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Abstract: The extensive peatlands of the Tibetan Plateau (TP) play a vital role in sustaining
the global ecological balance. However, the distribution of peatlands across this region
and the related environmental factors remain poorly understood. To address this issue,
we created a high-resolution (10 m) map for peatland distribution in the TP region using
6146 Sentinel-1 and 23,730 Sentinel-2 images obtained through the Google Earth Engine
platform in 2023. We employed a random forest algorithm that integrated spatiotemporal
features with field training samples. The overall accuracy of the peatland distribution
map produced is high, at 86.33%. According to the classification results, the total area of
peatlands on the TP is 57,671.55 km2, and they are predominantly located in the northeast
and southwest, particularly in the Zoige Protected Area. The classification primarily relied
on the NDVI, NDWI, and RVI, while the DVI and MNDWI were also used in peatland
mapping. B11, B12, NDWI, RVI, NDVI, and slope are the most significant features for
peatland mapping, while roughness, correlation, entropy, and ASM have relatively slight
significance. The methodology and peatland map developed in this work will enhance the
conservation and management of peatlands on the TP while informing policy decisions
and supporting sustainable development assessments.

Keywords: peatlands; random forest; time-series Sentinel-1 and -2 images; Google Earth
Engine; Tibetan Plateau

1. Introduction
Peatlands are vital wetland ecosystems that play crucial roles in carbon sequestration,

biodiversity support, and water cycle regulation [1–3]. They are also essential in mitigating
climate change impacts [4]. The peatland ecosystems are threatened by natural disasters,
including landslides and fires, as well as human activities such as drainage, cultivation,
overgrazing, and infrastructure development. These threats lead to the decline of peat-
land areas and degradation of their functions [5]. The Tibetan Plateau (TP) comprises
approximately 49% of China’s entire peatland acreage [6] and 68% of its total peatland
carbon reserves [5]. Previous studies have provided valuable datasets of TP peatlands [7,8].
However, these datasets are either outdated or insufficient for precise peatland recognition
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and management. This is primarily due to limitations in spatial resolution, scale consis-
tency, and differentiation of peatland types [7,8]. Consequently, the precise distribution of
TP peatlands had not been accurately depicted by the existing datasets. Considering the
growing necessity for precise quantification of peatland emissions, as well as the execution
of restoration, rehabilitation, and rewetting initiatives, reliable peatland maps of the TP are
urgently needed. Such maps are vital for comprehending the scope and status of peatlands
and for mitigating further ecosystem degradation.

Traditional mapping methods based on the manual delineation of aerial photography
have been used to determine peatland boundaries and distribution [9,10]. In contrast,
digital mapping technologies offer a more economical, objective, and precise approach.
These technologies facilitate the identification of threatened areas and support peatland
resource protection [11]. Optical satellite data are widely used in mapping projects [12].
The use of Sentinel-1 and Sentinel-2 imagery, when combined with random forest (RF)
algorithms, has been shown to be effective in extracting detailed characteristics of peatlands.
It also enhances the precision of their boundaries and provides comprehensive descriptions
of their spatial distribution [13]. The fine spatial resolution and dense temporal coverage of
Sentinel-1 and -2 imagery also capture the seasonal variations in peatlands [14]. Previous
studies have successfully used Sentinel-1 and Sentinel-2 data to map peatlands in central
Estonia and Ireland [13–15]. Thus, the application of Sentinel-1 and -2 imagery for peatland
mapping has proven to be feasible and effective. However, challenges remain due to the
spectral similarity of peatlands with other wetland types, and the spatial heterogeneity
in moisture content, vegetation density, and peat layer thickness [16]. These complicate
the large-scale delineation of peatlands using satellite imagery [11]. With technological
advancements, peatland mapping using machine learning techniques has increased [17,18].

Various machine learning algorithms, such as support vector machine (SVM), RF,
and deep learning, have enabled the rapid mapping of wetlands globally. By addressing
overfitting risks and the covariance of interdependent variables [19,20], the RF algorithm
demonstrates a more robust fitting effect compared to other methods [21]. Synthetic
aperture radar (SAR) data have also been used to supplement optical satellite data in the
machine learning algorithm-based mapping of peatland-related land use and land cover
change (LULC). Melton et al. (2022) successfully used Sentinel-1 InSAR on the Google
Earth Engine (GEE) to identify and map global peatland distribution, demonstrating the
potential of SAR data in peatland monitoring [16]. However, existing studies often rely on
hydrological, soil, and topographical information for classification, making it challenging
to identify hidden peatlands. The objective of this research was to promote peatland
identification by employing the GEE in conjunction with Sentinel-1 and Sentinel-2 data to
create an advanced classification model using an object-oriented RF methodology. This
model incorporated an integrated indicator system that comprises climatic, topographic,
and hydrologic characteristics. The resultant model was used to delineate the distribution
of peatlands on the TP for 2023. By integrating SAR time-series data from Sentinel-1
with multispectral data from Sentinel-2, we aimed to accurately identify the peatland
distribution. This was achieved through the use of multisource remote-sensing data and the
GEE platform to develop a feature vector set that included various spatiotemporal attributes
of vegetation, soil, and hydrology. The combination of the GEE with RF algorithms can
facilitate the extraction of climatic parameters distinguishing peatlands from nonpeat
marshes, which are herbaceous wetlands, woody wetlands, and other types of wetlands
that are not classified as peatlands. Furthermore, the integration of time-series imagery
from Sentinel-1 and Sentinel-2 established a rapid, reliable, and automated methodology
for mapping peatlands, ultimately allowing for the swift and precise mapping of peatland
distribution [22].
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The TP, often referred to as the Third Pole, is an ecologically significant region hosting
vast peatlands that contribute to the global ecological balance. Due to their sensitivity to
environmental changes, these peatlands require vigilant protection and sustainable man-
agement [23]. Additionally, the unique geography and climate of the TP heightens the risk
of peatland degradation in this area [24]. The regional peatland deterioration, attributable
to anthropogenic activities such as drainage, peat extraction, and overgrazing, alongside
the impacts of global climate change, has markedly influenced carbon emission fluxes and
storage capacities. This degradation introduces uncertainties into the global greenhouse
gas emissions and carbon sequestration calculations regarding peatlands, thereby exacer-
bating the challenges associated with climate change. The lack of accurate peatland data
has led to a lag in research on a range of peatland issues on the TP. Current research on
peatlands on the TP is limited to the northeastern and central permafrost peatlands [6,25].
Comprehensive mapping of peatlands across the entire plateau is, therefore, crucial to a
better understanding of their distribution and dynamics.

In response to these challenges, this work uses the RF algorithm and a combination
of Sentinel-1 and -2 imagery to accurately and comprehensively map the distribution of
TP peatlands. The specific objectives of the current work are as follows: (1) to integrate
time-series Sentinel-1 and -2 imagery with indicators representing vegetation, hydrology,
and soil characteristics to construct an index system for peatland mapping and to use
the RF algorithm to map the spatial distribution of peatlands; (2) to assess the accuracy
of the generated maps and compare them with other available products; and (3) to ana-
lyze the spatial distribution of peatlands on the TP and evaluate the applicability of the
chosen method.

2. Materials and Methods
2.1. Study Area

The Tibetan Plateau (TP) is in southwestern China (25◦59′26′′–40◦1′6′′N,
73◦18′52′′–104◦46′59′′E) [26], with an east–west length of approximately 2800 km and a
north–south breadth of approximately 300–1500 km, covering a total area of approximately
2.5 million km2 (Figure 1). The TP is the source area of major rivers in the surrounding
areas. The TP predominantly features an alpine climate, which is characterized by the
presence of perennial glaciers and snow in numerous regions. This climate is marked
by significant diurnal and seasonal temperature variations, with long, cold winters and
short, cool summers [27]. Its climate is influenced by the westerlies, the East Asian summer
monsoon, and the South Asian summer monsoon [27]. Annual precipitation ranges from
200 mm (in the northwest of the TP, which is where the desert is) to 2000 mm (in the
southeast of the TP, which is affected by the Indian Ocean southwest monsoon), and annual
average temperatures vary from −6 ◦C (at mountaintops and high elevations) to 20 ◦C (in
the southeast of the TP) [27]. The TP contains 41 national wetland conservation areas, and
7 of them are Ramsar sites, indicating their invaluable ecological contributions. The Yellow
River Shouqu Protected Area (YSPA), Serinco Protected Area (SPA), Gongma Protected
Area (GPA), and Zoige Protected Area (ZPA) are four representative Ramsar sites on the TP.
The TP accumulated approximately 1.49 Pg of carbon in peat, accounting for 68% of the
total C reserves in Chinese peatlands [27]. The boundary of the TP used in this study is
obtained from the Third Pole Environment Data Center [26].
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total of 29,876 Sentinel-1 and -2 surface reflectance images in the TP region for the period 
of January–December 2023 were acquired, comprising 6146 Sentinel-1 Ground Range De-
tected images and 23,730 Sentinel-2 multispectral instrument images. Figure 2a,b display 
the spatial distribution of high-quality imaging observations (have less than 20% cloud 
coverage and are free from significant noise or artifacts) on the TP in 2023 for Sentinel-1 
and -2, respectively. More than 80% of the pixels were obtained over 50 Sentinel-1 obser-
vations, and more than 60% were obtained over 40 high-quality Sentinel-2 observations. 
The total number of Sentinel images available in each month is illustrated in Figure 2c,d. 
Sentinel-1 image quantities were all more than 459 each month, with a maximum of 582 
in January; Sentinel-2 image quantities were all more than 975 each month, with a maxi-
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by the space Shuttle Radar Topography Mission (SRTM) was resampled to a 10 m DEM 
through the GEE platform using a bilinear interpolation algorithm to generate topo-
graphic information, including elevation and slope (Figure 1). 

Figure 1. Geographic location and topography of the Tibetan Plateau in this study.

2.2. Datasets
2.2.1. Satellite Images and Preprocessing

The Sentinel-1 and -2 imagery, renowned for their high spatial and temporal resolution,
form the basis of the spatiotemporal data used in this study. Dual-polarized vertical
emission and vertical reception bands (VV) and vertical emission and horizontal reception
bands (VH) of Sentinel-1 SAR GRD images used in this study have a spatial resolution of
10 m and a revisit interval of 12 days. Sentinel-2 offers a multispectral instrument with
a spatial resolution of 10 m for visible and near-infrared bands, and 20 m for shortwave
infrared bands, with a revisit cycle of 5 days. Multi-feature-based wetland detection was
conducted using Sentinel-1 remote-sensing images and complemented with Sentinel-2
multispectral imagery. The Sentinel-1 and -2 data used in this work were collected and
preprocessed on the GEE platform. The Sentinel-1 GRD dataset used in this study had
been preprocessed, including de-distortion, radiometric correction, and terrain correction.
The Sentinel-2 MSI dataset had been ortho-corrected and geometrically fine-corrected. A
total of 29,876 Sentinel-1 and -2 surface reflectance images in the TP region for the period
of January–December 2023 were acquired, comprising 6146 Sentinel-1 Ground Range
Detected images and 23,730 Sentinel-2 multispectral instrument images. Figure 2a,b display
the spatial distribution of high-quality imaging observations (have less than 20% cloud
coverage and are free from significant noise or artifacts) on the TP in 2023 for Sentinel-1 and
-2, respectively. More than 80% of the pixels were obtained over 50 Sentinel-1 observations,
and more than 60% were obtained over 40 high-quality Sentinel-2 observations. The total
number of Sentinel images available in each month is illustrated in Figure 2c,d. Sentinel-1
image quantities were all more than 459 each month, with a maximum of 582 in January;
Sentinel-2 image quantities were all more than 975 each month, with a maximum of 2927
in November. The 30 m spatially resolved digital elevation model provided by the space
Shuttle Radar Topography Mission (SRTM) was resampled to a 10 m DEM through the
GEE platform using a bilinear interpolation algorithm to generate topographic information,
including elevation and slope (Figure 1).
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Figure 2. Spatial distributions of all available observations over the Tibetan Plateau in 2023 by
Sentinel-1 (a) and Sentinel-2 (b), with histograms showing the monthly image acquisition numbers
for Sentinel-1 (c) and Sentinel-2 (d).

2.2.2. Training Sample Data

To map the peatlands, we conducted field studies using Aowi software V10.1.6 to
select sample points, take photos, and record land cover types. The samples collected
through field sampling and visual interpretation were subsequently validated and refined
using Sentinel imagery from 2023 available on the GEE to ensure the accuracy of the
samples [28]. In instances where sample data were insufficient, we supplemented the
dataset with an additional 456 sample points, using a visual interpretation method based
on high-resolution Sentinel-1 and Sentinel-2 imagery (Figure 3). These samples were
instrumental in identifying key features for peatland classification and in automatically
generating additional training samples. Specifically, 70% of these samples were randomly
selected to create new training samples using the automatic sample generation method
proposed in this work, while the remaining 30% were reserved for performance validation.
All reference samples were used to train the classification model alongside the new training
samples generated automatically.
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2.2.3. Other Datasets

To facilitate a more accurate comparison with the current conditions and to enhance the
results of this work, we selected the PEATMAP dataset [27] and the Peat-ML dataset [16]
as reference maps for TP peatlands. We then compared and validated the predicted
results from these datasets. Both additional datasets integrate information from digi-
tized soil maps; wetland databases; and satellite imagery of swamps, marshes, bogs, and
freshwater wetlands.

2.3. Methods

In this work, the TP wetlands were categorized into peatlands and nonpeat marshes
based on the Ramsar Convention definition of wetlands and the wetland classification
system used in various prior studies [29,30]. Other major land cover types were also
categorized into woodland, grassland, water bodies, marsh, shrub, barren land, cropland,
and built-up land. A hierarchical decision tree classification method was applied to map
the different wetland categories in the study area, from which peatlands were identified.
The peatland mapping process was divided into four main parts: extraction and selection
of spatiotemporal features, automatic generation of training samples, peatland mapping
using the RF classification method, and accuracy assessment (Figure 4).
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2.3.1. Extraction and Selection of Spatiotemporal Features

Peatlands are characterized by an elevated organic matter content, a loose soil structure,
and high moisture levels, which contribute to their distinctive features in both radar
and optical imagery [11]. Specifically, radar imagery often reveals high backscattering
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coefficients for peatlands, while optical imagery typically depicts them as darker brown
with lower reflectance values [11]. These distinctions serve as primary differentiators
between peatlands and nonpeat marsh environments [31]. However, the differentiation
between peatlands and grasslands in radar and optical images is based on their spectral,
textural, and thermal infrared characteristics, which complicates effective classification [32].
Consequently, a comprehensive set of 41 spatial and temporal variables was developed for
peatland mapping in this study, aimed at accurately differentiating peatlands from other
analogous land cover categories (Table 1). Various spatial variables were derived from the
2023 Sentinel-1 and -2 composite imagery, which included 13 spectral bands, 5 polarization
indexes, 6 spectral indexes, 16 red-edge indexes, and 2 additional spectral indexes specific
to the Sentinel-1 and -2 imagery. These spectral bands and indices have been proven to be
proficient in distinguishing peatlands from nonpeat marsh areas, grasslands, and other
land types [28]. The spectral indexes were calculated according to the bands with the
following Equations (1)~(6):

NDWI =
ρgreen − ρnir

ρgreen + ρnir
(1)

NDVI =
ρnir − ρred
ρnir + ρred

(2)

EVI = 2.5 × ρnir − ρred
ρnir + 6 × ρred − 7.5 × ρblue + 1

(3)

DVI = ρnir − ρred (4)

RVI =
ρnir
ρred

(5)

MNDWI =
ρgreen − ρnir

ρgreen + ρnir
(6)

where ρnir, ρgreen, ρred, ρswir, and ρblue are the reflectance in the near-infrared, green, red,
shortwave, and blue bands, respectively.

Table 1. Spatiotemporal features extracted in this work.

Feature Category Feature Name (Number) Data Source

Polarization Polarization bands
Polarization indexes

VV, VH (2)
VV+VH, VH-VV,
NDV_VV, NDV_VH, VH/VV (5)

Sentinel-1

Spectral

Spectral bands
Spectral indexes
Red-edge indexes
Tasseled cap transformation

B1~B12 (13)
NDVI, EVI, RVI, DVI, NDWI, MNDWI (6)
NDVIre1, NDVIre1n, NDVIre2, NDVIre2n, NDVIre3,
NDVIre3n, PSRI, CIre, NDre1, NDre1m, NDre2,
NDre2m, SRre1, SRre2, MSRre, MSRren (16)
Wetness, Greenness, Brightness (3)

Sentinel-2

Soil SAVI
Texture ASM, Contrast, Entropy, Correlation, Dissimilarity (5) Sentinel-2
Terrain Elevation, Slope, Roughness (3) DEM
Temporal SWO Sentinel-1/2

Note: NDVI (Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), RVI (Ratio Vegetation
Index), DVI (Difference Vegetation Index), NDWI (Normalized Difference Water Index), MNDWI (Modified
Normalized Difference Water Index), PSRI (Plant Senescence Reflectance Index), SAVI (Soil-Adjusted Vegetation
Index), and ASM (Adobe Standard Material).

Furthermore, the soil moisture conditions and flooding frequency might contribute to
peatland development. Consequently, we employed Sentinel-1 and -2 time-series images
to calculate the annual NDWI, VV, and VH, along with the Otsu algorithm [33], to extract
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flood frequency data (Table 1) throughout the year, thereby characterizing the spatial
and temporal dynamics of surface water occurrence (SWO). Additionally, polarization
features, such as VV and VH, were effective in distinguishing between peatlands and
nonpeat marsh sites [16]. The distinctions in these features between different land types
were expected to underscore the efficacy of remote-sensing classification techniques in
differentiating peatlands from other land types, thereby validating our feature selections.
Detailed information is shown in Table 1.

2.3.2. Random Forest for Peatland Mapping

The RF algorithm was used for initial land-type classification based on the spatiotem-
poral features and the training samples, as described in Section 2.2.2. RF was combined
with various decision trees, and bootstrap sampling was obtained from the training set for
decision tree generation. The performance of a single decision tree in the RF classification
model is poor, and few samples can be selected from the sample set for stochastic feature
extraction. Hence, using multiple decision trees improves classification accuracy [32]. We
set the number of decision trees to 500 and used bootstrap resampling to randomly select
k samples with replacement, creating a new training dataset. Simultaneously, a terminal
node that appears in the optimal segmentation scenario is chosen from the random subset
of mapping variables. The final classification is determined by majority voting among all
the trees in the forest. Finally, in conjunction with the sample data, mixed multisource
variables are fed into the RF model to identify potential wetland distributions, and the
hyperparameters are constantly adjusted to optimize the model’s accuracy.

2.3.3. Accuracy Assessment of Peatland Classification Results

The accuracy of the peatland map created for 2023 in the TP region was evaluated
using a random sampling method. First, the classification process resulted in three wetland
categories and six non-wetland categories. Next, we assigned 14,640 random samples
to the corresponding sample sizes, generated random points within each category, and
visually examined and interpreted each sample point using high-resolution GEE images.
To assess the accuracy of the peatland spatial distribution and areas derived from the maps,
we also compared the mapping results with the previous peatland datasets, PEATMAP
and Peat-ML. Finally, to assess the accuracy of the results and calculate their standard
errors, we selected producer accuracy (PA), user accuracy (UA), overall accuracy (OA), and
Kappa Coefficient as the metrics to evaluate the classification results. Each object in the
validation set is treated as a sample. OA represents the percentage of correctly identified
objects, UA indicates the proportion of correctly classified parts in the classification result,
and PA is the ratio of correctly classified objects to the total number of objects [28]. The
relevant equations are as follows:

POA =
n

∑
i=1

Pii/P (7)

PUA = Pii/Pi+ (8)

PPA = Pii/P+i (9)

Kappa =
P∑n

i=1 Pii − ∑n
i=1(Pi + P+i)

P2 − ∑n
i=1(Pi + P+i)

(10)

where POA represents overall accuracy, PUA represents user accuracy, PPA represents pro-
ducer accuracy, P represents the total number of samples, Pii represents the number of
samples in the ith row and ith column of the error matrix, P+i represents the total count of



Remote Sens. 2025, 17, 292 9 of 16

the ith class in the categorization result, Pi+ represents the total count of the ith class in the
ground-truthing data, and n represents the number of classes.

3. Results
3.1. Peatland Features

Figure 5 illustrates the spectral, radar, and terrain signature characteristics of various
land types on the Tibetan Plateau (TP). Given the potential confusion between grassland
(GL) and peatland (PL) in the imagery, we selected grassland to compare with peatland and
nonpeat marsh (NPM), which is herbaceous wetlands, woody wetlands, and other types of
wetlands that were not classified as peatland. The DVI values for peatlands were observed
in the range of 0.05–0.09, while the RVI values varied from 1.29 to 1.58. Additionally, the
MNDWI values were recorded between 0.12 and 0.21, the NDWI values ranged from 0.09
to 0.14, and the NDVI values fell within the range of 0.03-to-0.07. Figure 5 demonstrates
clear distinctions among the different land types across all features analyzed. Notably,
the RVI values (1.29 to 1.58) for peatlands are substantially higher than those of nonpeat
marsh (0.77 to 0.88) and GL (approximately 0). Thus, RVI can serve as a critical reference
metric for distinguishing peatlands from grasslands. Additionally, we observed that the
MNDWI, NDWI, NDVI, VV, and VH values for peatlands and grasslands are overlapped,
corroborating the notion that grassland is often misidentified as peatland. Furthermore, the
values of these indices for grassland are substantially lower than those for nonpeat marsh,
except for MNDWI. On the TP, the slope does not allow a proper distinction between the
three land types.
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and peatland (PL) on the Tibetan Plateau.

We extracted 15 annual mean values for peatland, grassland, and nonpeat marsh land
types using SAR image features from Sentinel-1 and spectral features from Sentinel-2 after
preprocessing (Table 2). Subsequently, we calculated the differences between peatlands
and other land types. Among the SAR-related features, the VV and VH polarizations
effectively differentiated peatlands (26.03 and 15.60) from grasslands (23.57 and 13.69).
Furthermore, the derived spectral data and features facilitate clear distinctions between
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peatlands and nonpeat marsh areas. Specifically, the bands B6, B7, B8, B8A, B11, and B12
provide the information necessary for distinguishing between peatlands, grasslands, and
nonpeat marsh. Consequently, annual mean parameters derived from SAR and spectral
data can be employed to ascertain phenological characteristics, thereby enhancing the
identification of peatlands.

Table 2. Differences between peatlands and other land types for the 15 annual mean characteristics.

Features GL PL NPM

B1 0.24 0.24 0.25
B2 0.24 0.27 0.24
B3 0.25 0.28 0.25
B4 0.28 0.32 0.28
B5 0.30 0.34 0.30
B6 0.32 0.36 0.33
B7 0.33 0.37 0.35
B8 0.34 0.37 0.36

B8A 0.35 0.39 0.37
B9 0.30 0.32 0.32

B10 0.15 0.14 0.14
B11 0.38 0.37 0.35
B12 0.33 0.31 0.27
VV 23.57 26.03 24.96
VH 13.69 15.60 14.29

Note: PL stands for peatland. GL stands for grassland. NPM stands for herbaceous wetlands, woody wetlands,
and other types of wetlands that are not classified as peatlands.

3.2. Classification Accuracy of Peatland Categories

The assessment demonstrated an overall classification accuracy of 86.33% and a Kappa
of 0.72 for the generated 2023 TP peatland maps (Table 3). This result is highly consistent
with the 761 validation samples. The UA and PA for peatlands were recorded at 89.84%
and 78.96%, respectively. The classification accuracy for nonpeat marsh is also reliable
(UA 83.99%, PA: 92.51%), indicating the robustness of the classification results.

Table 3. Evaluation of the accuracy of peatland classification results.

Data Class PL NPM Total UA Kappa OA

2023

PL 274 31 305 89.84%

0.72 86.33%
Non-PM 73 383 456 83.99%

Total 347 414 761 -
PA 78.96% 92.51% - -

Note: PL stands for peatland. NPM stands for herbaceous wetlands, woody wetlands, and other types of wetlands
that are not classified as peatlands.

3.3. Area and Distribution of Peatlands on the TP

Figure 6 illustrates the spatial distribution of peatlands on the TP as of 2023. The
region’s peatlands covered approximately 57,671.55 km2 with evident spatial heterogeneity.
The peatlands are primarily located in the northeastern and southwestern parts of the TP
(Figure 6a). We selected several well-known international wetland reserves to analyze
the spatial distribution of peatlands. The chosen protected wetland areas include the
YSPA, SPA, GPA, and ZPA. In these internationally recognized protected wetland areas,
the classification results indicated that peatlands were centralized. Notably, the ZPA
encompasses the largest peatland area at 424.99 km2 (Figure 6e), accounting for 0.74% of
the total peatlands on the TP, while the GPA has the smallest area at 16.31 km2 (Figure 6c),
representing 0.02% of the total peatlands.
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Protected Area (YSPA), Serinco Protected Area (SPA), Gongma Protected Area (GPA), and Zoige
Protected Area (ZPA).

4. Discussion
4.1. Variable Importance of the Distribution of Peatlands

Figure 7 illustrates the degree to which various features contribute to the classification
results. There are obvious differences in the factors influencing the distribution of TP
peatlands. The most critical factors are B11 and B12, accounting for 5.28% and 5.16%.
NDWI, RVI, NDVI, and slope also play important roles in the classification, accounting for
4.44%, 3.79%, 3.74%, and 3.22%, respectively. The roughness, conversely, had the smallest
effect on peatland distribution, accounting for only 0.58%.

NDWI, RVI, NDVI, and slope are the key variables affecting peatland distribution in
this work. This finding aligns with previous descriptions in the literature [34]. Because the
NDWI and NDVI are the main indicators of surface water bodies, we speculate that the
distribution of peatlands is also correlated with surface water bodies. We found that the
mean annual precipitation was only around 400 mm in the ZPA, but the soil moisture index
was between 1.8 and 2.0 [6], which was the highest in the TP peatland region. The high soil
moisture is potentially due to its low evaporation resulting from a difficult runoff and low
temperature and explains why the ZPA has the largest and most developed peatlands on
the TP.

The thickness of the active layer may be another key factor influencing peatland distri-
bution on the TP [35]. The thickness is critical for peatland development and expansion, as
peatlands usually form in alpine zones where the active layer is less than 2.3 m thick [35].
This phenomenon may be related to the impermeability of the permafrost soil in alpine
zones, which inhibits water infiltration and favors surface water accumulation. Alpine
peatlands are sustained by perennial inflows of precipitation or groundwater, which may
come from rainfall, snow-melt, or, in some cases, glaciers. We also found that slope had a
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significant influence on peatland distribution. Our results indicate that the spatial distribu-
tion of peatlands is in flat areas with low slopes (<7◦), between 4000 and 5000 m above sea
level. This distribution pattern aligns with observations made in other alpine peatlands [7].
We hypothesize that the main factor contributing to this distribution is the higher soil
water saturation in flat areas compared to steeper regions, which is crucial for peatland
development. In summary, a complex interaction between climatic and topographic factors
ultimately determines the distribution of peatlands on the TP.
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4.2. High-Resolution Peatland Mapping Outcomes for the Tibetan Plateau

Figure 8 compares the peatland (PL) map generated in this work with the PEATMAP
(PM) and Peat-ML (PML) datasets. The total area of peatland identified in this work
was 57,671.55 km2, while the PM estimated the peatland area to be 55,683.80 km2. The
areal regression curve for PL with the PM demonstrates a high degree of agreement
between our results and the dataset (R2 = 0.81) (Figure 8a). Compared to the PM, this
work presents an updated peatland map for 2023, featuring a finer spatial resolution of
10 m. The PM was compiled from multiple data sources and is, therefore, less accurate
because the different data sources are a collection of wetland information from different
time periods [36]. For instance, the ZPA peatlands are in regions characterized by slopes of
less than 5◦. However, the PM forecasts the presence of peatlands on slopes reaching up to
10◦. Such steep inclines are generally not favorable for the accumulation of water, which is
essential for sustaining the water table conditions necessary for peatland formation [37].
These observations underscore the constraints of the PM predictions within the TP region
and emphasize the necessity for ground-truthing the projected maps. We also conducted
separate comparisons with PML (Figure 8b). The area regression curve generated by PML
with PL demonstrates a good consistency with our results (R2 = 0.70). The overall area
predicted by our results is greater than that of PML, and there are two primary reasons for
this discrepancy: First, PML, a wetland map developed using survey data from various
sources and remote sensing, does not include many of the already-identified TP peatland
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study sites [16]. Second, the observed area differences can be attributed to variations in data
generation methods. Additionally, PML often fails to provide accurate predictions for many
locations where peatlands have been identified, underestimating the extent of peatlands in
the TP region. Because this work uses a map simulation based on actual peatlands as the
sample points, the results are more consistent with the true peatland distribution.
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Figure 8. Comparison of our peatland map with other peatland maps. (a,b) compare our result (PL)
with peatland datasets PEATMAP (PM) and Peat-ML (PML) for peatland distribution on the TP,
respectively. (c,d) show the correlation between the peatland areas (km2) of protected peatland areas
in our result (PL) and those in the PM and PML, respectively. (e) presents the comparison of our
results (PL) with the PM and PML in four Ramsar sites: (1) Zoige Protected Area (ZPA), (2) Serinco
Protected Area (SPA), (3) Yellow River Shouqu Protected Area (YSPA), and (4) Gongma Protected
Area (GPA).

4.3. Implications of Peatland Mappings

In this work, the TP peatlands were mapped with a resolution of 10 m. The high-
resolution peatland distribution product has a wide range of potential applications in
scientific research and sustainable management, including biodiversity conservation, car-
bon stock assessment, and carbon sink estimation. For instance, detailed information about
the spatial distribution of peatlands can enhance our understanding of their ecological
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functions and services, which is critical for carbon sink studies of terrestrial ecosystems.
Additionally, this information can be used to evaluate the conservation status and trans-
formation of peatlands, providing valuable insights for the sustainable planning and
management of peat resources. Furthermore, detailed maps contribute to the restoration
and development of peat resources in degraded peatlands and support informed decision
making regarding peatland conservation and restoration. However, the current products
remain insufficient. Due to various factors, it is currently impossible to study the peatlands
in the western TP.

Our TP peatland map also has certain limitations. We have not explored the possibili-
ties offered by many other algorithms. For instance, deep learning algorithms show great
potential for processing large-scale remote-sensing data, being able to extract features from
complex images and build classification and regression models. In peatland mapping, these
deep learning algorithms could help to distinguish peatlands from other wetland types,
especially when their spectral features are similar [15]. Future research should explore how
deep learning algorithms can be utilized to improve the accuracy and efficiency of peatland
mapping. Also, our model does not account for the presence of snow and numerous glaciers
covering this region, which may limit its effectiveness in assessing peatlands influenced
by glaciers and snow. Our model is predicated on environmental factors such as geomor-
phological characteristics, vegetation types, soil moisture conditions, and climate-related
factors. However, peatlands can also modify their surrounding environment (for instance,
by accumulating peat in depressions or altering the hydrological dynamics of vegetation),
thereby complicating the differentiation between causal and consequential relationships
regarding peatland distribution and environmental factors. Furthermore, our methodology
is less prescriptive compared to that of Hugelius et al. [38], who defined peatlands based
on the soil carbon content at specific locations. Consequently, the peatland distributions
generated from our simulations diverge from those established through carbon content
criteria. Additionally, the RF algorithm used in this work identifies numerous key features
from the data without a comprehensive understanding of the specific ecological processes
that govern peatland formation and evolution. Therefore, future research should integrate
process-based modeling to enhance our understanding of the changes in the extent of TP
peatlands and the fluctuations in carbon stocks in response to climate change.

5. Conclusions
In this study, the Sentinel-1 and Sentinel-2 time-series images combined with vege-

tation, hydrology, and soil characteristics were used to map the peatlands on the Tibetan
Plateau with the high resolution of 10 m. The integration of spatial and temporal fea-
tures with an efficient method for automatic sample generation significantly enhanced the
accuracy of peatland classification, achieving an overall accuracy of 86.33%. This result
underscores the effectiveness of the random forest algorithm in distinguishing peatlands
from nonpeat marsh areas, thereby facilitating a detailed analysis of peatland distribution.
The accuracy assessment and comparison with existing datasets such as PEATMAP and
Peat-ML revealed that our map provides a more accurate and up-to-date representation
of peatlands on the Tibetan Plateau. Through a comprehensive analysis of the spatial
distribution of peatlands, it is revealed that significant peatland concentrations are in key
protected areas. Overall, the methodology and products developed in this study offer
significant contributions to the conservation and management of peatlands on the Tibetan
Plateau. They can also serve as a critical resource for assessing Sustainable Development
Goal targets and support the development of more comprehensive peatland maps glob-
ally. Future research could explore the integration of additional environmental variables
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and advanced machine learning techniques to further refine the accuracy and predictive
capabilities of peatland mapping models.
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