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Abstract: Carbon dioxide (CO2) is a key driver of global climate change. Since the Industrial
Revolution, the rapid rise in atmospheric CO2 levels has significantly intensified global
warming and climate-related issues. To accurately and promptly monitor changes in CO2

concentrations and to support the development of climate policies, this study proposes a
method based on random forest models to generate a continuous monthly dataset of CO2

column concentration (XCO2) across the entire Chinese region from 2004 to 2023. The study
integrates XCO2 satellite observations from SCIAMACHY, GOSAT, OCO-2, and GF-5B,
alongside nighttime light remote sensing data, meteorological parameters, vegetation
indices, and CO2 profile data. Using the random forest algorithm, a complex relationship
model was established between XCO2 concentrations and various environmental variables.
The goal of this model is to provide XCO2 estimates with enhanced spatial coverage and
accuracy. The XCO2 concentrations predicted by the model show a high level of consistency
with satellite observations, achieving a correlation coefficient (R-value) of 0.9959 and a
root mean square error (RMSE) of 1.1631 ppm. This indicates that the model offers strong
predictive accuracy and generalization ability. Additionally, ground-based validation
further confirmed the model’s effectiveness, with a correlation coefficient (R-value) of 0.956
when compared with TCCON site observation data.

Keywords: carbon dioxide; random forest; atmospheric remote sensing; Chinese region;
GF-5B

1. Introduction
Greenhouse gases can absorb and emit radiation within the thermal infrared range,

leading to the greenhouse effect, a critical driver of global climate change [1,2]. Carbon
dioxide (CO2) is the most significant greenhouse gas produced by human activities, and
its atmospheric concentration has been rising at an alarming rate since the Industrial
Revolution, greatly contributing to global warming and climate change [3,4]. Accurately
monitoring CO2 concentrations is essential for addressing climate change and achieving
carbon reduction targets [5]. Traditional ground-based monitoring methods face limitations
due to sparse station distribution, making it challenging to obtain large-scale, continuous
observations. In contrast, satellite-based monitoring methods, with their high spatial
resolution, have been widely adopted for acquiring global and regional CO2 data [6,7].

Over the past two decades, numerous satellites have been launched to monitor at-
mospheric carbon dioxide, including SCIAMACHY, GOSAT, OCO-2 [8–10], and China’s
TANSAT, GF-5, and DQ-1 [11,12]. These satellites use spectroscopic analysis technology
to obtain XCO2 data, which is widely used in scientific research and policymaking [3,13].
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However, factors such as cloud cover, sensor limitations, and orbital constraints can lead to
data gaps in satellite observations [12]. These gaps hinder the comprehensive analysis of
XCO2’s spatial and temporal variations, particularly at regional scales.

To address these challenges, various data fusion and interpolation methods have been
developed to generate continuous datasets [14,15]. However, traditional interpolation tech-
niques, such as kriging, often overlook key factors influencing CO2 concentrations, resulting
in reduced spatial resolution and less accurate quantification of temporal changes [16,17].
In contrast, machine learning (ML) techniques have shown promising results in regards to
data fusion and prediction, as they can model complex relationships between input and
target variables without explicitly defining mathematical models. By integrating multiple
auxiliary data sources, including emission inventories, meteorological parameters, and
vegetation indices, ML models can provide more accurate XCO2 estimates and reduce
uncertainties associated with satellite observations [18].

In addition, although numerous datasets have been generated from single-satellite
observations, they often have certain limitations. For instance, datasets derived from
SCIAMACHY are constrained by the early technological capabilities, resulting in lower
detection accuracy. Similarly, data from the GOSAT satellite suffer from insufficient cov-
erage due to limitations in its detection principles. While OCO-2 satellite data excel in
both detection accuracy and coverage, its relatively late launch limits the availability of
long-term time-series datasets. Consequently, one of the most significant advantages of
multi-source fused datasets is their superior spatiotemporal coverage compared to that of
single-satellite datasets, as well as their ability to correct earlier data.

As the world’s largest emitter of carbon dioxide, China has made significant efforts
in recent years to control emissions and improve air quality [19–22]. Understanding
the spatial and temporal variations of XCO2 across China is crucial for assessing the
effectiveness of these measures and guiding future policy decisions. However, existing
satellite XCO2 datasets contain data gaps and uncertainties, particularly in regions with
limited observations. Therefore, there is an urgent need to develop advanced methods to
generate continuous, high-resolution XCO2 datasets for China.

In this study, we developed a method based on random forest methods to generate
a continuous monthly XCO2 dataset for China from 2004 to 2023. By integrating XCO2

satellite observations from SCIAMACHY, GOSAT, OCO-2, and GF-5B with nighttime
remote sensing data, meteorological data, vegetation indices, and CO2 profile data, our aim
is to produce XCO2 estimates with enhanced spatial coverage and accuracy. This paper
provides a comprehensive analysis of the temporal and spatial variations of XCO2 in China
and evaluates the model’s performance through overall validation, representative region
validation, and ground-based validation.

Our study stands out by incorporating GF-5B satellite data as a key input for model
training. As of now, the application of GF-5B data is still in its early stages, and its full po-
tential and technical advantages have yet to be widely recognized and validated. Through
this research, we aim to leverage GF-5B’s high spectral resolution to generate high-quality
remote sensing datasets and explore its applications in the field of hyperspectral remote
sensing. By systematically demonstrating its superiority and reliability in practical appli-
cations, our study not only seeks to expand the application scope of GF-5B data but also
aims to enhance the global influence of China’s hyperspectral satellite technology. This
contributes to showcasing China’s technical expertise in hyperspectral remote sensing
while providing a “Chinese solution” and “Chinese perspective” to global sustainable
development challenges.
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2. Materials and Methods
2.1. Data Sources and Data Preprocessing
2.1.1. Satellite Data

This study utilizes satellite data from SCIAMACHY, GOSAT, OCO-2, GF-5B, and OMI,
including both XCO2 and NO2 data. The XCO2 data from these satellites is presented in
Figure 1, and the specific parameters of each satellite are listed in Table 1. Below is a brief
introduction to the various satellite datasets and their preprocessing methods.
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Figure 1. Display of original XCO2 data from multi-source carbon satellites.

Table 1. Summary of satellite product information.

Satellite SCIAMACHY GOSAT OCO-2 GF-5B OMI

Time Coverage 2003.01–2012.03 2009.04–2016.12 2014.09–2023.12 2023.01–2023.12 2004.10–2023.12

Date Version V02.01.02 9r 11r - V3 (OMNO2d)

Monitoring Indicators CO2 CO2 CO2 CO2 NO2

Observation Time 10:00 13:00 13:36 13:30 13:45

Width of Coverage 960 km 790 km 10.6 km 865 km 2600 km

Spatial Resolution 30 × 60 km 10.5 km 2.25 × 1.5 km 10.3 km 13 × 24 km

Data Precision ~14 ppm ~1 ppm ~1 ppm 1~4 ppm -

It is worth noting that the representation of CO2 obtained through different methods is
different, and CO2 gas is uniformly mixed in the atmosphere; its total vertical column often
varies due to factors such as terrain and pressure. In order to render CO2 gas comparable
under different conditions, XCO2 (the mixed ratio of CO2 in the entire air column after
normalization with O2) is often used for representation. The reason for using O2 as a
representative is that its content in the atmosphere is known and has little variation. The
CO2 concentration data used in this paper are dry air mole fraction data, which will be
represented by XCO2 from now on without further explanation.
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SCIAMACHY is a satellite launched by the European Space Agency (ESA) to measure
CO2 concentrations. It employs three different inversion algorithms: DOAS, WFM-DOAS,
and BESD. Previous studies have shown that the BESD algorithm significantly reduces
scattering-induced errors and excels at retrieving CO2 and CH4 concentrations. The ac-
curacy of the BESD algorithm is within 3 ppm for individual observation points, with a
regional bias of approximately 0.5 ppm. Therefore, this study utilizes the BESD V02.01.02
product, covering the period from January 2003 to March 2012. GOSAT, launched by Japan
in 2009, is the world’s first satellite dedicated to greenhouse gas monitoring. This study
uses the NASA-released GOSAT-ACOS retrieval product, version 9r, which spans from
April 2009 to December 2016, with a retrieval accuracy of approximately 1 ppm. OCO-2,
launched by NASA in 2014, monitors atmospheric CO2 concentrations. Its data covers the
period from September 2014 to December 2023, with a retrieval accuracy of about 0.5 to
1 ppm. The GF-5B high-spectral-resolution observation satellite is an important member of
China’s high-spectral-resolution observation satellites, specializing in fine-resolution re-
mote sensing observations of the atmosphere and surface, which was successfully launched
on 7 September 2021. It is equipped with the Greenhouse Gas Monitoring Instrument
(GMI), which exhibits the world’s leading high-spectral-resolution and sensitivity, and
is mainly used to monitor the concentration of carbon dioxide (CO2) and methane (CH4)
in the atmosphere. Its inversion uses the optimal estimation physical method, and the
CO2 inversion accuracy is 0.67%, better than the 1% design target. This paper uses data
covering January to December 2023. The NO2 data is sourced from the Aura satellite,
launched by NASA in 2004, which carries the Ozone Mapping and Profiler Suite (OMI)
instrument. This study selects the level 3 daily product, covering the period from January
2004 to December 2023.

Based on the satellite-related parameters and product technical documentation, this
paper processes the aforementioned satellite data as follows: First, data range selection and
quality screening are performed, focusing on observation data within China. Subsequently,
data quality control is implemented. For XCO2 data, to mitigate the effects of cloud and
snow/ice cover, this study utilizes data flagged as “good” quality. For GOSAT and OCO-2
satellite data, only those with uncertainties below 0.5 ppm are selected. For NO2 data, we
use tropospheric NO2 concentrations measured in molecules per square centimeter, select-
ing data with cloud cover percentages below 30%. Finally, outlier removal is conducted on
all filtered data using a four-standard-deviation filter to eliminate abnormal data points.

Considering the original resolution of both the satellite data and auxiliary data, and
given that this paper aims to generate a monthly grid dataset with a resolution of 0.25◦, we
utilized Python 3.11 software to rasterize the satellite data. To generate raster images at
the target resolution, the satellite data processed with a four-standard-deviation filter are
rasterized. Specifically, empty rasters are created for each month, and the value for each
grid cell is calculated. For a given grid cell, if no satellite observations fall within it, the
cell is assigned a ”NoData” value. If a single observation falls within the cell, the observed
value is directly assigned. In cases where multiple observations fall within the same grid
cell, the cell value is computed as a weighted average, with weights inversely proportional
to the uncertainty of the observations. This process ultimately produces a satellite-derived
raster dataset with a resolution of 0.25◦.

2.1.2. Auxiliary Data

Studies have indicated [23] that XCO2 concentrations are primarily influenced by
anthropogenic emissions, natural emissions, and uptake, as well as meteorological factors.
Therefore, this paper selects DMSP/OLS and NPP/VIIRS nighttime light remote sensing
data to simulate the impact of anthropogenic emissions; uses MODIS NDVI and EVI data
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products to simulate the impact of carbon emissions and absorption by vegetation; and
employs the ERA5 reanalysis global climate dataset to analyze the influence of meteoro-
logical factors on XCO2 concentrations, specifically including sea level pressure, 2 m air
temperature, boundary layer height, solar radiation flux, surface pressure, total column
water vapor concentration, total precipitation, and wind speed and direction at 100 m. Tak-
ing into account the influence of other factors, we also incorporate digital elevation model
(DEM) and CO2 vertical profile data from CarbonTracker as auxiliary variables into the
model. Given that the spatiotemporal resolutions of the data used in this study vary, and
the data quality is uneven, preprocessing of various types of data is required to construct a
dataset with a unified resolution for model training. Below is a brief introduction to the
processing flow of the auxiliary data.

Studies have indicated [24] strong correlation between nighttime light remote sensing
data and anthropogenic CO2 emissions. However, DMSP/OLS and NPP/VIIRS data face
challenges related to comparability across different sensors and years, with NPP/VIIRS
data containing a significant amount of low-value noise. In this paper, we adopt the
method proposed by Zhang et al. [25] to process the data, generating a monthly nighttime
light remote sensing grid dataset with a resolution of 0.25◦ for the period from 2004 to
2023. Other auxiliary data also need to be unified to a 0.25◦ grid resolution. To increase
the resolution, this paper employs bilinear interpolation, while first-order conservative
interpolation is used for decreasing the resolution. Aside from selecting specific XCO2 data
based on satellite overpass times, the processing of CarbonTracker data follows the same
approach as that for the other datasets. The specific parameters of the auxiliary data are
presented in Table 2.

Table 2. Summary of auxiliary information.

Type Variable Temporal Resolution Space Resolution Data Source

Light Light Brightness
Monthly 30 km × 60 km DMSP/OLS

Monthly 0.74 km NPP/VIIRS

Vegetation EVI, NDVI 14 d 0.05◦ × 0.05◦ MODIS

Meteorology AP, AT, BLH, SP, TCW, TP, WEV, WN, WE Monthly 0.25◦ × 0.25◦ ERA5

CT Model CO2 profile 3 h 3◦ × 2◦ Carbon Tracker

The raster datasets, encompassing both satellite data and auxiliary data, were bun-
dled and structured into data blocks for machine learning purposes. Ultimately, around
600,000 data entries were generated for model training, with 89,751 valid observations
from the SCIAMACHY satellite, 43,686 valid observations from the GOSAT satellite,
461,935 valid observations from the OCO-2 satellite, and 11,935 valid observations from
the GF-5B satellite. In this study, the dataset was divided into training sets and test sets at a
ratio of 4:1 [26].

2.2. Training and Evaluation of Machine Learning Models
2.2.1. Random Forest Model

Random forest (RF) is an ensemble learning algorithm primarily used for classification
and regression tasks. It improves the accuracy and robustness of the model by combining
the prediction results of multiple decision trees, with the result obtained through voting
or weighted average calculation of all the trees’ predictions [27]. This study uses the
random forest algorithm to establish the correlation between XCO2 satellite observations
and environmental variables. The algorithm model can be represented as follows:
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PCO2 ∝ PLight + PNO2 + PEVI + PNDVI + PMe + PDEM + PCT

PCO2 represents the actual satellite observation value; PLight, PNO2 , PEVI , PNDVI , PMe,
PDEM, andPCT represent the brightness value, NO2 concentration, EVI, NDVI, ERA5 mete-
orological reanalysis data, DEM, and CarbonTracker’s XCO2 concentration value, respec-
tively, at the corresponding location of the satellite observation.

2.2.2. Model Validation Metrics

Metrics such as RMSE, MAE, mean bias, linear correlation coefficient, and coefficient
of determination were used to evaluate model performance, as follows:

R2 = 1 −
ΣN

i=1(yi − ŷi)
2

ΣN
i=1(yi − y)2

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2

MAE =
1
N∑N

i=1|ŷi − yi|

where y is the mean value of the XCO2 measurements, ŷi is the value of the predicted
XCO2, and N is the number of data samples in the dataset.

2.2.3. Workflow

As shown in Figure 2, based on the random forest model, the workflow of this paper
includes the following three steps:
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Data preprocessing: Firstly, it involves the uniform inversion condition processing of
satellite data to ensure that the data are inverted under the same conditions, improving
accuracy and comparability. Subsequently, the processed satellite data, along with other
auxiliary data for analysis, are converted to a uniform spatial resolution of 0.25◦.

Selection of effective datasets for model training and validation, and determination
of the dataset to be predicted: In the model training and validation stage, the effective
dataset is further divided into a training set and a validation set, which are used for model
training and performance evaluation, respectively. By continuously adjusting the model
parameters, the model is better fitted to the training set data, and the validation set is used
to assess the model’s predictive ability. If necessary, the model is adjusted and retrained.

Prediction and data analysis: In this stage, after the model converges, the entire dataset
to be predicted is input into the model for prediction, resulting in a spatially and temporally
continuous CO2 dataset. Subsequently, a post-evaluation of the dataset is conducted to
check its accuracy and reliability. The dataset is then deeply analyzed to extract useful
information, providing support for subsequent decisions or research.

2.2.4. Hyperparameter Optimization

In the random forest model, adjusting the structure and complexity of the trees is
crucial for enhancing predictive performance and ensuring stability. This process involves
carefully selecting hyperparameters, known as hyperparameter tuning. Among these,
five parameters—n_estimators, max_depth, min_samples_split, min_samples_leaf, and
max_features—significantly impact model performance.

The n_estimators parameter specifies the number of decision trees in a random forest
model, while max_depth sets the maximum depth of a single decision tree, controlling its
growth. Deeper trees can create more complex models, which may affect accuracy. Gener-
ally, higher values for these two parameters lead to better model fitting but significantly
increase computational costs. Therefore, selecting moderate values is crucial for efficient
model operation.

The min_samples_split parameter determines the minimum number of samples
required for a node to split, limiting conditions for further subtree division. Increas-
ing this value when the sample size is large can help improve model accuracy. The
min_samples_leaf parameter sets the minimum number of samples required in a leaf node,
establishing the minimum sample size for leaf nodes. Finally, the max_features parameter
determines the number of features considered for each node split, influencing the diversity
of each tree.

Cross-validation is a commonly used method for evaluating model performance
and selecting optimal hyperparameters. It allows for a more accurate assessment of the
impact of different hyperparameter combinations on model performance. Grid search
is a method for finding the best combination by iterating through a specified range of
hyperparameters. First, the range and step size for the hyperparameters are defined, and all
possible combinations are generated. For each combination, 10-fold cross-validation is used
to evaluate model performance, and the combination with the best results is selected. In
this paper, we choose the grid search method for hyperparameter optimization to identify
the optimal parameters. Accuracy is selected as the evaluation metric to comprehensively
assess the final model’s performance.

In order to solve the inherent risk of overfitting in the random forest model, it is
necessary to manually adjust the search space of the parameters and repeat the above
grid search process. To prevent the model from becoming too complex, we limited the
maximum tree depth (max_depth) to 20 and set the minimum number of samples required
to split the internal nodes (min_samples_split) to 5. These parameters were optimized by
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10-fold cross-validation, balancing model accuracy and generalization. The parameters of
the specific hyperparameters and the initial search space are shown in Table 3.

Table 3. Hyperparameter model.

Hyperparameter Hyperparameter Search Space Final Hyperparameter

n_estimators [100, 200, 300, 500, 1000, 1500, 2000] 1400
max_depth [10, 20, 50, None] 20

min_samples_split [2, 5, 10] 5
min_samples_leaf [1, 2, 4] 2

max_features [‘auto’, ’sqrt’, ’log2’] ‘sqrt’

3. Results
3.1. Overall Model Performance and the Importance of Variables

To evaluate model performance, we assessed the completed model from multiple
perspectives, including overall model performance, performance in typical regions, and
performance across different years.

Through comparison with the test dataset (accounting for 20% of the total data), we
found that the model’s prediction results exhibit excellent agreement with the satellite
observation data, with an R-value greater than 0.99; the root mean square error (RMSE) is
1.1631 ppmv; the mean absolute error (MAE) is 0.7424 ppmv; the mean bias is −0.016 ppmv;
the slope of the fitted line is 1.0000, and the intercept is 0.0264. The overall fitting results
indicate a strong correlation between the predicted XCO2 and the observed XCO2 within
the Chinese region.

A sensitivity analysis was also performed to assess the impact of various input vari-
ables on the deep learning approach. The result is shown in Figure 3. The CarbonTracker
results are is the most critical variable, with an importance of 0.7. This is followed by
various meteorological data. This result occurs mainly because these variables are related
to terrestrial activities, including carbon uptake from photosynthesis driven by vegetation,
solar radiation, and temperature, as well as carbon emissions from biosphere respiration
influenced by temperature changes.
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Figure 3. Test set overall results in China from 2004 to 2020.

After validating the model’s accuracy, this study examines its predictive performance
in three representative regions: Shandong, the Sichuan Basin, and the Pearl River Delta,
each chosen for its unique emissions profile and regional characteristics. The specific
location distribution is shown in Figure 4. Shandong Province, located along the eastern
coast of China, boasts a mild climate with distinct seasons. As a major hub for industry
and energy consumption, Shandong’s industrial structure is significantly skewed towards
heavy and chemical industries, resulting in persistently high carbon emissions. The Sichuan
Basin is included in the study due to its relatively enclosed terrain and wet, rainy climate.
However, frequent cloudy weather in this region poses challenges in obtaining high-quality
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satellite data. The Pearl River Delta, an economic hub along the southern coast of China,
features a hot and humid climate and is dually driven by urbanization and industrializa-
tion, with carbon emissions that cannot be overlooked. These three regions are not only
economically developed and densely populated but also exhibit significant total carbon
emissions. Coupled with relatively accurate energy consumption data, they provide ideal
conditions for model validation. Therefore, this paper selects these three representative
regions to comprehensively assess the model’s strengths and limitations in regards to
carbon emission prediction and further validate the model’s predictive capabilities under
different geographical and climatic conditions through practical application.
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Figure 4. Representative regions used in this study.

As shown in Figure 5, the R-values of the model in China’s Shandong Province,
Sichuan Basin, and Pearl River Delta regions are 0.9950, 0.9875, and 0.9821, respectively;
the root mean square errors (RMSE) are 0.5748 ppmv, 0.8408 ppmv, and 0.9611 ppmv,
respectively. These results indicate that the model exhibits good fitting performance in the
typical regions and can accurately predict the regional column concentrations of carbon
dioxide. Among the three typical regions selected in this paper, Shandong Province yields
the best model fitting results with a slope and intercept of 0.9980 and 0.8086, respectively,
and the fitting line is close to the 1:1 line. The R-values of the model in the Pearl River Delta
and Sichuan Basin are slightly lower than those in Shandong, with intercepts of −4.8848
and 1.5278 for the fitting lines, respectively. The poorer results in these regions can be
attributed to the increased instability of the model due to the limited number of effective
satellite observations. Overall, however, the predictive capability of the model is consistent
at both regional and overall scales, indicating good generalization ability of the model.
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As shown in Table 4, we validated the model’s prediction performance across differ-
ent years. The results revealed that the model’s prediction accuracy improved annually.
During the period from 2004 to 2013, primarily relying on SCIAMACHY satellite data
and constrained by data volume and uncertainty, the model’s fitting performance was
not ideal. From 2015 to 2016, we incorporated GOSAT and OCO-2 satellite data. These
two satellites offered higher observation quality, and the increased training data volume
significantly enhanced the model’s fitting performance. Between 2017 and 2020, the model
was trained solely on OCO-2 satellite data, achieving the best fitting results. Because the
original GOSAT dataset used in this article only contains data from 2009–2016, data after
2016 does not include GOSAT. The R2 values for each year exceeded 0.92. This outstanding
performance can be primarily attributed to the high quality and greater volume of effective
data provided by the OCO-2 satellite.

Table 4. Test results of RF in China for each year from 2004 to 2020.

Year Size Accuracy
N RMSE MAE R2

2004–2008 14,525 1.5778 1.2258 0.8466
2008–2013 15,392 1.5500 1.1996 0.8614

2014 8593 0.8983 0.4063 0.9174
2015 16,092 0.7353 0.4673 0.9291
2016 14,469 0.6885 0.4550 0.9393
2017 11,658 0.6805 0.4425 0.9284
2018 15,408 0.6748 0.4367 0.9462
2019 14,440 0.6828 0.4465 0.9395
2020 14,956 0.5003 0.3538 0.9665
2021 14,241 0.5712 0.4073 0.9571
2022 15,204 0.6521 0.4367 0.9477
2023 20,541 0.7941 0.4367 0.9324
All 170,519 1.1231 0.7124 0.9844

3.2. Ground-Based Station Validation

Ground-based monitoring is a crucial method for understanding changes in atmo-
spheric CO2 concentrations. Its high precision and temporal resolution make it widely used
in model accuracy assessments. TCCON is a network of ground-based Fourier transform
spectrometers that record direct solar spectra in the near-infrared spectral region, from
which accurate and precise column-averaged abundances of CO2, CH4, N2O, HF, CO, H2O,
and HDO are retrieved and reported. The Hefei station is part of a high-resolution Fourier
transform spectrometer (FTS) observation platform established by the Key Laboratory
of Environmental Optics and Technology (Anhui Institute of Optics and Fine Mechanics,
AIOFM) at the Chinese Academy of Sciences. In November 2018, the station successfully
obtained data quality certification from the Total Carbon Column Observing Network
(TCCON), making it China’s first TCCON standard and benchmark station. The data
provided by the Hefei station is indispensable for optimizing satellite algorithms, validat-
ing models, and advancing carbon neutrality research. The Xianghe station, located in
Xianghe County, Langfang City, Hebei Province, serves as an important field observation
and research base for the Institute of Atmospheric Physics at the Chinese Academy of
Sciences. On 3 September 2021, after a rigorous evaluation by the TCCON Science Steering
Committee, the Xianghe station was officially accepted as a TCCON standard station. Since
June 2018, the station has continuously acquired high-quality spectral data and retrieval
products for greenhouse gases, providing solid support for key research areas such as
carbon peaking and carbon neutrality.

Although the comparison between different remote sensing instruments (such as
TCCON and OCO-2) needs to take the differing sensitivity of XCO2 into account by
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applying the average kernel, previous studies have shown that the difference between the
corrected satellite data and the original data is around 0.2 ppm [28]. Compared with the
differences between satellite and FTS data, the effect of XCO2 comparison, with or without
the application of prior profiles and mean cores, is small. Therefore, this paper directly
compares satellite and FTS data, without considering the effects of different prior profiles
and mean cores.

In this paper, data from the TCCON stations in Hefei and Xianghe are selected for
model validation and accuracy assessment. The observed data are averaged on a monthly
scale. The effective observation data from the Hefei station spans from October 2015 to
December 2020, totaling 58 data points, while the Xianghe station covers the period from
June 2018 to December 2020, with a total of 31 data points.

The validation results are shown in Figure 6a. These results indicate that the XCO2

simulations performed by the random forest model are excellent, with mean absolute errors
(MAEs) of 1.0616 for Hefei and 1.1267 for Xianghe. The root mean square errors (RMSE)
are 1.5144 and 1.3357, respectively, with linear correlation coefficients of 0.914 and 0.934.
Figure 6b compared the CT model data with the results of TCCON. The linear correlation
coefficients of the HF station and the XH station were 0.947 and 0.937, respectively. The
accuracy of the results from the HF station was slightly better than that of RF model, while
the results from the XH station were similar to those of the RF model. Figure 6c compares
the accuracy of the original satellite observation data with that from the TCCON stations.
Figure 6d compares the monthly average XCO2 concentration from the TCCON sites with
the monthly XCO2 concentration data obtained by the RF model. The concentrations from
2017 to 2020 are generally consistent, while the data from 2016 (indicated by the gray band
area in the figure) show significant discrepancies, with a maximum difference of 5.8 ppm in
August 2016. The poor results in 2016 may be attributed to the inadequate intercalibration
of GOSAT and OCO-2 satellite data in overlapping years, resulting in substantial errors at
the same observation point and poor model performance. Overall, the model results show
significant consistency with station monitoring results, indicating that the model effectively
estimates XCO2 concentrations.
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3.3. Comparison of Fitting Results of Different Models

To further evaluate the superiority of the model, we also compared the RF model to
other commonly used models, such as ERT, XGBoost, and ANN. Considering the problem
of computational cost, this paper selects the training set and validation set of data for
three years from 2017 to 2019. The model is evaluated from the perspective of the whole
model and the representative region. In previous experiments, it was found that the
model performance of the three typical regions was similar, and the observation data were
more effective in Shandong Province. Therefore, Shandong Province was used as the
representative region for this area. The evaluation indexes of each model are shown in
Table 1. The verification results show that the R2 values of RF and ERT are 0.952 and 0.929,
respectively, while the R2 values of XGBoost and ANN are 0.941 and 0.912, respectively.
XGBoost came the closest to RF in the validation results. Taking into account the model
evaluation metrics and combining insights from relevant studies, based on our training
dataset, we concluded that RF was the best choice. The verification results of different
models are shown in Table 5.

Table 5. Comparison of evaluation metrics between the RF and commonly used models based on
10-fold cross-validation results.

Model Overall Model Performance Representative Regions Performance
R2 MAE (ppm) RMSE (ppm) R2 MAE (ppm) RMSE (ppm)

RF 0.952 0.8424 1.0649 0.943 0.8414 1.2651
ERT 0.929 1.0624 1.2341 0.891 1.2654 1.5213

XGBoost 0.941 0.7366 1.2100 0.945 0.7996 1.1367
ANN 0.912 1.0023 1.5214 0.902 1.3177 1.7246

4. Discussion
4.1. Data Coverage Rate

To discuss the spatial coverage of the generated dataset, we compare the monthly
average spatial coverage of the original satellite dataset with that of the RF model-generated
dataset. The dataset of a single satellite is the dataset generated after the original data are
rasterized. The multi-source carbon satellites raster dataset is a raster dataset generated
in 2.1.1. The RF-model dataset is a dataset generated using the random forest algorithm.
The spatial resolution of the above datasets is 0.25◦. The spatial coverage values are shown
in Table 6.

Table 6. Spatial coverage rate of different satellite datasets.

Datasets Data Coverage Year Monthly Data Coverage Rate

SCIAMACHY 2004–2012 2.8%
GOSAT 2019–2016 0.7%
OCO-2 2015–2023 5.2%
GF-5B 2023 0.7%

Multi-source carbon satellites raster dataset 2004–2023 6.1%
RF-model dataset 2004–2020 100%

4.2. Spatial Distribution Characteristics of Multi-Year Average XCO2

As shown in Figure 7a, during the period from 2015 to 2020, the average concentration
of XCO2 in China was approximately 403 ppmv. In terms of geographical distribution,
the central and eastern regions displayed significantly higher concentrations, especially
in the North China Plain, Zhejiang Province. These areas exhibited relatively high XCO2

concentrations due to frequent human activities. In contrast, the concentrations in the
western Qinghai-Tibet Plateau and northeastern regions were lower, which may be related
to lower emissions or higher natural carbon absorption in these areas. This study can
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clearly reveal regions with higher XCO2 concentrations, such as Shandong Province and
Zhejiang Province, demonstrating a deeper understanding and analysis of these areas.
These findings are of great significance for further understanding and addressing climate
change issues.
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4.3. Temporal Variation Characteristics of XCO2

Figure 7b–d displays the spatial distribution of XCO2 in southeast China from 2015,
2017, and 2019, with the concentration of XCO2 increasing at a rate of approximately
2 ppm per year. From 2015 to 2020, the overall concentration of XCO2 in southeast China
showed an upward trend, and the coverage area of the high-value regions, indicated in red,
expanded annually. In 2015, the high-value regions of XCO2 were mainly concentrated in
the North China Plain, and gradually spread towards central China as the years progressed.
By 2018, the high-value coverage areas had almost encompassed the entire southeast
China area, and from 2018 to 2020, these high-value regions gradually stabilized. These
changes may be related to factors such as the industrialization process, increased energy
consumption, and climate change in southeast China.

Data from 2015 to 2020 were selected from the generated continuous monthly CO2

column concentration (XCO2) dataset, and 10,000 data points were randomly selected from
the monthly raster images to describe the XCO2 concentration in this month, as shown
in Figure 8. The figure reveals pronounced seasonal fluctuations in CO2 concentrations,
with higher levels in winter and relatively lower levels in summer. This pattern may be
attributed to increased heating demands during winter and enhanced CO2 absorption
capacity due to lush vegetation in summer. These findings indicate that the model has
effectively captured the spatiotemporal variations in CO2. The difference between the
monthly changes in 2015–2016 and 2017–2020 may be due to differences in the payloads
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and inversion algorithms of the GOSAT and OCO-2 satellites, resulting in inferior mapping
results for overlapping years than for years using single-satellite data.
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increase. It is suggested that the PRD should focus on the energy sector and the industrial
sector to optimize the energy structure and improve energy efficiency.
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5. Conclusions
This paper focuses on elucidating the important scientific topic of evaluating the

spatiotemporal distribution patterns of atmospheric carbon dioxide in China. By applying
machine learning methods, it achieves efficient integration of multiple satellites and various
data types, thereby constructing a high-resolution dataset for spatially and temporally
continuous XCO2 (carbon dioxide column concentration) in China’s atmosphere. This
dataset not only provides a solid foundation for in-depth research but also emphasizes
the crucial role of system validation and evaluation, aiming to ensure data accuracy and
reliability, thereby enhancing the credibility and practical value of scientific research.

Based on the constructed dataset, this paper further delves into the spatiotemporal
distribution characteristics of China’s atmosphere and the underlying influencing factors
from different dimensions. Through detailed analysis, we reveal how key driving factors
affect the distribution and variation of atmospheric XCO2 and accordingly, propose specific
scientific insights and conclusions. This provides important scientific evidence and a
reference for understanding climate change in China, as well as globally.

Although the machine learning model developed in this study demonstrates satis-
factory performance, its architectural design lacks sufficient spatiotemporal adaptability,
limiting its ability to accurately capture key features within both temporal and spatial
neighborhoods. In addition, the model showed a decline in performance in years when
data from different satellites overlapped. Due to the differences in payload parameters
and inversion algorithms among different satellite systems, the data processing method of
directly weighted averages in the same grid may be one of the reasons for the performance
degradation. While random forest methods have achieved excellent performance, their
tendency to overfit auxiliary data must be addressed, especially in large-scale distributed
predictions. Combining additional regularization methods or exploring alternative al-
gorithms, such as gradient enhancement or neural networks, can further improve the
reliability of the model. Future studies should further explore fusion methods for diverse
satellite data to address these challenges. Neural network models with spatiotemporal
attention mechanisms may present a more effective solution. Therefore, future research
should prioritize optimizing and innovating machine learning model designs. Specifically,
integrating advanced carbon-monitoring satellite data, such as from GOSAT-2 and OCO-3,
could facilitate the development of a globally continuous spatiotemporal CO2 dataset.
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AI-Supported Technologies
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