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Abstract: Road extraction in remote sensing images is crucial for urban planning, traffic nav-
igation, and mapping. However, certain lighting conditions and compositional materials
often cause roads to exhibit colors and textures similar to the background, leading to incom-
plete extraction. Additionally, the elongated and curved road morphology conflicts with
the rectangular receptive field of traditional convolution. These challenges significantly
affect the accuracy of road extraction in remote sensing images. To address these issues,
we propose an end-to-end low-contrast road extraction network called LCMorph, which
leverages both frequency cues and morphological perception. First, Frequency-Aware
Modules (FAMs) are introduced in the encoder to extract frequency cues, effectively distin-
guishing low-contrast roads from the background. Subsequently, Morphological Perception
Blocks (MPBlocks) are employed in the decoder to adaptively adjust the receptive field to
the elongated and curved nature of roads. MPBlock relies on snake convolution, which
mimics snakes’ twisting behavior for accurate road extraction. Experiments demonstrate
that our method achieves state-of-the-art performance in terms of F1 score and IoU on the
self-constructed low-contrast road dataset (LC-Roads), as well as the public DeepGlobe
and Massachusetts Roads datasets.

Keywords: remote sensing; road extraction; low-contrast roads; frequency cues;
morphological perception

1. Introduction
The resolution of remote sensing images is continuously advancing, providing several

advantages, such as extensive coverage, frequent updates, easy access, and detailed infor-
mation. Therefore, remote sensing images have been widely used in extracting geographic
information. As a fundamental source of geographic information, roads are essential for
urban planning [1], traffic management [2], route navigation [3], mapping [4], and other
applications. Consequently, road extraction from remote sensing images has become a
widely researched topic. Based on various implementation techniques, we categorize the
main road extraction methods into traditional methods and deep learning-based methods.

Traditional road extraction methods primarily rely on shallow road features, in-
cluding radial, topological, texture [5–7], and morphological features [8,9]. For instance,
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Yager et al. [10] utilized edge features in conjunction with a support vector machine to
extract roads from remote sensing images. To address the challenge of identifying inter-
sections in urban road extraction, Gamba et al. [11] employed road topology to verify
intersection extraction results. Additionally, Shi et al. [12] focused on the morphological
characteristics of roads, extracting reliable road segments and applying local linear kernel
regression to determine smooth road centerlines. However, most of these shallow features
are manually designed, which is time-consuming and requires expert knowledge. Further-
more, their extraction accuracy is often limited because shallow features are typically too
simplistic to handle complex background environments effectively.

Deep learning methods have recently been widely adopted for road extraction due
to their ability to automatically learn complex features from large-scale datasets [13–15].
These methods treat road extraction as a semantic segmentation task, classifying each
pixel as either “road” or “background”. As a result, many classical semantic segmentation
models have been directly applied to road extraction, including UNet [16], SegNet [17],
LinkNet [18], and DeepLabV3+ [19]. Subsequently, specific neural networks have been
proposed for road extraction. These networks primarily adopt three key strategies:

(1) Expanding the receptive field and capturing long-range context. D-LinkNet [20]
enhances LinkNet by integrating dilated convolution operations and skip connec-
tions, which expand the receptive field while preserving detailed information. SI-
INet [21] adopts a spatial information inference structure to learn both local visual
features of roads and global information, alleviating the occlusion problem. To capture
long-range context, NL-LinkNet [22] incorporates nonlocal operations into LinkNet’s
encoder. Moreover, the Transformer architecture excels at modeling long-range depen-
dencies, leading to the development of Transformer-based road extraction methods.
Luo et al. [23] proposed BDTNet, which employs a Bi-direction Transformer Module
(BDTM) to capture contextual information of roads. To extract roads precisely, UMiT-
Net [24] was developed. It consists of four mix-Transformer blocks for global feature
extraction and a Dilated Attention Module (DAM) for semantic feature fusion. In-
spired by the sparse target pixels in remote sensing images, Chen et al. [25] proposed
the Sparse Token Transformer (STT) to learn sparse feature representations. STT not
only reduces computational complexity but also enhances extraction accuracy.

(2) Emphasizing the geometric attributes of roads. Roads exhibit distinctive geometric
attributes, such as direction, connectivity, shape, and topology. Ding et al. [26] pro-
posed the Direction-Aware Residual Network (DiResNet), incorporating direction
supervision during training. Besides road extraction, CoANet [27] employs a con-
nectivity attention module to explore the relationship between neighboring pixels.
Consequently, road connectivity is well preserved. RSANet [28] is proposed to address
the challenges of complex road shapes. It uses the Efficient Strip Transformer Module
(ESTM) to model the long-distance dependencies required by long roads. And Road
Edge Focal loss (REF loss) is introduced to alleviate sample imbalance caused by thin
roads. Considering the topology of road networks, SDUNet [29] was designed to
learn multi-level features and global prior information of road networks. From the
perspective of constraints on model learning, Hu et al. [30] proposed PolyRoad. It
uses a polyline matching cost and additional losses for improved road topology.

(3) Reducing the labeled data needed for training. Constructing large-scale labeled
datasets is both costly and time-consuming. To address this issue, a semi-supervised
network, SemiRoadExNet [31], was proposed to leverage pseudo-label information.
Road extraction methods based on unsupervised learning do not rely on labeled
datasets. To tackle the domain shift challenge, Zhang et al. [32] designed RoadDA,
a two-stage unsupervised domain adaptation network for road extraction. Besides
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these standard models, researchers have explored large models for road extraction. For
example, Chen et al. [33] proposed RSPrompter to learn the generation of appropriate
prompts for the Segment Anything Model (SAM) [34]. RSPrompter enables the SAM
to produce semantically discernible segmentation results for remote sensing images.
Moreover, Hetang et al. [35] improved the SAM by designing SAM-Road to extract
road networks.

Although deep learning-based road extraction methods have achieved great success,
they still face the following challenges.

C1: In certain scenes, roads often exhibit low contrast with their surroundings due to
similar textures or colors. Consequently, existing methods face significant challenges in
distinguishing these low-contrast roads from the background.

C2: In remote sensing images, roads often occupy a relatively small proportion and
have elongated and curved morphology, particularly in rural areas. This further increases
the difficulty of road extraction.

Existing road extraction methods typically rely on RGB cues within the spatial do-
main, which are ineffective in distinguishing low-contrast roads from the background (C1).
Inspired by predator hunting systems, where frequency information often proves more ad-
vantageous than RGB features for distinguishing specific prey in natural environments [36],
we leverage frequency cues to address challenge C1. Subsequent research [37,38] has shown
that low-contrast objects and backgrounds are more distinguishable in the frequency do-
main. Therefore, we utilize frequency cues to enhance the localization of low-contrast
roads, as illustrated in Highlight 1 of Figure 1.

Figure 1. Motivation of our method. “Traditional” stands for traditional convolution, and “Snake
Conv” stands for snake convolution. The major highlights of our method lie in frequency cues and
snake convolution. Frequency cues effectively distinguish low-contrast roads from the background,
while snake convolution accurately perceives road morphology.

To tackle the second challenge, C2, we introduce snake convolution [39] to enhance
the morphological perception in road extraction as shown in Highlight 2 of Figure 1. Roads
often present significant difficulties for accurate extraction due to their curved morphology
and narrowness, which conflicts with the rectangular receptive field of traditional convolu-
tion. In contrast, snake convolution emulates the twisting motion of snakes, dynamically
adjusting the receptive field to conform more closely to the elongated and curved road
morphology. This mechanism allows snake convolution to achieve finer and more accurate
road extraction, effectively addressing the geometric complexities of road morphology.

Above all, we propose an end-to-end network, LCMorph, for extracting low-contrast
roads. LCMorph comprises frequency-enhanced localization and morphology-enhanced
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extraction. During the frequency-enhanced localization stage, we introduce the Frequency-
Aware Module (FAM) to extract frequency cues from RGB features. Frequency cues serve
as critical points for distinguishing low-contrast roads. They help identify the rough
positions of low-contrast roads, resulting in a coarse mask that suppresses background
interference. Subsequently, the Morphological Perception Block (MPBlock) is proposed in
the morphology-enhanced extraction stage to perceive road morphology. MPBlock is based
on snake convolution, which enables accurate road extraction.

The remaining sections of this paper are organized as follows:
Section 2 describes the datasets and model architecture of LCMorph. Section 3 covers

implementation details and results from comparison experiments. Section 4 provides a
comprehensive discussion on ablation experiments and computational efficiency. Finally,
Section 5 concludes this paper and discusses future work.

2. Materials and Methods
2.1. Datasets
2.1.1. DeepGlobe Dataset

The DeepGlobe dataset is derived from the DeepGlobe Road Extraction Challenge [40].
It covers 2220 square kilometers of land in Thailand, Indonesia, and India and contains
urban and rural roads. Each image is 1024 × 1024 pixels with a resolution of 0.5 m/pixel.
DeepGlobe provides pixel-level annotations categorized into road and background. There
are 6226 images in DeepGlobe, and we divided them into training, validation, and test
sets in a ratio of 8:1:1, resulting in 4980, 623, and 623 images, respectively. To improve the
efficiency of model training, the original images were cropped into patches with an image
size of 512 × 512. Example images from the DeepGlobe dataset are displayed in Figure 2.

Figure 2. Example images and ground truth from the DeepGlobe dataset, the Massachusetts Roads
dataset, and our LC-Roads dataset. There are two classes in the ground truth: background (black)
and road (white).

2.1.2. Massachusetts Roads Dataset

The Massachusetts Roads dataset, built by Mihn and Hinton [41], covers a wide variety
of urban, suburban, and rural areas in the Massachusetts state. It includes 1108 training
images, 14 validation images, and 49 test images. Each image is 1500 × 1500 pixels with a
resolution of 1 m/pixel. After cropping the original images to 512× 512 pixels, we obtained
9972 images for training, 126 images for validation, and 441 images for testing. Example
images from the Massachusetts Roads dataset are shown in Figure 2.
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2.1.3. LC-Roads Dataset

There is no existing dataset specifically for low-contrast roads, and the DeepGlobe
dataset not only has a high resolution but also covers a variety of scenes. Therefore,
we selected low-contrast road images from the DeepGlobe dataset and constructed a
low-contrast road dataset, LC-Roads. The criteria for image selection were as follows:
(a) low-contrast roads had to have textures or colors similar to the background, or the road
boundaries had to be blurred; (b) low-contrast roads had to account for one-third or more
of the total number of roads in each image; (c) low-contrast roads had to be labeled in the
ground truth. The LC-Roads dataset has 2272 images with an image size of 512 × 512. The
numbers of images in training, validation, and test sets were 1818, 227, and 227, respectively,
according to a ratio of 8:1:1. Example images from our LC-Roads dataset are displayed in
Figure 2.

2.2. Proposed Method

LCMorph consists of frequency-enhanced localization and morphology-enhanced
extraction, as shown in Figure 3. The former leverages frequency cues to distinguish
low-contrast roads from the background, while the latter continually recovers road details
through morphological perception, ultimately achieving accurate road extraction.

Figure 3. Overview of our LCMorph. It adopts an encoder–decoder architecture. In the frequency-
enhanced localization stage, ResNet101 is employed as the encoder to extract RGB features rgbi.
Subsequently, Frequency-Aware Modules (FAMs) mine frequency cues from high-level RGB features.
Frequency cues of different levels are fused in pairs to determine low-contrast roads’ rough positions
M1. Under the guidance of M1, RGB features are refined and then input into the decoder. In the
morphology-enhanced extraction stage, the decoder comprises Morphological Perception Blocks
(MPBlocks). Each MPBlock contains a horizontal snake convolution operation (H-SC), a vertical
snake convolution operation (V-SC), and a traditional convolution operation (Conv). The decoder
can perceive road morphology and ultimately produce accurate extraction results M2.

2.2.1. Frequency-Enhanced Localization

Frequency-enhanced localization involves extracting RGB features, mining frequency
cues, and aggregating multi-scale features.
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We employ ResNet101 [42] to extract different levels of RGB features rgbi, where
i ∈ {1, 2, 3, 4, 5}:

rgbi = ResBlock(rgbi−1). (1)

Frequency cues are more appropriate for low-contrast road extraction than RGB
cues. Unlike Discrete Fourier Transform (DFT) [43], Discrete Cosine Transform (DCT) [44],
and Discrete Wavelet Transform (DWT) [45], octave convolution [46] can learn frequency
cues in an end-to-end manner. It decomposes images into high-frequency and low-
frequency components. Therefore, based on octave convolution, we propose the FAM
to mine frequency cues for low-contrast roads. The specific process is shown in Figure 4.

Figure 4. Illustration of Frequency-Aware Module (FAM). “Octave Conv” stands for octave convolu-
tion. Green and red paths represent the learning of low- and high-frequency information, respectively.

For high-level rgbi, it is decomposed into XL
i and XH

i in Equation (2), with i ∈ {3, 4, 5}:

XL
i = F(Pool(rgbi), WH→L),

XH
i = F(rgbi, WH→H),

(2)

where F(X, W) indicates a convolution operation with parameters W and Pool(·) indicates
an average pooling operation. Next, we obtain low-frequency components YL

i and high-
frequency components YH

i by using the first octave convolution operation:

YL
i = F(XL

i , WL→L)⊕ F(Pool(XH
i ), WH→L),

YH
i = F(XH

i , WH→H)⊕ Up(F(XL
i , WL→H)),︸ ︷︷ ︸

YL
i , YH

i =
⇓

OctConv(XL
i , XH

i ),

(3)

where Up(·) represents an up-sampling operation using nearest-neighbor interpolation
and ⊕ denotes element-wise addition. And low-frequency components ZL

i and high-
frequency components ZH

i are further obtained in the second octave convolution operation:

ZL
i , ZH

i = OctConv(YL
i , YH

i ). (4)

Considering that both high-frequency and low-frequency components play crucial
roles in low-contrast road extraction, ZL

i and ZH
i are fused to form complete frequency cues

in Equation (5):
fi = Up(ZL

i )⊕ ZH
i , (5)

where Up(·) is an up-sampling operation and ⊕ denotes element-wise addition.
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To extract roads of different sizes, frequency cues of various levels are gradually fused,
fully leveraging cross-layer semantic information, as shown in Figure 3. The specific fusion
process is described in Equation (6):

f34 = f3 ⊗ Up( f4),

f45 = f4 ⊗ Up( f5),

f345 = ( f34 ⊗ Up( f45)) C⃝Up( f45 C⃝Up( f5)),

(6)

where ⊗ denotes element-wise multiplication, Up(·) denotes an up-sampling operation,
C⃝ denotes concatenation followed by a 3 × 3 convolution operation, and f345 represents
the final frequency cues. A simple convolution operation is then used to obtain the coarse
mask M1 from f345, which indicates the rough positions of low-contrast roads.

Ultimately, RGB features are refined under the guidance of M1:

rgb
′
i = rgbi + rgbi ⊗ σ(M1), (7)

where ⊗ denotes element-wise multiplication, σ(·) denotes the Sigmoid function, rgbi

denotes RGB features before refinement, and rgb
′
i denotes the refined features.

2.2.2. Morphology-Enhanced Extraction

In the morphology-enhanced extraction stage, the decoder consists of MPBlocks. Each
MPBlock contains a horizontal snake convolution operation (H-SC) [39], a vertical snake
convolution operation (V-SC), and a traditional convolution operation.

Traditional convolution usually has a rectangular receptive field, which is incompatible
with elongated and curved roads. However, snake convolution incorporates roads’ snake-
like morphology as prior knowledge to adjust the receptive field adaptively. The schematic
illustration of snake convolution is shown in Figure 5.

Figure 5. Illustration of snake convolution. “H-SC” (green squares) and “V-SC” (blue squares)
denote horizontal and vertical snake convolution operations, respectively. The solid-line squares
represent actual sampling points, while the dashed-line squares denote potential sampling points.
The arrows illustrate the step-by-step process of determining sampling points, extending from the
central sampling point toward both directions. The numbers on the arrows indicate the horizontal or
vertical distance between the current sampling point and the central one.

In the case of a horizontal snake convolution operation unfolded from a 3 × 3 tradi-
tional convolution operation, the coordinates of each sampling point Ki±c are (xi±c, yi±c),



Remote Sens. 2025, 17, 257 8 of 19

where Ki = (xi, yi) is the central sampling point and c = {0, 1, 2, 3, 4} denotes the horizontal
distance from Ki. In snake convolution, determining each sampling point’s coordinates is
progressive. Starting from Ki, the coordinates of the sampling point away from Ki depend
on the previous sampling point and an offset ∆ ∈ [−1, 1]: compared with Ki−1 and Ki+1, ∆
is added to Ki−2 and Ki+2, respectively. Eventually, the coordinates of sampling points in a
horizontal snake convolution operation are calculated as Equation (8):

Ki±c =

{
(xi+c, yi+c) = (xi + c, yi + ∑i+c

i ∆y)
(xi−c, yi−c) = (xi − c, yi + ∑i

i−c ∆y).
(8)

Similarly, the coordinates of a vertical snake convolution operation can be deduced as
in Equation (9):

Kj±c =

{
(xj+c, yj+c) = (xj + ∑

j+c
j ∆x, yj + c)

(xj−c, yj−c) = (xj + ∑
j
j−c ∆x, yj − c).

(9)

2.2.3. Loss Function

Road extraction can be regarded as a binary classification task at the pixel level.
Therefore, binary cross-entropy loss (BCE Loss) is chosen as a term of the loss function. As
shown in Equation (10), pi ∈ [0, 1] denotes the probability that the model predicts a pixel
as road. yi is the label of this pixel and takes the value of 0 or 1 to represent background or
road, respectively. N is the total number of pixels in an image.

LBCE = − 1
N

N

∑
i=1

[yi log (pi) + (1 − yi) log (1 − pi)]. (10)

However, roads cover a small proportion of remote sensing images, suffering from
sample imbalance during training. Dice Loss can alleviate the issue of foreground’s small
proportion and perform well in binary classification tasks. Therefore, Dice Loss is selected
as the second term of the loss function. In Equation (11), pi, yi, and N have the same
meanings as in Equation (10), and ε is a tiny positive number used to avoid the case where
the denominator is zero.

LDice = 1 − 2 ∑N
i=1 yi pi + ε

∑N
i=1 yi + ∑N

i=1 pi + ε
. (11)

As shown in Figure 3, LCMorph has two outputs: a coarse mask M1 and a final mask
M2. To enhance the learning ability, both outputs need to be supervised. The overall loss of
LCMorph is

L =
2

∑
i=1

(LBCE
i + LDice

i ). (12)

3. Results
3.1. Implementation Details and Evaluation Metrics

The training epochs were 100 for the DeepGlobe dataset, 120 for the Massachusetts
Roads dataset, and 80 for the LC-Roads dataset. The batch size was set to 8. We used
the Adam optimizer to optimize our network. And the PolyLR policy was adopted to
gradually reduce the learning rate, as shown in Equation (13):

lr = init_lr(1 − iter
max_iter

)power, (13)
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where lr denotes the learning rate, init_lr = 0.01 denotes the initial learning rate, iter
denotes the number of batches engaged in training, max_iter denotes the total number
of batches, and power = 3 is a hyper-parameter. For all methods and variants, we used
the same dataset division and hyper-parameter settings to ensure fairness. Additionally,
we expanded the datasets with data augmentation techniques such as random rotation,
horizontal flipping, and Gaussian blurring to enhance the model’s generalization.

To evaluate the road extraction performance of our method, we used four popular
metrics: precision (P), recall (R), F1 score (F1), and intersection over union (IoU). Since
road extraction results are susceptible to sample imbalance, F1 score and IoU are more
comprehensive and objective for assessing model performance [47].

3.2. Comparison Experiments on LC-Roads Dataset

To validate LCMorph’s superiority in the low-contrast road extraction task, some
advanced methods were selected:

(1) UNet [16]. U-Net is a widely used semantic segmentation model featuring a symmet-
ric encoder–decoder architecture with skip connections, enabling precise segmenta-
tion and context capture.

(2) SegNet [17]. SegNet utilizes an encoder–decoder architecture, where the decoder
employs pooling indices from the encoder for up-sampling, which preserves spatial
details.

(3) LinkNet [18]. LinkNet is an efficient semantic segmentation model designed for
real-time applications. It combines an encoder–decoder architecture with residual
connections to maintain high accuracy with fewer parameters.

(4) DeepLabV3+ [19]. DeepLabV3+ employs an encoder–decoder architecture with
atrous convolution. The encoder captures multi-scale contextual information, and the
decoder is simple yet effective.

(5) PSPNet [48]. To capture global contextual information, PSPNet introduces pyramid
pooling modules, enhancing the model’s ability to understand various object scales.

(6) D-LinkNet [20]. D-LinkNet is a classical road extraction model. Based on LinkNet,
D-LinkNet contains dilated convolution layers to expand the receptive field. It won
first place in the CVPR DeepGlobe 2018 Road Extraction Challenge.

(7) SIINet [21]. SIINet enhances road extraction by facilitating multidirectional
message passing between pixels. It effectively captures both local and global
spatial information.

(8) CoANet [27]. CoANet is a road extraction model which integrates strip convolution
operations with a connectivity attention module. It addresses occlusions and achieves
good results.

(9) NL-LinkNet [22]. NL-LinkNet is the first road extraction model to use nonlocal
operations. The nonlocal block enables the model to capture long-range dependencies
and distant information.

(10) SDUNet [29]. SDUNet is a spatially enhanced and densely connected UNet. It
aggregates multi-level features and preserves road structure.

(11) DSCNet [39]. DSCNet is a tubular structure segmentation model applied to both
vessel segmentation and road extraction. Snake convolution is proposed by DSCNet.

(12) RoadExNet. RoadExNet is the generator of SemiRoadExNet [31]. For fair comparison,
we trained RoadExNet in a fully supervised manner.

(13) OARENet [49]. OARENet is a road extraction model designed to address dense
occlusions. It proposes an occlusion-aware decoder, achieving excellent performance
in complex scenes.
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As shown in Table 1, LCMorph achieves comprehensive state-of-the-art (SOTA) perfor-
mance compared with classical semantic segmentation models. Among the road extraction
models, LCMorph achieves the highest recall, F1 score, and IoU, with precision ranking
third. CoANet, DSCNet, and RoadExNet employ specific modules for road shapes, leading
to high precision. However, DSCNet’s recall is significantly lower than that of LCMorph,
indicating its limited ability to distinguish low-contrast roads from the background. Al-
though OARENet can address the occlusion problem, it lacks a model structure capable of
handling low-contrast scenes. Therefore, it performs poorly on the LC-Roads dataset. In
comparison with CoANet, which ranks second, LCMorph achieves a 3% improvement in
recall, a 1.1% improvement in F1 score, and a 1.45% improvement in IoU. The largest boost
in recall is mainly due to LCMorph’s effectiveness in extracting low-contrast roads often
missed by other methods.

Table 1. Quantitative comparison of our LCMorph with some advanced methods on LC-Roads
dataset, in which bold denotes the best and underline denotes the second best.

Method Source P (%) R (%) F1 (%) IoU (%)

Semantic Segmentation Models

UNet MICCAI’15 70.89 73.90 72.36 56.70
PSPNet CVPR’17 62.96 77.60 69.52 53.27
LinkNet VCIP’17 71.16 75.71 73.37 57.94
SegNet TPAMI’17 72.32 76.19 74.20 58.99

DeepLabV3+ ECCV’18 66.63 77.87 71.81 56.02

Road Extraction Models

D-LinkNet CVPRW’18 71.87 79.65 75.56 60.72
SIINet ISPRS’19 71.16 72.72 71.93 56.23

CoANet TIP’21 72.76 78.99 75.74 60.95
NL-LinkNet GRSL’22 71.48 75.63 73.50 58.10

SDUNet PR’22 72.03 73.04 72.53 56.95
DSCNet ICCV’23 71.09 75.65 73.30 57.91

RoadExNet ISPRS’23 72.82 75.84 74.33 59.14
OARENet TGRS’24 72.14 72.51 72.21 56.51

LCMorph Ours 72.32 81.99 76.85 62.40

In addition to the quantitative results, the qualitative results of each method were
compared on the LC-Roads test set. Due to limited space, Figure 6 only displays the six best
methods, including LCMorph. The red boxes highlight differences among these methods,
and the yellow boxes indicate roads ignored by the ground truth. In the first row of Figure 6,
roads have similar colors to the background, resulting in low-contrast roads below the
image. In the second row of Figure 6, roads and their surroundings are composed of the
same material, making both color and texture similar, which complicates road extraction. In
these low-contrast scenes, roads extracted by LCMorph are both complete and continuous,
particularly for roads with blurred boundaries in the red boxes. In the third row of Figure 6,
the road in the red box is tightly wrapped by dense buildings, making it difficult to
extract. Additionally, its morphology is irregular, unlike common straight roads. However,
LCMorph still achieves complete and accurate extraction results compared with other
methods. Furthermore, the road in the yellow box is neglected in the ground truth but is
successfully extracted by all deep learning methods. This suggests that neural networks
can learn the intrinsic characteristics of roads rather than simply fitting to the ground
truth. In the last row of Figure 6, road morphology in the red box is more complicated,
and tree occlusion further increases the extraction difficulty. LCMorph’s extraction result
has the most adequate road details, and its road morphology is the closest to the ground
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truth. Table 1 and Figure 6 demonstrate the advantages of LCMorph in low-contrast road
extraction tasks from both quantitative and qualitative perspectives.

Figure 6. Qualitative comparison of our LCMorph with some advanced methods on LC-Roads
dataset. Red boxes highlight differences among methods. Yellow boxes indicate roads ignored by
ground truth.

3.3. Comparison Experiments on Public Datasets

Compared with LC-Roads, the DeepGlobe dataset and Massachusetts Roads dataset
contain more diverse road scenes, particularly salient roads. Therefore, we also conducted
comparison experiments on these two public datasets to verify LCMorph’s versatility.
When faced with diverse road scenes, LCMorph attains satisfactory performance on the
DeepGlobe dataset and Massachusetts Roads dataset. According to Table 2, it achieves the
highest F1 score and IoU on these two datasets.

On the DeepGlobe dataset, LCMorph ranks second in precision and has competitive
recall. Compared with OARENet (SOTA precision), LCMorph improves recall by 4.32%,
and it improves precision by 4.49% compared with CoANet (SOTA recall).

On the Massachusetts Roads dataset, LCMorph exhibits the second-highest recall that
is 5.62% superior to RoadExNet (SOTA precision). And LCMorph’s precision surpasses D-
LinkNet’s by 2.36%. These results demonstrate that LCMorph can better balance precision
and recall, resulting in the best F1 score and IoU.

Figure 7 displays LCMorph’s road extraction results in four representative scenes
from these two datasets. LCMorph accurately extracts low-contrast roads in Figure 7a,
particularly the curved road in the green box. For land cover such as ridges in the field that
resemble roads (yellow boxes), LCMorph avoids misidentifying them as roads. Although
easy to distinguish, the roads in Figure 7b are occluded by trees, buildings, and shadows.
LCMorph completely extracts partially occluded roads (green boxes). As for fully occluded
roads (red boxes), LCMorph’s performance needs improvement. Severe occlusion is also a
challenge for other road extraction methods. In Figure 7c, roads in the upper-left green box
exhibit low contrast, while those in the lower-left green box display significant curvature.
All these roads are accurately extracted with the FAM and snake convolution. Roads
in Figure 7d have complex morphology, including curved roads, forked roads, merged
roads, and adjacent roads, as shown in the green box. With the powerful morphological
perception of snake convolution, LCMorph extracts roads with complex morphology in
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a fine-grained manner. The qualitative results in Figure 7 provide strong evidence of
LCMorph’s versatility.

Table 2. Quantitative comparison of our LCMorph with some advanced methods on DeepGlobe
dataset and Massachusetts Roads dataset, in which bold denotes the best and underline denotes the
second best.

Method Source
DeepGlobe Dataset Massachusetts Roads Dataset

P (%) R (%) F1 (%) IoU (%) P (%) R (%) F1 (%) IoU (%)

Semantic Segmentation Models

UNet MICCAI’15 73.20 70.10 71.62 59.06 77.29 72.13 73.19 59.46
PSPNet CVPR’17 75.35 78.71 76.99 62.95 76.53 69.47 72.83 57.27
LinkNet VCIP’17 71.33 79.81 75.33 61.34 79.18 73.71 75.52 61.74
SegNet TPAMI’17 79.84 75.92 77.83 63.79 72.79 77.41 74.26 60.11

DeepLabV3+ ECCV’18 78.20 76.24 75.69 62.33 75.47 77.97 76.70 62.25

Road Extraction Models

D-LinkNet CVPRW’18 73.50 81.38 77.24 63.36 74.57 78.85 75.58 61.75
SIINet ISPRS’19 75.42 83.15 79.09 64.35 73.47 70.89 72.16 56.85

CoANet TIP’21 74.02 85.31 79.27 65.65 75.15 77.89 76.48 61.94
NL-LinkNet GRSL’22 74.99 77.50 76.23 62.65 79.14 74.17 76.57 62.19

SDUNet PR’22 78.40 80.43 79.40 65.91 77.56 74.57 75.23 61.34
DSCNet ICCV’23 77.03 75.91 76.47 62.76 75.83 77.47 76.64 62.22

RoadExNet ISPRS’23 77.76 77.14 77.45 63.51 82.46 72.89 77.38 63.10
OARENet TGRS’24 79.88 76.70 78.26 64.04 77.79 75.23 76.49 61.96

LCMorph Ours 78.51 81.02 79.74 66.30 76.93 78.51 77.71 63.55

Figure 7. Qualitative results of our LCMorph on DeepGlobe dataset and Massachusetts Roads
dataset. Green boxes denote challenging roads successfully extracted by LCMorph. Red boxes
represent challenging roads that LCMorph fails to extract. Yellow boxes denote land cover sim-
ilar to roads. (a) Low-contrast roads in DeepGlobe dataset. (b) Salient roads in DeepGlobe
dataset. (c) Low-contrast roads in Massachusetts Roads dataset. (d) Salient roads in Massachusetts
Roads dataset.
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4. Discussion
4.1. Effect of Different Encoders

Roads in remote sensing images exhibit multi-scale variations. As a result, the encoder
needs a powerful multi-scale feature extraction capability. With its hierarchical feature
extraction mechanism, ResNet effectively captures information at different scales, from local
details to semantic context. Therefore, we selected ResNet as the encoder. As ResNet has
multiple variants, in order to determine the most suitable encoder, we explored the effect
of different ResNet variants, as shown in Table 3. LCMorph-light adopts ResNet50 as its
encoder, while LCMorph-heavy utilizes ResNet152. Apart from the encoder, LCMorph-
light and LCMorph-heavy both have the same structure as LCMorph.

Table 3. Effect of different encoders on model performance on LC-Roads dataset.

Method Encoder P (%) R (%) F1 (%) IoU (%) Params (M) FLOPs (G)

LCMorph-light ResNet50 72.64 77.26 74.88 59.85 52.90 216.55
LCMorph ResNet101 72.32 81.99 76.85 62.40 71.90 294.75

LCMorph-heavy ResNet152 73.85 80.27 76.93 62.73 87.54 358.62

Despite its lighter model architecture, LCMorph-light proves significantly less effective
in road extraction than LCMorph. Compared with ResNet101, ResNet152 is deeper. In
Table 3, LCMorph-heavy achieves slightly higher F1 score and IoU than LCMorph, but its
parameters increase by 21.75%, and its FLOPs increase by 21.67%. These results suggest that
ResNet101 offers a better trade-off between model effectiveness and efficiency. Therefore,
ResNet101 was selected as the encoder.

4.2. Effectiveness of Each Module in LCMorph

To verify the effectiveness of modules in LCMorph, we performed ablation experi-
ments on the LC-Roads dataset. The following experiments use the same parameter settings.
The experimental results are shown in Table 4, where “✓” denotes that the corresponding
module is used. “FAM” stands for Frequency-Aware Module, and “MPBlock” stands for
Morphological Perception Block. Additionally, method 4 is LCMorph, and method 1 is
the baseline which replaces the FAM with a Receptive Field Block (RFB) [50] and snake
convolution with traditional convolution.

Table 4. Ablation study for proposed modules on LC-Roads dataset, in which bold denotes the best.

No. FAM MPBlock P (%) R (%) F1 (%) IoU (%)

1 69.82 81.66 75.28 60.35
2 ✓ 69.77 82.36 75.54 60.70
3 ✓ 72.18 81.31 76.47 61.90
4 ✓ ✓ 72.32 81.99 76.85 62.40

Method 2 improves recall by 0.7%, F1 score by 0.26%, and IoU by 0.35% in the pres-
ence of the FAM. Similarly, method 4 shows an increase compared with method 3. This
demonstrates that the FAM has a significant positive effect. And the biggest increase in
recall suggests that frequency cues are good at discovering low-contrast roads which are
ignored by RGB cues. Incorporating snake convolution into the network also improves the
road extraction results. Compared with the baseline, method 3 increases precision by 2.36%,
F1 score by 1.46%, and IoU by 1.55%. Method 4 also substantially improves these three
metrics compared with method 2. Snake convolution pays more attention to the elongated
road region and extracts roads more finely, leading to the greatest boost in precision. Under
the joint effect of the FAM and MPBlock, LCMorph achieves the highest precision, F1 score,
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and IoU. We also provide a variant of LCMorph with higher recall, LCMorph w/o MPBlock
(method 2), which can handle more challenging low-contrast situations.

Figure 8 displays the qualitative results of the FAM and snake convolution on the
LC-Roads dataset. The first two rows of Figure 8 depict rural scenes, while the last row
is a remote sensing image taken over a town. Figure 8b visualizes RGB cues from the
RFB, and Figure 8c visualizes frequency cues from the FAM. Compared with the RGB cues,
low-contrast roads are more noticeable in frequency cues, which indicates that frequency
cues can effectively distinguish these roads from the background. Thus, frequency cues are
more suitable for extracting low-contrast roads. Additionally, some road segments (green
boxes) are selected in the ground truth, and sampling points of traditional convolution and
snake convolution are drawn in Figure 8e. For elongated roads, traditional convolution’s
receptive field is obviously deviated, losing focus on the road region. In contrast, snake
convolution’s receptive field closely fits the road and presents elongated morphology. This
demonstrates that snake convolution can effectively perceive the road morphology and
focus on the road region.

Figure 8. Qualitative results of proposed modules on LC-Roads dataset. Red boxes indicate low-
contrast roads. Green boxes denote areas where receptive field is visualized. “Traditional” stands for
traditional convolution, and “Snake Conv” stands for snake convolution. (a) Input image. (b) RGB
cues without FAM. (c) Frequency cues with FAM. (d) Ground truth. (e) Receptive field.

4.3. Effect of Different Frequency Components

The effectiveness of the FAM has been verified in the above. However, the FAM
decomposes RGB features into low-frequency components and high-frequency compo-
nents, necessitating further investigation into how to use these frequency features for
optimal road extraction results. We made different modifications to the second octave
convolution operation in the FAM and primarily explored three approaches: using only
low-frequency components, using only high-frequency components, and fusing both low-
frequency and high-frequency components. The quantitative results are shown in Table 5,
and the visualization of different frequency components is displayed in Figure 9.
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Table 5. Quantitative results of different frequency components on LC-Roads dataset, in which bold
denotes the best.

Approach P (%) R (%) F1 (%) IoU (%)

Low frequency 68.15 72.02 70.03 53.81
High frequency 78.28 72.18 75.11 60.14

Low and high frequency 76.95 76.25 76.85 62.40

The metrics of high-frequency components significantly outperform those of low-
frequency components. This suggests that high-frequency components are more robust
and discriminative for low-contrast roads, as supported by Figure 9b,c. This finding
aligns with the human visual system, which typically uses high-frequency information
to identify targets in uncertain regions. Further analysis of Figure 9 shows that high-
frequency components focus on the details and textures of roads, including edges and
lines, while low-frequency components focus on the overall layouts and structures of
images, including smooth parts of road regions and background regions. Although high-
frequency components are more prominent, low-frequency components also contain key
cues needed to extract roads. Therefore, the optimal approach is to fuse high-frequency
and low-frequency components, as validated in the last row of Table 5.

Figure 9. Visualization of different frequency components. (a) Input image. (b) Low-frequency
components. (c) High-frequency components. (d) Fusion of low- and high-frequency components.
(e) Ground truth.

4.4. Computational Efficiency

Additionally, we explored the computational efficiency of each method in terms of
the number of parameters (Params) and Floating-Point Operations (FLOPs). As shown
in Table 6, LCMorph achieves the highest IoU across all three datasets. Compared with
methods such as UNet, SegNet, DeepLabV3+, CoANet, and OARENet, although LCMorph
shows decreased computational efficiency, its IoU improves substantially. Moreover,
LCMorph outperforms PSPNet and SDUNet in both computational efficiency and IoU.
Overall, LCMorph’s computational efficiency is moderate and could be further optimized
through techniques such as pruning in the future.
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Table 6. The computational efficiency of different methods. IoUDG represents the IoU on the
DeepGlobe dataset, IoUMass denotes the IoU on the Massachusetts Roads dataset, and IoULC indicates
the IoU on the LC-Roads dataset.

Method Source Params (M) FLOPs (G) IoUDG (%) IoUMass (%) IoULC (%)

Semantic Segmentation Models

UNet MICCAI’15 26.36 223.88 59.06 59.46 56.70
PSPNet CVPR’17 86.06 327.02 62.95 57.27 53.27
LinkNet VCIP’17 11.53 12.09 61.34 61.74 57.94
SegNet TPAMI’17 29.48 170.45 63.79 60.11 58.99

DeepLabV3+ ECCV’18 54.70 83.24 62.33 62.25 56.02

Road Extraction Models

D-LinkNet CVPRW’18 31.10 33.60 63.36 61.75 60.72
SIINet ISPRS’19 7.36 36.10 64.35 56.85 56.23

CoANet TIP’21 59.15 277.58 65.65 61.94 60.95
NL-LinkNet GRSL’22 21.82 32.07 62.65 62.19 58.10

SDUNet PR’22 80.24 353.26 65.91 61.34 56.95
DSCNet ICCV’23 4.52 40.38 62.76 62.22 57.91

RoadExNet ISPRS’23 31.13 33.84 63.51 63.10 59.14
OARENet TGRS’24 71.30 99.90 64.04 61.96 56.51

LCMorph Ours 71.90 294.75 66.30 63.55 62.40

5. Conclusions
High inter-class similarity and complex road morphology pose significant challenges

for road extraction in low-contrast scenes. To overcome these challenges, we propose
LCMorph, the first end-to-end network designed for low-contrast road extraction. Addi-
tionally, we constructed a specialized dataset, LC-Roads, for low-contrast roads, with the
aim of facilitating future research in this field. In summary, the contributions of this paper
are as follows:

1. The Frequency-Aware Module (FAM) is introduced to enhance the distinction between
low-contrast roads and the background. With its help, LCMorph effectively identifies
overlooked low-contrast roads.

2. To handle elongated and curved roads, we propose the Morphological Perception
Blocks (MPBlocks). These blocks adaptively adjust the receptive field to the road
morphology, achieving accurate road extraction.

3. LCMorph achieves state-of-the-art performance in terms of F1 score and IoU on the
LC-Roads, DeepGlobe, and Massachusetts Roads datasets. And the effectiveness of
the FAM and MPBlock is validated through adequate ablation experiments.

Although low-contrast roads and backgrounds have similar colors or textures in
RGB images, they exhibit different spectra when the materials are different. Therefore,
spectral information may be helpful in distinguishing low-contrast roads. In the future, we
plan to introduce spectral information into LCMorph to further improve the extraction of
low-contrast roads.
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2. Żochowska, R.; Pamuła, T. Impact of Traffic Flow Rate on the Accuracy of Short-Term Prediction of Origin-Destination Matrix in

Urban Transportation Networks. Remote Sens. 2024, 16, 1202. [CrossRef]
3. Chen, P.; Wu, J.; Li, N. A personalized navigation route recommendation strategy based on differential perceptron tracking user’s

driving preference. Comput. Intell. Neurosci. 2023, 2023, 8978398. [CrossRef] [PubMed]
4. Stewart, C.; Lazzarini, M.; Luna, A.; Albani, S. Deep learning with open data for desert road mapping. Remote Sens. 2020, 12, 2274.

[CrossRef]
5. Lian, R.; Wang, W.; Mustafa, N.; Huang, L. Road extraction methods in high-resolution remote sensing images: A comprehensive

review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5489–5507. [CrossRef]
6. Stoica, R.; Descombes, X.; Zerubia, J. A Gibbs point process for road extraction from remotely sensed images. Int. J. Comput. Vis.

2004, 57, 121–136. [CrossRef]
7. Sghaier, M.O.; Lepage, R. Road extraction from very high resolution remote sensing optical images based on texture analysis and

beamlet transform. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 9, 1946–1958. [CrossRef]
8. Mohammadzadeh, A.; Tavakoli, A.; Valadan Zoej, M.J. Road extraction based on fuzzy logic and mathematical morphology from

pan-sharpened IKONOS images. Photogramm. Rec. 2006, 21, 44–60. [CrossRef]
9. Maurya, R.; Gupta, P.; Shukla, A.S. Road extraction using k-means clustering and morphological operations. In Proceedings of

the 2011 International Conference on Image Information Processing, Shimla, India, 3–5 November 2011; pp. 1–6.
10. Yager, N.; Sowmya, A. Support vector machines for road extraction from remotely sensed images. In Proceedings of the

International Conference on Computer Analysis of Images and Patterns, Groningen, The Netherlands, 25–27 August 2003;
pp. 285–292.

11. Gamba, P.; Dell’Acqua, F.; Lisini, G. Improving urban road extraction in high-resolution images exploiting directional filtering,
perceptual grouping, and simple topological concepts. IEEE Geosci. Remote Sens. Lett. 2006, 3, 387–391. [CrossRef]

12. Shi, W.; Miao, Z.; Debayle, J. An integrated method for urban main-road centerline extraction from optical remotely sensed
imagery. IEEE Trans. Geosci. Remote Sens. 2013, 52, 3359–3372. [CrossRef]

13. Nie, J.; Wang, Z.; Liang, X.; Yang, C.; Zheng, C.; Wei, Z. Semantic Category Balance-Aware Involved Anti-Interference Network
for Remote Sensing Semantic Segmentation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4409712. [CrossRef]

14. Li, X.; Wang, Z.; Chen, C.; Tao, C.; Qiu, Y.; Liu, J.; Sun, B. SemID: Blind Image Inpainting with Semantic Inconsistency Detection.
Tsinghua Sci. Technol. 2024, 29, 1053–1068. [CrossRef]

15. Liu, R.; Wu, J.; Lu, W.; Miao, Q.; Zhang, H.; Liu, X.; Lu, Z.; Li, L. A Review of Deep Learning-Based Methods for Road Extraction
from High-Resolution Remote Sensing Images. Remote Sens. 2024, 16, 2056. [CrossRef]

16. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; Proceedings, Part III 18; pp. 234–241.

17. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

18. Chaurasia, A.; Culurciello, E. Linknet: Exploiting encoder representations for efficient semantic segmentation. In Proceedings of
the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017; pp. 1–4.

19. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image
segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 801–818.

https://github.com/VictorYang097/Low-contrast-roads
https://github.com/VictorYang097/Low-contrast-roads
http://doi.org/10.1016/j.scs.2023.104562
http://dx.doi.org/10.3390/rs16071202
http://dx.doi.org/10.1155/2023/8978398
http://www.ncbi.nlm.nih.gov/pubmed/36643887
http://dx.doi.org/10.3390/rs12142274
http://dx.doi.org/10.1109/JSTARS.2020.3023549
http://dx.doi.org/10.1023/B:VISI.0000013086.45688.5d
http://dx.doi.org/10.1109/JSTARS.2015.2449296
http://dx.doi.org/10.1111/j.1477-9730.2006.00353.x
http://dx.doi.org/10.1109/LGRS.2006.873875
http://dx.doi.org/10.1109/TGRS.2013.2272593
http://dx.doi.org/10.1109/TGRS.2023.3325327
http://dx.doi.org/10.26599/TST.2023.9010079
http://dx.doi.org/10.3390/rs16122056
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704


Remote Sens. 2025, 17, 257 18 of 19

20. Zhou, L.; Zhang, C.; Wu, M. D-LinkNet: LinkNet with pretrained encoder and dilated convolution for high resolution satellite
imagery road extraction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
Salt Lake City, UT, USA, 18–23 June 2018; pp. 182–186.

21. Tao, C.; Qi, J.; Li, Y.; Wang, H.; Li, H. Spatial information inference net: Road extraction using road-specific contextual information.
ISPRS J. Photogramm. Remote Sens. 2019, 158, 155–166. [CrossRef]

22. Wang, Y.; Seo, J.; Jeon, T. NL-LinkNet: Toward lighter but more accurate road extraction with nonlocal operations. IEEE Geosci.
Remote Sens. Lett. 2022, 19, 3000105. [CrossRef]

23. Luo, L.; Wang, J.X.; Chen, S.B.; Tang, J.; Luo, B. BDTNet: Road extraction by bi-direction transformer from remote sensing images.
IEEE Geosci. Remote Sens. Lett. 2022, 19, 2505605. [CrossRef]

24. Deng, F.; Luo, W.; Ni, Y.; Wang, X.; Wang, Y.; Zhang, G. UMiT-Net: A U-shaped mix-transformer network for extracting precise
roads using remote sensing images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5801513. [CrossRef]

25. Chen, K.; Zou, Z.; Shi, Z. Building extraction from remote sensing images with sparse token transformers. Remote Sens. 2021,
13, 4441. [CrossRef]

26. Ding, L.; Bruzzone, L. DiResNet: Direction-aware residual network for road extraction in VHR remote sensing images. IEEE
Trans. Geosci. Remote Sens. 2020, 59, 10243–10254. [CrossRef]

27. Mei, J.; Li, R.J.; Gao, W.; Cheng, M.M. CoANet: Connectivity attention network for road extraction from satellite imagery. IEEE
Trans. Image Process. 2021, 30, 8540–8552. [CrossRef]

28. Wang, C.; Xu, R.; Xu, S.; Meng, W.; Wang, R.; Zhang, J.; Zhang, X. Toward accurate and efficient road extraction by leveraging the
characteristics of road shapes. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4404616. [CrossRef]

29. Yang, M.; Yuan, Y.; Liu, G. SDUNet: Road extraction via spatial enhanced and densely connected UNet. Pattern Recognit. 2022,
126, 108549. [CrossRef]

30. Hu, Y.; Wang, Z.; Huang, Z.; Liu, Y. PolyRoad: Polyline Transformer for Topological Road-Boundary Detection. IEEE Trans.
Geosci. Remote Sens. 2023, 62, 5602112. [CrossRef]

31. Chen, H.; Li, Z.; Wu, J.; Xiong, W.; Du, C. SemiRoadExNet: A semi-supervised network for road extraction from remote sensing
imagery via adversarial learning. ISPRS J. Photogramm. Remote Sens. 2023, 198, 169–183. [CrossRef]

32. Zhang, L.; Lan, M.; Zhang, J.; Tao, D. Stagewise unsupervised domain adaptation with adversarial self-training for road
segmentation of remote-sensing images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5609413. [CrossRef]

33. Chen, K.; Liu, C.; Chen, H.; Zhang, H.; Li, W.; Zou, Z.; Shi, Z. RSPrompter: Learning to prompt for remote sensing instance
segmentation based on visual foundation model. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4701117. [CrossRef]

34. Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment
anything. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023;
pp. 4015–4026.

35. Hetang, C.; Xue, H.; Le, C.; Yue, T.; Wang, W.; He, Y. Segment Anything Model for Road Network Graph Extraction. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024;
pp. 2556–2566.

36. Zhong, Y.; Li, B.; Tang, L.; Kuang, S.; Wu, S.; Ding, S. Detecting camouflaged object in frequency domain. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 4504–4513.

37. Cong, R.; Sun, M.; Zhang, S.; Zhou, X.; Zhang, W.; Zhao, Y. Frequency perception network for camouflaged object detection.
In Proceedings of the 31st ACM International Conference on Multimedia, Ottawa, ON, Canada, 29 October–3 November 2023;
pp. 1179–1189.

38. Xie, C.; Xia, C.; Yu, T.; Li, J. Frequency representation integration for camouflaged object detection. In Proceedings of the 31st
ACM International Conference on Multimedia, Ottawa, ON, Canada, 29 October–3 November 2023; pp. 1789–1797.

39. Qi, Y.; He, Y.; Qi, X.; Zhang, Y.; Yang, G. Dynamic snake convolution based on topological geometric constraints for tubu-
lar structure segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France,
1–6 October 2023; pp. 6070–6079.

40. Demir, I.; Koperski, K.; Lindenbaum, D.; Pang, G.; Huang, J.; Basu, S.; Hughes, F.; Tuia, D.; Raskar, R. Deepglobe 2018: A
challenge to parse the earth through satellite images. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, Salt Lake City, UT, USA, 18–23 June 2018; pp. 172–181.

41. Mnih, V. Machine Learning for Aerial Image Labeling; University of Toronto: Toronto, ON, Canada, 2013.
42. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
43. Winograd, S. On computing the discrete Fourier transform. Math. Comput. 1978, 32, 175–199. [CrossRef]
44. Ahmed, N.; Natarajan, T.; Rao, K.R. Discrete cosine transform. IEEE Trans. Comput. 1974, 100, 90–93. [CrossRef]
45. Shensa, M.J. The discrete wavelet transform: Wedding the a trous and Mallat algorithms. IEEE Trans. Signal Process. 1992,

40, 2464–2482. [CrossRef]

http://dx.doi.org/10.1016/j.isprsjprs.2019.10.001
http://dx.doi.org/10.1109/LGRS.2021.3050477
http://dx.doi.org/10.1109/LGRS.2022.3183828
http://dx.doi.org/10.1109/TGRS.2023.3281132
http://dx.doi.org/10.3390/rs13214441
http://dx.doi.org/10.1109/TGRS.2020.3034011
http://dx.doi.org/10.1109/TIP.2021.3117076
http://dx.doi.org/10.1109/TGRS.2023.3284478
http://dx.doi.org/10.1016/j.patcog.2022.108549
http://dx.doi.org/10.1109/TGRS.2023.3344103
http://dx.doi.org/10.1016/j.isprsjprs.2023.03.012
http://dx.doi.org/10.1109/TGRS.2021.3104032
http://dx.doi.org/10.1109/TGRS.2024.3356074
http://dx.doi.org/10.1090/S0025-5718-1978-0468306-4
http://dx.doi.org/10.1109/T-C.1974.223784
http://dx.doi.org/10.1109/78.157290


Remote Sens. 2025, 17, 257 19 of 19

46. Chen, Y.; Fan, H.; Xu, B.; Yan, Z.; Kalantidis, Y.; Rohrbach, M.; Yan, S.; Feng, J. Drop an octave: Reducing spatial redundancy in
convolutional neural networks with octave convolution. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3435–3444.

47. Tong, Z.; Li, Y.; Zhang, J.; He, L.; Gong, Y. MSFANet: Multiscale fusion attention network for road segmentation of multispectral
remote sensing data. Remote Sens. 2023, 15, 1978. [CrossRef]

48. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.

49. Yang, R.; Zhong, Y.; Liu, Y.; Lu, X.; Zhang, L. Occlusion-aware road extraction network for high-resolution remote sensing
imagery. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5619316. [CrossRef]

50. Liu, S.; Huang, D. Receptive field block net for accurate and fast object detection. In Proceedings of the European Conference on
Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 385–400.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/rs15081978
http://dx.doi.org/10.1109/TGRS.2024.3387945

	Introduction
	Materials and Methods
	Datasets
	DeepGlobe Dataset
	Massachusetts Roads Dataset
	LC-Roads Dataset

	Proposed Method
	Frequency-Enhanced Localization
	Morphology-Enhanced Extraction
	Loss Function


	Results
	Implementation Details and Evaluation Metrics
	Comparison Experiments on LC-Roads Dataset
	Comparison Experiments on Public Datasets

	Discussion
	Effect of Different Encoders
	Effectiveness of Each Module in LCMorph
	Effect of Different Frequency Components
	Computational Efficiency

	Conclusions
	References

