the location) and many oceanographic
variables, such as SST (sea surface temperature), SSS (sea surface salinity), SSH (sea surface
height), and SSW (sea surface wind), may affect the spatiotemporal patterns of sea surface
Chl-a concentration. Which factors play a more important role in Chl-a concentration
reconstruction in a certain region? This issue still needs further investigation. In addition,
the link between ocean dynamics and phytoplankton may also change over time or show a
phase difference. However, this has been overlooked in most studies.

In this work, we aim to develop a physically constrained Long Short-Term Memory
(LSTM) model for sea surface Chl-a concentration reconstruction in the Bohai and Yellow
Seas. The main contributions of this study are as follows: (1) Different impacts of geograph-
ical and multiple physical variables on changes in Chl-a concentrations were quantitatively
analyzed. (2) The proposed LSTM model with optimal input parameters shows great
potential in improving both the accuracy and spatiotemporal coverage of satellite Chl-a
concentration products in the study area.
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The rest of the paper is organized as follows. The datasets are introduced in Section 2.
The LSTM model for reconstructing Chl-a concentration is described in Section 3. The
model performance and error analysis are presented in Section 4. Section 5 is a summary.

2. Materials and Methods
2.1. Study Area

Figure 1 shows the spatial domain and water depth distribution of the study area. The
Bohai Sea is a semi-enclosed inland sea of China and connected to the Yellow Sea through
the Bohai Strait. Its average water depth of 18 m and unique geographical location lead to a
long retention time (about 1.6 years) of suspended sediment concentration and pollutants in
the area. The Yellow Sea is a marginal sea of the Northwestern Pacific Ocean and its water
renewal cycle is relatively long. Rivers carry large amounts of sediment and organic matter
into the Bohai and Yellow Seas, providing abundant freshwater resources and nutrients for
the region, which in turn exacerbates eutrophication. The physical processes in the study
area are mainly dominated by the Asian monsoon system. In winter, strong northwesterly
winds and dry air prevail in the region. In summer, warm southeasterly winds associated
with relatively high precipitation affect the area, while seasonal storm activity, including
occasional typhoons, occurs in late summer and early fall.
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Figure 1. Water depth (m) of the Bohai Sea and Yellow Seas.

2.2. Data

The concentration of sea surface Chl-a is influenced by various factors. Firstly, its
variation is related to offshore distance and season, mainly reflected through latitude,
longitude, and time (day of the year, DOY). Secondly, among the many factors that affect the
growth of phytoplankton, atmospheric and marine environmental variables play a crucial
role [22]. For example, there is a high correlation between SST and Chl-a concentration,
and SST has a significant impact on the photosynthetic efficiency and growth rate of
phytoplankton [23,24]. The wind-induced upwelling or cold eddy, which brings colder,
nutrient rich waters to the surface, is usually accompanied by lower SST and SSH, which
may also be related to the distribution of phytoplankton or Chl-a concentration [25]. River
runoff can affect the nutrient content in the sea, indirectly affecting Chl-a concentration
through changes in SSS [26].
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Therefore, the initial input factors of the LSTM model constructed in this paper include
eight physical variables and four geographical variables. The physical variables are SST, SST
anomaly (SSTA), SSS, sea level anomaly (SLA), zonal wind speed (uwind), meridional wind
speed (vwind), sea surface wind stress curl (SSWSC), and precipitation. The geographical
variables are longitude, latitude, sin (θ) (θ = 2π × DOY/365.25), and cos (θ). The data used
for training and validating the accuracy of the reconstruction model are from the OC-CCI
(Ocean Color-Climate Change Initiative) product from 2013 to 2019.

2.2.1. OC-CCI Chl-a Product

The daily OC-CCI sea surface Chl-a concentration product (version 5) has a spatial
resolution of 4 km [27]. In the processing of the product, atmospheric corrections were first
applied to multi-band data from MODIS, SeaWiFS, VIIRS (Visible and Infrared Imaging
Radiometer Suite), MERIS (Medium Resolution Imaging), and OLCI (Ocean Land Colour
Instrument). These data were converted into values corresponding to the operating bands
of MERIS, with center wavelengths of 412 nm, 443 nm, 490 nm, 510 nm, 560 nm, and
665 nm, respectively. The obtained remote sensing reflectance (Rrs) data of five sensors
were then bias-corrected to MERIS level and merged. Finally, based on the fused Rrs data,
the Chl-a concentration was calculated using an exponential algorithm and band ratio
algorithm [28–30]. The OC-CCI Chl-a product has a high quality and has been widely used
in marine research [31–33].

2.2.2. Satellite Data of Environment Variables

The daily SST data used in this study are from the GHRSST (Group for High-Resolution
Sea Surface Temperature) L4 level product (Version 4.1) with a spatial resolution of 1 km
(Figure 2a). The product was obtained by interpolating SST observations from various in-
struments, including AMSR-E (Advanced Microwave Scanning Radiometer-EOS), AMSR2
(Advanced Microwave Scanning Radiometer 2), WindSat microwave radiometer, MODIS
onboard Aqua and Terra satellites, AVHRR (Advanced Very High Resolution Radiometer),
and buoy measurements from iQuam. The SSTA can be calculated by subtracting the
climatological mean from SST.

The daily SSS product (Version 3.21) is provided by the ESA-CCI (Climate Change
Initiative), which merges observations from SMOS (Soil Moisture and Ocean Salinity),
SMAP (the Soil Moisture Active Passive), Aquarius, etc.. The data has been spatially
sampled on a 25 km EASE (Equal Area Scalable Earth) grid (Figure 2b). The product
is in good agreement with in situ measurements of Argo, with a standard deviation of
0.15 psu [34].

The daily SLA data product was developed by AVISO (Archiving, Validation and
Interpretation of Satellite Oceanographic) and distributed by Copernicus. The product
merges multi-mission (Topex-Poseidon, Jason-1/2/3, Sentinel-6, CryoSat-2, ERS-1/2, etc.)
satellite altimetry data with the optimal interpolation method. The L4 product is available
from 1993 and has a spatial resolution of 0.25◦ × 0.25◦ (Figure 2c).

The six-hourly wind product (L4, Version 3.1) with spatial resolution of 25 km is
from the Cross-Calibrated Multi-Platform (CCMP) (Figure 2d), which merges satellite
observations of the wind field from scatterometers and microwave radiometers using the
variational analysis data assimilation technique, including QuikScat and ASCAT-A/B,
SSM/I (Special Sensor Microwave Imager), SSMIS (Special Sensor Microwave Imager
Sounder), TMI (The Tropical Rainfall Measuring Mission Microwave Imager), GMI (Global
Precipitation Measurement Microwave Imager), ASMR-E (Advanced Microwave Scanning
Radiometer for EOS), AMSR2, and WindSat. The sea surface wind stress curl is then
calculated with the following form [35]:
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curlz =
∂τy

∂x
− ∂τx

∂y
(1)

→
τ =

(
τx, τy

)
= ρairCDU10·(u, v) (2)

where
→
τ represents the sea surface wind stress and τx and τy are its zonal and merid-

ional components, respectively; ρair is air density at the sea surface, which is generally
1.225 kg/m3; u and v are the zonal and meridional wind speed at a height of 10 m above
the sea surface, respectively, and U10 =

√
u2 + v2; CD is the drag coefficient, which de-

scribes the frictional effect of wind on the sea surface and was calculated with the following
form [36]:

CD =

{
1.2875 × 10−3, U10 ≤ 7.5 m/s

(0.8 + 0.065U10)× 10−3, U10 > 7.5 m/s
(3)

The TRMM (Tropical Rainfall Measuring Mission) daily product (3B42) with spatial
resolution of 25 km was used to evaluate the effects of precipitation on Chl-a concentration
patterns. The product merges TMI observations with AMSR-E, AMSU-B (Advanced
Microwave Sounding Unit-B), and SSM/I data (Figure 2e).
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2.3. Data Preprocessing

To maintain the consistency of the above datasets, the nearest neighbor interpolation
algorithm was used to resample daily SST and Chl-a product to a 25 km × 25 km grid. Also,
6-hourly CCMP wind field data were averaged each day to obtain daily wind data. Then, a
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dataset for model training and evaluation was generated by matching all environmental
data with OC-CCI Chl-a concentration data from 2013 to 2019. In total, 489,316 data
samples were obtained. Among them, 80% of the samples from 2013 to 2018 were randomly
selected as the training set, the remaining 20% were used for validation, and data from 2019
constituted the testing set. To ensure the uniformity of Chl-a concentration distribution, a
logarithmic transformation (log10) was performed on the data.

2.4. LSTM Model

LSTM is an optimized recurrent neural network (RNN), which has significant advan-
tages in processing time series data. It is characterized by connections not only between
layers but also between nodes within the hidden layers. This internal connection allows
the model to capture and retain information from previous moments and pass it on to
subsequent moments. As shown in Figure 3, LSTM introduces memory units in the hidden
layer of RNN that can store information for a long time and adjusts the storage and updat-
ing of information in the memory units by adding gating units, effectively alleviating the
problem of gradient vanishing and improving the performance of the network in processing
long-time series data [37].

Remote Sens. 2025, 17, x FOR PEER REVIEW 6 of 16 
 

 

Then, a dataset for model training and evaluation was generated by matching all environ-
mental data with OC-CCI Chl-a concentration data from 2013 to 2019. In total, 489,316 
data samples were obtained. Among them, 80% of the samples from 2013 to 2018 were 
randomly selected as the training set, the remaining 20% were used for validation, and 
data from 2019 constituted the testing set. To ensure the uniformity of Chl-a concentration 
distribution, a logarithmic transformation (log10) was performed on the data. 

2.4. LSTM Model 

LSTM is an optimized recurrent neural network (RNN), which has significant ad-
vantages in processing time series data. It is characterized by connections not only be-
tween layers but also between nodes within the hidden layers. This internal connection 
allows the model to capture and retain information from previous moments and pass it 
on to subsequent moments. As shown in Figure 3, LSTM introduces memory units in the 
hidden layer of RNN that can store information for a long time and adjusts the storage 
and updating of information in the memory units by adding gating units, effectively alle-
viating the problem of gradient vanishing and improving the performance of the network 
in processing long-time series data [37]. 

 

Figure 3. Structure of the LSTM neural network. 

The processor of LSTM consists of three gates: input gate (it), output gate (ot), and 
forget gate (ft). The data information is processed by these gates to obtain the neuron state 
at the current moment, which is subsequently transmitted along the time series and up-
dated to record the current state when it reaches each neuron. The initial step of LSTM is 
to determine which information should be removed from the neuron state, which is de-
termined by the sigmoid function of the forget gate [38]. The second step is to determine 
how much new information needs to be updated and saved. The sigmoid function decides 
which information needs to be updated, and tanh is responsible for generating new can-
didate variables. After the above processes, the neuron immediately updates its state at 
that moment. Finally, the output gate determines which neuron states are outputted based 
on sigmoid, and then these states are transformed through the tanh function to obtain a 
result between −1 and 1. The result is then multiplied by the output gate to obtain the 
output information. 

In this study, to determine the optimal model input parameters, the permutation fea-
ture importance (PFI) method was used to analyze the contribution of different input var-
iables. The impact of model hyperparameter settings on the reconstruction accuracy was 
also analyzed. Considering the possible lagged effects of various environmental factors 
on sea surface Chl-a concentration, parameter information from three consecutive days (t 
= 0, −1, −2) was input into the model to reconstruct Chl-a concentration on a given date (t 
= 0). 

Figure 3. Structure of the LSTM neural network.

The processor of LSTM consists of three gates: input gate (it), output gate (ot), and
forget gate (ft). The data information is processed by these gates to obtain the neuron
state at the current moment, which is subsequently transmitted along the time series
and updated to record the current state when it reaches each neuron. The initial step
of LSTM is to determine which information should be removed from the neuron state,
which is determined by the sigmoid function of the forget gate [38]. The second step is
to determine how much new information needs to be updated and saved. The sigmoid
function decides which information needs to be updated, and tanh is responsible for
generating new candidate variables. After the above processes, the neuron immediately
updates its state at that moment. Finally, the output gate determines which neuron states
are outputted based on sigmoid, and then these states are transformed through the tanh
function to obtain a result between −1 and 1. The result is then multiplied by the output
gate to obtain the output information.

In this study, to determine the optimal model input parameters, the permutation
feature importance (PFI) method was used to analyze the contribution of different input
variables. The impact of model hyperparameter settings on the reconstruction accuracy
was also analyzed. Considering the possible lagged effects of various environmental factors
on sea surface Chl-a concentration, parameter information from three consecutive days
(t = 0, −1, −2) was input into the model to reconstruct Chl-a concentration on a given date
(t = 0).

The model accuracy was evaluated using root mean square error (RMSE), unbiased
percentage difference (UPD), and log10 logarithmic form of correlation coefficient (R(log)),
which take the following forms [5,39]:
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RMSE =

√√√√ 1
N

N

∑
i=1

(
yRECi

− yOBSi

)2
(4)

UPD =
1
N

N

∑
i=1

(|
yRECi

− yOBSi

yOBSi
+ yRECi

|)× 200% (5)

R(log) =
∑N

i=1

[
log10

(
yRECi

)
− log10

(
yREC

)][
log10

(
yOBSi

)
− log10

(
yOBS

)]√
∑N

i=1

[
log10

(
yRECi

)
−log10

(
yREC

)]2
∑N

i=1

[
log10

(
yOBSi

)
−log10

(
yOBS

)]2
(6)

where yREC and yOBS represent the reconstructed sea surface Chl-a concentration and true
values, respectively; log10

(
yRES

)
and log10

(
yOBS

)
represent the average value of yREC and

yOBS after log10 transformation; N represents the total number of data samples. These
evaluation indicators can reveal the reconstruction ability of the LSTM model from multiple
dimensions and also provide theoretical support for further optimization of the model.

3. Results
3.1. Contribution of the Environmental Variables to Chl-a Concentration Reconstruction

To explore the contribution of various geographical and physical variables to the
LSTM-based Chl-a reconstruction model, the PFI method was used to analyze the relative
importance of different input parameters. The initial width of the model is set as 64 and the
number of hidden layers is 3. From Figure 4, it is found that the geographic location (latitude
and longitude) are the most important factors, followed by cos (θ) and SST. We further
explored the optimal factors for Chl-a reconstruction through comparative experiments.
Table 1 shows the statistical error of the LSTM model when the input parameters are the
top 2 to 12 factors sorted by the PFI method. One can see that the model demonstrates the
highest accuracy when all 12 factors were used as input.
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3.2. Overall Model Performance

In order to further determine the optimal hyperparameters of the LSTM model with
all 12 environmental factors as input, we adopted the Bayesian optimization algorithm [2].
Taking into account the Bayesian optimization results and model training time, the optimal
hyperparameter configuration for the model was ultimately determined as follows: model
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width of 128, initial learning rate of 0.001, hidden layers of 3, optimizer of “Nadam”, and
activation function of “tanh”.

Table 1. Accuracy of the LSTM model with different input parameters. Factor numbers 1 to 12
represent the importance ranking from high to low as shown in Figure 4. The model width and
number of hidden layers are 64 and 3, respectively.

Model ID Input R(log) RMSE (mg/m3) UPD (%)

LSTM_1 Factor 1—2 0.84 1.36 37.45
LSTM_2 Factor 1—3 0.93 1.04 23.62
LSTM_3 Factor 1—4 0.94 1.00 21.44
LSTM_4 Factor 1—5 0.95 0.96 20.26
LSTM_5 Factor 1—6 0.95 0.95 19.76
LSTM_6 Factor 1—7 0.96 0.91 18.47
LSTM_7 Factor 1—8 0.96 0.91 18.19
LSTM_8 Factor 1—9 0.96 0.91 18.14
LSTM_9 Factor 1—10 0.96 0.89 17.59

LSTM_10 Factor 1—11 0.96 0.89 17.25
LSTM_11 Factor 1—12 0.97 0.88 17.24

The performance of the LSTM model based on this configuration was evaluated and
compared with four machine learning algorithms, namely the Gated Recurrent Unit (GRU),
Random Forest (RF), XGBoost (XGB), and Extra Trees models (ET). GRU is a simplification
of LSTM [40] which integrates the input gate and forget gate of LSTM into an update
gate and thus only contains an update gate and reset gate. Both ET and RF are essentially
decision tree sets based on ensemble learning.

The scatter probability density between the reconstruction results of each model and
the OC-CCI Chl-a product is shown in Figure 5. It is obvious that the time-series-based
LSTM model exhibits the highest accuracy, with an UPD of 11.72%, RMSE of 0.63 mg/m3,
and R(log) of 0.98. Compared with the GRU, RF, XGB, and ET models, the UPD is 2.9%,
7.6%, 10.6%, and 10.5% smaller, respectively. In Figure 5a, it can be found that LSTM
reconstructed results are evenly and tightly distributed on both sides of the diagonal.
Except for this model, other models generally overestimate Chl-a concentration when the
value is less than 0.2 mg/m3. The accuracy of the GRU model is slightly lower than that of
the LSTM model, but the training speed is faster. In general, the LSTM model performs
the best and is more suitable for filling gaps of Chl-a concentration data in the Bohai and
Yellow Seas.

Figures 6 and 7 show the spatial distribution of LSTM and GRU model reconstruction
results on different dates in 2019. In Figure 6, there are extensive data gaps in the satellite
product, while very few data are missing in Figure 7 during cloud-free conditions. Due to
the limited spatial coverage of SSS data used in this study, there is a lack of reconstructed
Chl-a concentration values in coastal regions. From Figure 6, it can be seen that the overall
coverage of Chl-a concentration has been significantly improved. The Chl-a pattern recon-
structed by LSTM shows good consistency with the OC-CCI product. The reconstructed
results clearly reflect the decreasing trend of Chl-a concentration with increasing offshore
distance. The model also captures the seasonal variation of Chl-a concentration, with higher
values in winter and relatively lower values in summer. This may be mainly due to the fact
that the rapid growth of phytoplankton in spring consumed a large amount of nutrients
and limited its growth in summer. After entering autumn, due to the increase in wind
speed, the enhanced mixing of seawater brought the nutrients from the bottom layer to the
surface, thereby gradually increasing the concentration of Chl-a at the sea surface.
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4. Discussion
In the above study, sea surface Chl-a concentrations on a given date (t = 0) were

reconstructed using 12 environmental variables from the previous two days and this given
date (t = −2, −1, 0) as model inputs. To what extent does the historical information of
input factors affect the performance of the LSTM model? Comparative experiments were
conducted using 1-day (t = 0) and 2-day (t = −1, 0) input windows, respectively. As
shown in Table 2, compared with the model with only 1 day of input in Experiment 1, the
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additional input from the previous day in Experiment 2 significantly improves the model
performance, with a 4.53% reduction in UPD. The use of a 3-day input window further
helps to reduce UPD and RMSE by 2.49% and 0.14 mg/m3, respectively. This verifies the
contribution of time series of input data in reconstructing Chl-a concentration.

Table 2. Accuracy of the LSTM model with different time window of input data.

Experiment
ID

Time Window
of Input Data

RMSE
(mg/m3)

UPD
(%)

1 1 day (t = 0) 0.95 18.74
2 2 days (t = −1, 0) 0.77 14.21
3 3 days (t = −2, −1, 0) 0.63 11.72

To further evaluate the performance of optimal LSTM and GRU models in different
regions of the Bohai and Yellow Seas, spatiotemporal analysis of reconstruction errors was
conducted. Figure 8 shows the average spatial distributions of RMSE and UPD in 2019.
The overall performance of the LSTM model is better than that of the GRU model, and its
advantages in the nearshore area are more significant. The error decreases with the increase
in offshore distance. The RMSE is less than 0.05 mg/m3 in most areas but is larger in coastal
areas of Jiangsu Province and the Yangtze River estuary, where the turbidity of the waters
is extremely high. The UPD of the two models is small in the waters north of 34◦N. In
particular, the LSTM-derived UPD is less than 10% in most regions. Comparing Figure 8c,d,
it is found that the UPD of the LSTM model is about 3% smaller than that of the GRU model
on average, and the difference is even more than 5% in some areas of the South Yellow Sea.
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Figure 9 shows the monthly averaged errors of the LSTM and GRU models. In most
months, the LSTM model-derived RMSE is below 0.6 mg/m3, while that of the GRU model
is always above 0.7 mg/m3 and even higher than 1.0 mg/m3. For the LSTM model, the
RMSE is smaller in summer, with the minimum value less than 0.5 mg/m3 in May, and
larger in winter when the sea surface Chl-a concentration is higher. The seasonal trend of
UPD obtained by LSTM and GRU is similar, but most of the time, the UPD of the LSTM
model is 3% lower than that of the GRU model. This further verifies the conclusion that the
LSTM model performs better than the GRU model in the study area.
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5. Summary
Considering the impacts of various environmental variables on sea surface Chl-a

concentration in the Bohai and Yellow Seas, a physically constrained LSTM model was de-
veloped to reconstruct Chl-a concentration from continuous observations of these variables,
filling the data gap in satellite ocean color products. Through the permutation feature im-
portance analysis, the optimal input factors were determined, including eight oceanic and
atmospheric variables, including SST, SSTA, SSS, SLA, meridional wind speed, zonal wind
speed, wind stress curl, and precipitation for three consecutive days, and four geographic
variables, such as longitude, latitude, sin (θ), and cos (θ). Compared with the OC-CCI
product, the R(log), RMSE, and UPD of the LSTM model are 0.98, 0.63 mg/m3, and 11.72%,
respectively. The UPD is 2.9%, 7.6%, 10.6%, and 10.5% smaller than that of the GRU, RF,
XGB, and ET models, respectively. In most regions, the RMSE of the LSTM model is less
than 0.05 mg/m3 and the UPD is less than 10%, which fully demonstrates the effectiveness
of the model in reconstructing sea surface Chl-a concentration. The outcomes provide
robust methodological and data support for marine ecological environment monitoring
and protection, fisheries resource assessment, and global climate change research.

In this study, in order to maintain consistency between different datasets used for
model training and testing, the spatial resolution of satellite observations of oceanographic
variables was selected to be 25 km. But this does not mean that the proposed LSTM model
can only reconstruct Chl-a concentrations with a spatial resolution of 25 km. In the near
future, by collecting satellite observations with higher spatial resolution, such as the 2 km
resolution SWOT (Surface Water and Ocean Topography) SLA product [41], the model can
be further optimized and validated through more in situ measurements to meet the needs
of both coastal and deep-water applications.
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