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Abstract: Addressing global warming and adapting to the impacts of climate change is a
primary focus of climate change adaptation strategies at both European and national levels.
Land surface temperature (LST) is a widely used proxy for investigating climate-change-
induced phenomena, providing insights into the surface radiative properties of different
land cover types and the impact of urbanization on local climate characteristics. Accurate
and continuous estimation across large spatial regions is crucial for the implementation of
LST as an essential parameter in climate change mitigation strategies. Here, we propose a
deep-learning-based methodology for LST estimation using multi-source data including
Sentinel-2 imagery, land cover, and meteorological data. Our approach addresses common
challenges in satellite-derived LST data, such as gaps caused by cloud cover, image border
limitations, grid-pattern sensor artifacts, and temporal discontinuities due to infrequent
sensor overpasses. We develop a regression-based convolutional neural network model,
trained on ECOSTRESS (ECOsystem Spaceborne Thermal Radiometer Experiment on Space
Station) mission data, which performs pixelwise LST predictions using 5 × 5 image patches,
capturing contextual information around each pixel. This method not only preserves
ECOSTRESS’s native resolution but also fills data gaps and enhances spatial and temporal
coverage. In non-gap areas validated against ground truth ECOSTRESS data, the model
achieves LST predictions with at least 80% of all pixel errors falling within a ±3 ◦C range.
Unlike traditional satellite-based techniques, our model leverages high-temporal-resolution
meteorological data to capture diurnal variations, allowing for more robust LST predictions
across different regions and time periods. The model’s performance demonstrates the
potential for integrating LST into urban planning, climate resilience strategies, and near-
real-time heat stress monitoring, providing a valuable resource to assess and visualize the
impact of urban development and land use and land cover changes.

Keywords: climate change adaptation; urban heat island; land surface temperature;
ECOSTRESS; Sentinel-2; INCA; deep learning; convolutional neural network; gap-filling

1. Introduction
Responding to global warming and adapting to climate change effects such as heat

waves and drought is a key priority for stakeholders involved in the definition of climate
change adaptation strategies [1]. Most of the largest cities experience profound changes
due to urbanization and hence, city administrations are facing challenges in safeguarding
high-quality urban growth despite increasingly tight spatial resources. Studies have shown
that the degree of surface sealing has a direct impact on the radiation balance by modifying
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the surface radiative properties and radiatively active air pollutants [2,3], thus influencing
the ratio between sensible and latent heat fluxes. These modifications in a built-up envi-
ronment make cities (but also smaller municipalities) warmer than their surroundings and
more prone to excess heat, leading to an urban heat island (UHI) effect [4]. Other studies
have demonstrated that the temperature within urbanized areas shows a high degree of
variability depending on the local urban morphology [5–7]. Land use and land cover, along
with their changes in general, influence the local climate characteristics [8,9]. Regional and
city administrations make use of this knowledge, aiming to reduce health risks related
to climate change and to increase human well-being by implementing heat mitigation
measures such as green and blue infrastructure [10,11]. Altering thermal comfort in urban
environments enhances the time of exposure to an uncomfortable amount of heat. This
can be particularly dangerous for vulnerable individuals, as well as for those perform-
ing strenuous physical work in high heat, potentially leading to fatal outcomes [12–14].
Moreover, recent studies have highlighted that climate change in general, and increasing
temperatures in particular, pose a significant risk for mountainous areas, affecting alpine
communities and their economy (e.g., tourism) [15]. Global and regional warming can
further amplify the effect of excess heat [16]. Taking adaptive measures is not only the
focus of larger cities but also of any urban area and mountainous region. Understanding
how land use and climate trends impact local climates is essential for decision-makers
to develop cost-effective, evidence-based, and consistent solutions for sustainable cities
and for rural and mountainous communities. The goal of our study is, therefore, the
development of a methodology allowing the local heat variability to be highlighted at
high resolution (compared to numerical weather prediction model output) and based on
actual observations from satellite sensors, with the overall aim to support climate change
adaptation activities at a local and regional scale.

Land Surface Temperature (LST) is a proxy that is broadly used to investigate the
Surface Urban Heat Island (SUHI) effect [4,17]. The positive correlation between LST and
the degree of surface sealing [18,19] represents the intensity of the SUHI which, identical
to the UHI effect, is higher in urban environments compared to rural areas [18]. The
degree of surface sealing is also related to the Bowen ratio (β; ratio between sensible
and latent heat fluxes) [20]. Surfaces with a higher Bowen ratio (β > 1) indicate lower
soil moisture availability [21], leading to an increase in LST, enhanced heat exchange
by convection, and an increase in near-surface air temperatures [22], thus intensifying
urban heat [18,19]. Conversely, surfaces with a lower Bowen ratio (β < 1) indicate higher
soil moisture availability [21], which decreases LST and favors the evapotranspiration-
driven cooling effect, leading to a decrease in near-surface air temperatures [23]. LST is a
crucial parameter in numerous fields, including surface energy and water balance, ecology,
agriculture, environment, climatology, meteorology, and hydrology [24–26], contributing to
an overall understanding of the Earth’s surface dynamics and the impact of climate trends.
Improving our understanding of LST and its interplay with surface sealing, land cover, and
meteorological conditions is thus paramount, with a wide range of applications involving
Surface Heat Island, urban climate studies [27–29], drought monitoring [30], surface soil
moisture and evapotranspiration estimation [31,32], and numerical weather prediction, to
name a few.

A major advantage of using LST to investigate the SUHI effect is its availability from
gridded data (e.g., Earth-observation (EO)-based retrieval), which enables the analysis
of local effects depending on the resolution of the satellite sensor. In addition, a remote-
sensing-based LST dataset has been accepted by the International Geosphere and Biosphere
Program as one of the high-priority parameters, and the Global Climate Observing System
identified it as an Essential Climate Variable [33]. EO-based LST represents the accumula-
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tive radiometric surface temperature of all materials of the surface cover within the sensor’s
field of view [34]. Thus, LST estimation from thermal infrared images is complex due
to the surface composition, with materials of varying emissivity and geometry [35–38].
For example, a densely vegetated area represents the surface temperature of vegetation;
whereas in a sparsely vegetated area, the surface temperature includes contributions from
vegetation and soil simultaneously [36]. EO-based retrieval of LST has a long tradition
dating back to the 1960s with the launch of the TIROS-II satellite [39,40]. Numerous EO
sensors subsequently followed, carried on geostationary and low-Earth-orbit satellites and
providing data at coarse spatial resolutions (750 m to 4 km, e.g., Geostationary Operational
Environmental Satellite, GOES [41]; Spinning Enhanced Visible and Infrared Imager, SE-
VIRI [42]; Advanced Very High Resolution Radiometer, AVHRR [43]; Moderate-resolution
Imaging Spectroradiometer, MODIS [44]; Advanced Along-Track Scanning Radiometer,
AATSR [45]; Visible Infrared Imaging Radiometer Suit, VIIRS [46]; Sentinel-3 Sea and
Land Surface Temperature Radiometer, SLSTR [47]). Medium spatial resolution data (70
to 100 m) is provided through sensors such as the Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer (ASTER, e.g., [48]), the Landsat Thermal Infrared Sensor
(TIRS) [49], and the ECOsystem Spaceborne Thermal Radiometer Experiment on Space
Station (ECOSTRESS) [50]. In the context of EO-based LST retrieval, the impact of spatial
resolution is significant, as higher-resolution sensors provide more precise insights into
localized heat variations [51], which can be particularly important for capturing the UHI
effect in urban areas with heterogeneous surfaces.

Satellite-based LST datasets have been extensively used, e.g., for advanced assessments
of UHI effects—overcoming the challenges of conducting high-resolution air temperatures
at similar scale [27]—in assessment and mitigation studies elaborating on the spatiotempo-
ral behavior of the UHIs [52–58] and in downscaling studies, providing high-resolution
LST maps based on the assumption of a scale-invariant relationship between LST and other
influencing parameters (e.g., surface sealing degree, reflectance, spectral indices) [57,59–62].
These advances establish LST as an essential parameter for advanced applications in urban
and built-up environments. A particularly interesting approach consists of integrating
methods operating at different scales to enhance modeling capabilities in heat assessment
studies; namely, the integration of LST datasets with the Computational Fluid Dynamics–
Geographic Information System integrated modeling approach [6,7]—enabling modeling
of the SUHI effect at very high spatial resolution—and urban climate models used to down-
scale and evaluate the localized effects of heat or other climate-related parameters [63].
A critical requirement for fully utilizing LST within a multi-resolution and multi-sensor
data fusion methodology is access to a comprehensive LST dataset provided on a high
spatial and temporal distribution. Satellite missions like ECOSTRESS and Landsat offer
high-resolution LST data at sub-100 m scales; however, their usability is limited by sparse
temporal coverage due to infrequent overpass schedules and cloud interference. These
limitations create significant data gaps, particularly in regions with persistent cloud cover,
thus reducing the availability and continuity of LST observations, and necessitating the
development of gap-filling techniques.

Interest in LST gap-filling methodologies grew in the 2010s, driven by the challenges
coming from incomplete satellite data caused by cloud cover, sensor limitations, and in-
frequent overpass times [64–67]. The methodologies for LST gap-filling have evolved
rapidly, resulting in various techniques that can be categorized into several distinct ap-
proaches [65,66]. Reconstruction methods—which can be either spatial, temporal, or
spatiotemporal—exploit spatial and temporal correlations, using neighboring pixels in
space and time to estimate missing values (e.g., [68–72]). These methods are effective
at filling gaps in existing data, but they result in hypothetical, clear-sky LST estimates.
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Data fusion methods combine multiple data sources, such as satellite-derived and passive
microwave data, to improve the accuracy of LST predictions by integrating information
from different datasets (e.g., [73]). This approach enables LST estimates even in areas with
cloud cover. Surface energy balance methods are employed to estimate LST under clouds
by considering physical parameters like radiation and atmospheric conditions (e.g., [74,75]).
Temporal gap-filling techniques address the issue of missing data due to sparse satellite
overpasses, using methods such as temporal interpolation and diurnal temperature cycle
modeling to reconstruct missing values from the time series data (e.g., [76,77]). Spatiotem-
poral data fusion combines data from multiple sensors, such as MODIS and Landsat, to
enhance both spatial and temporal resolution [78]. Additionally, simulated data can be
incorporated within fusion frameworks, allowing for more precise and continuous LST
predictions across time and space [77].

Over the past decade, machine learning models have become integral to the field of
Earth observation, with numerous pivotal reviews highlighting the breakthroughs in re-
mote sensing, and applications in image processing, data fusion, time series analysis, object
detection, and land cover mapping [79–84]. In recent years, machine learning techniques
have been increasingly adopted for LST gap-filling, leveraging their capacity to model
complex relationships between LST and auxiliary data sources ([67] and references therein).
Methods such as multiple linear regression, random forest, and deep learning have been
applied successfully to map all-weather LST [68,85–88]. The combination of traditional
physical models with machine learning algorithms has further improved the accuracy
and spatial–temporal resolution of LST products [89]. Convolutional neural networks
(CNNs), in particular, have been investigated due to their ability to learn relationships
between neighboring pixels in an image, enabling the extraction and learning of complex
spatial features [79,80]. While they have been popular for classification and segmenta-
tion tasks [90–92], regression-based CNN models are becoming increasingly prevalent,
facilitating the estimation of continuous data in environmental, urban, and agricultural
contexts [82]. These models have shown promising applications for both surface and
air temperature predictions [84,88,93,94], highlighting their potential in advancing LST
gap-filling methodologies.

The objective of this study is to develop a deep-learning-based methodology for
estimating LST using multi-source data, and to demonstrate its potential applicability in
the context of urban climate resilience strategies and near-real-time heat stress monitoring.
The main contributions can be summarized as follows. (1) A lightweight, regression-based
CNN model is developed to predict LST from multi-source data, including Sentinel-2
data, land cover information, and hourly meteorological data. The network is trained on
ECOSTRESS data, and it can learn highly dynamic spatiotemporal relationships between
ECOSTRESS and the auxiliary datasets, enabling LST estimation based solely on the current
meteorological conditions and land characteristics. In other words, LST is not required
as an input. (2) Since the network does not require LST as the input, it can generate
predictions at any location on an hourly basis, given the availability of meteorological data.
This approach provides both spatial and temporal gap-filling of the ECOSTRESS images,
addressing simultaneously the gaps due to cloud cover and sensor limitations, as well as
the temporal discontinuities in the data availability. The model can thereby generate high-
quality LST data across large spatial regions and with high temporal resolution. (3) The
model is validated over urban areas, demonstrating the potential to integrate and use
the developed methodology in urban climate modeling approaches and spatial planning
activities [6,7,47].

The paper is organized as follows. In Section 2, we describe the materials, including
the areas of interest and the datasets, and provide details on the processing methodology. In
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Section 3, we present the model results and analyze LST predictions in spatial and temporal
contexts. The discussion and conclusions are provided in Sections 4 and 5, respectively.

2. Materials and Methodology
2.1. Study Areas

We selected two areas of interest for our study (AREA I and II), covering various land
cover classes within the urban, rural, and alpine environment.

AREA I, located at approximately 47.27◦N and 11.39◦E and covering 19.3 × 16.3 km2,
includes the city of Innsbruck, Austria, and its surrounding area (see Figure 1). The city
region includes the typical heterogeneous urban environments (such as buildings and roads),
vegetated areas (parks, lawns), and bodies of water (rivers, lakes). The area outside of the
city borders includes rural and agricultural features, as well as typical alpine features such as
mountainous terrain, forests, and meadows. Innsbruck has a humid continental climate with
highly variable summers, and a June–July daily mean temperature of 18.9 ◦C [95,96].
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AREA II, located at approximately 48.21◦N and 16.37◦E and covering 29.8 × 22.4 km2,
includes the city of Vienna, Austria, and its surrounding area (see Figure 1). The city region
is characterized by typical urban areas, such as residential, commercial and industrial areas,
as well as vegetated and water areas. The greater region also includes extensive agricultural
surfaces and forests. Vienna has a borderline oceanic and humid continental climate with
warm summers, and a June–July daily mean temperature of 21.2 ◦C [95,96].

The primary application of interest within our study being heat monitoring, we focus
on the analysis of LST trends during summer months. Therefore, we define our time
window of interest as the summer months of June, July, and August. For the preparation of
the datasets described in the following subsections, we focus on the data available from the
years 2022 and 2023. The data obtained within such constraints are thus a representation of
typical summer conditions in AREA I and AREA II.

2.2. Land Surface Temperature

The primary objective of this study is the development of a neural-network-based
model capable of capturing and predicting dense LST time series over large spatial regions.
Achieving this goal strongly relies on the careful selection of input datasets, a crucial step
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that underpins the modeling process. In the input data selection, we have been guided
by the established theoretical models for LST, which provide the essential framework for
relating the LST to the various physical parameters characterizing the surface and the
surrounding environment.

LST is a key environmental metric that measures the radiative skin temperature
of the Earth’s surface. Unlike air temperature, which is typically measured at weather
stations and reflects the atmospheric conditions above ground, LST encompasses thermal
infrared radiation emitted by the land surface. Consequently, it is strongly dependent
on atmospheric dynamics, global radiation, and the reflective and absorptive surface
characteristics [6,97–99]. The dependence on these various parameters is captured by a
physical model, which provides an empirical formula relating LST to atmospheric and
surface conditions [97,98]:

Tsurface = Tair +
Q + B

(6.2 + 4.26 × vwind)
(

1 + 1
β

) (1)

Here, Tsurface and Tair denote the surface and air temperature, respectively, Q repre-
sents the net all-wave radiation flux, B represents the substrate heat flux, vwind is wind
speed, and β is the Bowen ratio [20]. The model in Equation (1) captures the fundamental
relationships governing LST in relation to ambient and surface parameters. However, it is
of limited practical use, its utility being constrained by the demand for precise calculations
of multiple heat fluxes, a task that is often challenging and spatially limited. Instead, we opt
for a more robust approach, leveraging a neural-network-based methodology, as described
in more detail in Section 2.4, and we base our selection of input parameters on the physical
model given by Equation (1).

In particular, the parameters Tair, Q, B, vwind represent variables dependent on
ambient meteorological conditions, while the Bowen ratio β elucidates the relationship
between sensible heat and latent heat, depending on factors such as surface type (e.g.,
vegetation, water, urban), weather conditions, and time of day [100]. With our choice of
input parameters, we carefully address and encompass the elements from the physical
model into our neural network model, ensuring a model that is both physically meaningful
and computationally robust.

2.3. Datasets

The modeling workflow presented in this study makes use of multiple datasets, which
are summarized in Table 1 and described in more detail in the following subsections. The
thermal data consists of the ECOSTRESS 70 m LST product (Section 2.3.1) which also defines
the target resolution in our gap-filling procedure. The meteorological data is provided
by the Integrated Nowcasting through Comprehensive Analysis (INCA) dataset of the
Austrian national meteorological service (Section 2.3.2) and the optical multispectral data
includes Sentinel-2 imagery (Section 2.3.3). Additional land cover and topographic datasets
are described in Section 2.3.4. Due to the different spatial resolutions of the input datasets,
various resampling techniques have been applied to the datasets in preparation for the
gap-filling process (cf. Table 1). To address temporal differences in the datasets, we selected
the closest available timestamps per dataset, which in the case of the meteorological data
is within one hour, for Sentinel-2 is the closest cloud-free observation, and for the land
cover is the last published dataset (currently 2018). We assume that the variability of the
underlying land surface characteristics (i.e., albedo from Sentinel-2 multi-spectral data and
land cover changes) are negligible and have a minor effect on the overall error.
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Table 1. Summary of the datasets used in this study. The column ’Resampling Method’ indicates the
spatial (S) and temporal (T) resampling applied to the datasets.

Dataset (Source) Resolution Resampling Method Considered Parameters

ECOSTRESS-LSTE
(ECOSTRESS) 70 m Target resolution Land surface temperature,

quality control

INCA (Geosphere Austria) 1 km S: Bilinear interpolation
T: Nearest observation (<1 h)

Air temperature at 2 m, relative
humidity at 2 m, global
radiation, wind speed

Sentinel-2 (Sentinel-2 mission) 10/20 m S: Mean aggregation
T: Nearest observation (<1 month) Bands B2, B3, B4, B8, B11, B12

EU-DEM (Copernicus Land
Monitoring Service) 25 m S: Nearest neighbor

T: NA Elevation, aspect, slope

Land cover (Copernicus Land
Monitoring Service) 10 m S: Nearest neighbor

T: 2018
Tree cover density, water and
wetness index, imperviousness

2.3.1. ECOSTRESS: Target Dataset

ECOSTRESS is an ongoing NASA scientific mission mounted on the International
Space Station (ISS). The main instrument in ECOSTRESS is a multispectral thermal infrared
radiometer, which collects and provides measurements of the surface temperature [101].
We use the ECOSTRESS Land Surface Temperature and Emissivity (ECOSTRESS-LSTE)
Level 2 dataset for the supervised learning approach. The ECOSTRESS-LSTE L2 product
is provided in 70 m resolution, with irregular revisit times of one to five days according
to the flight pattern of the ISS [102]. Due to the inclined and precessing orbit of the ISS,
the observation times of the ECOSTRESS instrument vary, with some days providing
multiple observations per day [50]. Spatially, ECOSTRESS observations usually cover
a large geographic area; specifically, a single ECOSTRESS-LSTE observation is typically
sufficient to reproduce a single scene over our areas of interest.

The corresponding ECOSTRESS data acquisition follows via an automated download
directly from the NASA search portal [103]. ECOSTRESS-LSTE is the cornerstone dataset
of our model, providing target values for the supervised learning of LST. An example
ECOSTRESS LST observation is shown in Figure 2a.

2.3.2. INCA

The INCA dataset is a temporally detailed meteorological dataset provided by the
Central Institute for Meteorology and Geodynamics in Austria. The INCA data is modeled
using various available data sources—station observations, remote sensing data, numerical
weather prediction models and a high-resolution terrain model—to produce the analysis of
the current state of the near-ground atmosphere [104]. INCA data is provided at a 1 km
spatial and an hourly temporal resolution, with historical data available dating back to
2013. The dataset covers five weather-relevant parameters which we consider as the input:
air temperature, global radiation, relative humidity, and wind speed in two directions. An
example INCA air temperature observation is shown in Figure 2b. This comprehensive
coverage offers a view of weather conditions at any given location, and it provides many
of the essential physical parameters required by the physical model in Equation (1). Spa-
tially, the INCA dataset primarily covers Austria and its surrounding regions, focusing
particularly on the areas with complex terrain, such as the Alpine region [104]. The dataset
has been evaluated in several studies [104,105]. In particular, air temperature data was
shown to have high accuracy, making it a reliable parameter. Wind data, while generally
accurate, has displayed some discrepancies, especially in complex alpine terrains. For
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urban applications, which are the focus of this study, INCA thus represents a robust dataset
with sufficient accuracy to support our methodology.
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Within our data processing workflow, we select the time window of interest, as
specified in Section 2.1, and acquire the full spatial INCA dataset on an hourly resolution
via an automated download directly from the GeoSphere Austria Data Hub [106].

2.3.3. Sentinel-2

The high-resolution input data for the LST mapping consists of the Sentinel-2 satellite
data of the European Copernicus Earth observation program [45]. The Sentinel-2 mission
provides high-resolution multispectral imagery, with spectral bands ranging from the
visible to infrared part of the spectrum. Having a decametric resolution and a 5-day revisit
time [45], the Sentinel-2 mission accurately captures the reflectance properties of surfaces
around the time window of interest. It thus provides spatial information similar to, and
more comprehensive than, the Bowen ratio parameter required in the physical model in
Equation (1). This makes it a crucial input for our model, enhancing its capability to analyze
and interpret surface characteristics and providing a link between LST and the various
land cover classes.

For our data processing workflow, we select the Sentinel-2 images covering the area
and time window of interest, and retrieve them locally from the Sentinel-2 Cloud Storage
bucket [107]. We consider six spectral bands for the input (B2: Blue, B3: Green, B4: Red,
B8: Near-Infrared, B11 and B12: shortwave infrared), as well as the Scene Classification
Layer (SCL) for the identification of clouds and shadow. Instead of explicitly deriving
spectral indices, such as normalized difference vegetation index (which is a combination
of bands B4 and B8), we provide these raw bands directly to the model. This approach
avoids explicit feature engineering and enables the model to identify optimal patterns
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and combinations of input features autonomously during training. Sentinel-2 imagery is
divided into standardized 100 km × 100 km tiles. AREA I and AREA II considered in
our study are covered by the tiles 32TPT and 33UWP, respectively, with each tile having
the projection of the 32 or 33 Universal Transverse Mercator (UTM) zone, respectively
(UTM/WGS84 projection). An example Sentinel-2 B4 observation is shown in Figure 2c.

2.3.4. Additional Input Datasets

In addition to the Sentinel-2 satellite imagery and the INCA meteorological data, in our
approach we utilize several supplementary numerical datasets to enhance the robustness
and the accuracy of the model. These include the European Digital Elevation Model
(EU-DEM) and derived parameters (slope, aspect), which provide detailed topographical
characteristics [108], and several land cover datasets provided by the Copernicus Land
Monitoring Service [109]:

(i) Tree cover density—a dataset which provides insights into vegetation distribution;
(ii) Water and wetness index—a dataset which indicates moisture levels and the presence

of water bodies;
(iii) Imperviousness—a dataset which highlights the areas covered by artificial surfaces

such as roads and buildings.

All the additional datasets are shown in Figure 2d–g. Combining these various
additional layers with the optical and meteorological data accounts for environmental
and land surface characteristics, thereby improving the overall modeling capability of our
approach, and providing a link between LST and surface properties.

2.4. Methodology

After collecting the thermal and the optical remote sensing datasets, our gap-filling
methodology is carried out in several major processing steps, which are summarized by a
flowchart in Figure 3. These steps can be roughly divided into three parts: image processing
(including preprocessing, observation matching, and further processing into input patches
for the CNN model), CNN model training, and model assessment and evaluation.

2.4.1. Image Preprocessing

ECOSTRESS: The downloaded ECOSTRESS swath data are transformed into gridded
single-band images in the UTM projection using the open-source swath2grid conversion
algorithm [110]. In particular, we extract the LST and the quality control (QC) layers.
The georeferenced LST layer is passed through several quality assessments and artifact
mitigation steps. First, we make use of the intrinsic QC layer to mask out any low-quality
pixels. The QC unsigned 16-bit data are stored as bit flags in the layer, with flags related
to data quality, cloud, Temperature and Emissivity Separation algorithm diagnostics, and
error estimates [101]. For the purposes of this study, we mask the LST layer by keeping
only the best quality, cloud-free pixels, corresponding to the value for QC bits 1 and 0 = 00.
This step is generally sufficient to eliminate most artifacts and clouds appearing in the
observations. Second, we perform further manual checks to evaluate (i) the accuracy of
georeferencing, and (ii) the quality of the QC masking. (i) In the case of a georeferencing
offset of more than 50 m, the image is labeled as incorrect and discarded from further
analysis. (ii) In the case of insufficient cloud masking (identified by extremely low negative
temperatures), custom additional masking is performed.
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The LST dataset obtained after filtering suffers minimal issues due to incorrect georef-
erencing and undetected cloud coverage. As a result of the filtering, the data availability
is reduced, leading to aperiodic availability of observations, and a typical 2–5-day revisit
period in a specific location. The filtered ECOSTRESS LST data comprises the final dataset
supplied to our model as the target values.

INCA: From the raw downloaded INCA time series data, we extract the observations
which are temporally closest to the prepared ECOSTRESS LST, such that each extracted
INCA observation corresponds to a single ECOSTRESS LST observation. The extracted
images are resampled to the native ECOSTRESS resolution (70 m). Although such resam-
pling does not add new information, it helps to smooth the images and facilitates a more
systematic comparison with the ECOSTRESS data.

We note that the INCA data are provided at a much coarser resolution than
ECOSTRESS (1 km compared to 70 m resolution). However, in the context of LST modeling,
this represents a sufficient input, as meteorological conditions are less spatially hetero-
geneous than the land surface characteristics. On the other hand, nearly exact temporal
matching is possible, due to the high hourly temporal resolution of the INCA dataset. As
such, the INCA dataset meets our goal of relating the LST to the dynamic meteorological
conditions at the time of the LST image acquisition.
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Sentinel-2: As the input for our model, from the downloaded Sentinel-2 data we select
and keep only the best available scenes, focusing on (i) mitigating cloud contamination
and (ii) reducing data gaps due to swath overpass patterns, as the presence of any such
low-quality areas in an image can negatively impact model training. To that end, we
remove any of the images for which the metadata information indicates more than 10% of
cloud coverage. Additionally, we discard all the observations that contain more than 1%
data gaps. Such filtering leads to, on average, 2–4 scenes available per tile and per summer.

Even though the filtering described above leads to a modest final number of total
observations per tile, for the purposes of our analysis this is an adequate input. More
specifically, these filtered images are a good representation of the average surface reflectance
properties for the time window around which they were taken. As such, they are deemed
sufficient to meet our goal of relating the LST to the more static surface properties, such as
the land cover.

Additional datasets: The additional datasets introduced in Section 2.3.4 are resampled
to the native ECOSTRESS resolution.

As a final step in data preprocessing, we perform spatial and temporal image matching
in several steps. (i) We resample (average) the Sentinel-2 images to the ECOSTRESS native
resolution (70 m), (ii) we reproject ECOSTRESS, INCA, and additional datasets to the UTM
projections, (iii) we clip ECOSTRESS/INCA/additional datasets to the Sentinel-2 tile extent,
and (iv) we match every ECOSTRESS/INCA tiled observation to the temporally closest
Sentinel-2 observation. The resampling, reprojection, and image clipping operations are
performed using GDAL 3.7.0.

2.4.2. Preparation of the Input Patches for the CNN Model

The input to the CNN consists of 17 input features, described in Sections 2.3.2–2.3.4
and summarized in Table 2, spatially limited to a narrow image window (patch) around the
pixel of interest. Adapting the approach in [92,111], we select a patch of size 5 × 5 as the
input image to the CNN. At the native resolution of ECOSTRESS (70 m), this corresponds
to a window of 350 m × 350 m, incorporating the contextual information surrounding
each pixel. This inclusion of surrounding prominent features—such as vegetation, water
bodies, agricultural fields, and industrial areas—enhances the model’s ability to utilize and
leverage contextual data during training.

Table 2. List of input features for the CNN.

Dataset Input Features

INCA air temperature, relative humidity, global radiation, wind speed in x
direction, wind speed in y direction

Sentinel-2 bands B2, B3, B4, B8, B11, B12

EU-DEM elevation, aspect, slope

Land cover tree cover density, water and wetness index, imperviousness

Several steps are necessary to transform the images, prepared as described in
Section 2.4.1, into the image patches provided as the input to the CNN. First, we gen-
erate 5 × 5 patches from all the images. For this, a sliding window of size 5 × 5 is applied,
such that each pixel appears in a single patch only. Second, for patches corresponding to
the ECOSTRESS data, we extract the value of the central pixel in each patch to serve as
the target value for training. Third, we filter the patches, keeping only those that meet
the following criteria: (i) all pixels across all input features have valid values and (ii) the
ECOSTRESS value for the central pixel is valid. This step eliminates patches with missing
data in the ECOSTRESS images [as visible, e.g., in Figure 2a], as well as patches with cloudy
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or shadowy pixels in the Sentinel-2 images, identified using the SCL. The input for the
CNN is thus a multidimensional array of shape Ntrain × 5 × 5 × Nfeatures, where Ntrain

denotes the total number of filtered patches across all summer observations considered for
the training, and Nfeatures = 17 is the number of input features.

2.4.3. CNN Architecture for Pixelwise Regression

We utilize a standard CNN model to perform pixelwise LST estimation. The CNN
is trained through supervised learning using Keras 2.13.1. Our model is adapted from
the CNN configurations presented in [92,111], where a CNN architecture is developed
for pixelwise segmentation and classification of Sentinel-2 imagery. Building upon this
foundation, we have modified the architecture to address a continuous regression problem,
enabling LST estimation.

The model architecture is shown schematically in Figure 4. We consider a network
configuration consisting of a sequence of four two-dimensional convolutional layers. Each
layer performs a convolution with a 2 × 2 kernel and a stride of 1 × 1, using the rectifier
activation function (ReLU) between layers. The stability and the performance of the model
are enhanced by batch normalization layers incorporated after the second and the fourth
convolutional layers [112]. Overfitting is mitigated by a subsequent dropout layer [113],
which excludes 10% of the neurons during training. The final regression is performed via
a fully connected dense layer. The output layer has a size of 1, utilizing linear activation to
produce an output value that corresponds to the LST prediction for the central pixel in a patch.
The network architecture and the relevant hyperparameters are summarized in Table 3.
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The training dataset consists of nearly all summer observations. One observation per
year and per area of interest is excluded from the training dataset and used as the test
dataset to evaluate the model’s performance after training. The ECOSTRESS data, detailed
in Section 2.3.1, serves as the target data. Note that we leave out only very few observations
from the training dataset for testing because the amount of available ECOSTRESS data is
not abundant in terms of time (only a few observations available per week) and a scarcity
of training data can possibly have detrimental effects on the model (the less the training
data, the higher the risk that the model does not generalize well). For each area of interest,
the training is carried out over the entire corresponding Sentinel-2 tile, namely, tile 32TPT
for AREA I and tile 33UWP for AREA II.
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Table 3. Summary of the CNN architecture and hyperparameters.

Input layer size: 5 × 5 × 17

Convolutional layers kernel size: 2 × 2; stride: 1 × 1; filters: 128 (layers 1 and 2),
512 (layers 3 and 4)

Dense layer size: 128

Activation functions rectified linear unit (‘ReLU’), for the final layer ‘linear’

Optimizer
adam (with inverse time decay), learning rate schedule:
initial_lr = 0.001, decay_rate = 1, steps = 1000 ×
number_samples/batch_size

Loss function mean absolute error

Number of epochs 50

Batch size 512

Train/validation split 80:20

Dropout rate 0.1

3. Results
3.1. Model Training

During the training phase, the input data is rescaled in the range [0, 1] using the
min–max scaling. The Ntrain input data points are randomly shuffled into the training
and validation datasets (used to evaluate the model’s performance during training), with
the split ratio being 0.2. The configuration of the CNN and the hyperparameters used
during training are outlined in Table 3. Training is performed for 50 epochs, with patches
processed in batches of size 512. We utilize Adam stochastic optimization with inverse time
decay, starting with an initial learning rate of 0.0001, which decays by a factor of 1 every
1000 × (Ntrain/512) steps. The model is optimized using the mean absolute error (MAE) as
the loss function

MAE =
1

Ntrain

Ntrain

∑
n=1

∣∣∣T̂n − Tn

∣∣∣, (2)

with T̂n and Tn representing the predicted and true LST value for the central pixel in each
patch, respectively.

Once model training is completed, the LST prediction is carried out over the unseen
image in the test dataset. The test data is prepared in the same manner as described in
Section 2.4.2, with the key difference being the use of a 1 × 1 sliding window to generate
5 × 5 patches for all non-border pixels in the image. This approach facilitates pixelwise
predictions, allowing the creation of output images in a raster format that matches the
resolution of the input images.

3.2. Performance Evaluation

We assess the model and its generalization capabilities by generating the LST predic-
tions on the test dataset consisting of the images unseen by the model. More precisely, no
pixel patches belonging to the test dataset were provided to the CNN for the training. These
predictions are compared with the corresponding ECOSTRESS observations to evaluate
the performance.

It is important to highlight a key distinction between the generation of the test and
validation datasets. The validation dataset is a subset of filtered pixel patches derived
from the train/validation split. In contrast, the test dataset is created by excluding an
entire image before the train/validation split. The validation dataset is thus less distinct
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from the training dataset than the test dataset. As a result, predictive performance of the
model on the test data provides a more accurate indication of the model’s generalization
ability compared to the validation data. This is particularly relevant for assessing the
model’s extrapolation capabilities, where “extrapolation” refers to making predictions
on data points that fall outside the range of the training data, such as predicting LST in
high-temperature scenarios with the model trained on lower-temperature observations.

For a more comprehensive analysis, we assess the model over different training
datasets by varying the hour range of the observations chosen for the training. Therefore,
besides using training datasets with observations spanning the entire day, we also consider
training datasets limited to smaller hour ranges at different times of the day, for example
ranges falling in the morning or in the afternoon.

3.3. Qualitative Analysis of the Predictions

We begin by conducting a visual evaluation of the model predictions. In this qualitative
assessment, the results are generally promising, as the model predictions closely resemble
the ECOSTRESS measurements (see Figure 5 for examples of predictions over AREA I and
AREA II). While some visual discrepancies do occur, they are typically limited to small,
isolated patches of pixels, which constitute a minor portion of the overall image and are
usually located outside of urban areas. These artifacts may originate from occasional model
errors or input data issues (e.g., cloud interference). Despite this, the model predictions
effectively capture the spatial features present in the ECOSTRESS observations, often further
enhancing spatial detail by increasing contrast—particularly noticeable in features like
rivers (cf. ECOSTRESS observations and the corresponding model predictions in Figure 5).
The improvement in spatial detail is largely due to the integration of higher-resolution
input data, which provides additional fine-scale information.
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Figure 5. Comparison between LST ECOSTRESS measurements and model predictions in ◦C. The im-
ages display LST data for two areas of interest, outlined by a bounding box in each image. (a) Masked
ECOSTRESS measurement and (b) corresponding model prediction for AREA I. Date and time of
observation: 12 June 2022, 13:26:01. (c) Masked ECOSTRESS measurement and (d) corresponding
LST prediction over AREA II. Date and time of observation: 4 August 2022, 16:31:34.

Additionally, the model exhibits a strong ability to fill various gaps in the ECOSTRESS
observations, including those caused by cloud cover, image border limitations, and grid-
pattern sensor artifacts. These gaps, visible in Figure 5a,c, are effectively addressed by the
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model, as shown in Figure 5b,d. A close-up of typical ECOSTRESS grid artifacts is shown
in Figure 6a, and the corresponding correction by the model, as well as the enhancement of
spatial detail, is demonstrated in Figure 6b.
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Figure 6. (a) Close-up of grid artifacts in ECOSTRESS LST observation, shown in grayscale to enhance
visibility. (b) The corresponding model prediction corrects the artifacts and increases spatial details.
(Location: WGS84 coordinates 48.65398◦N, 16.31361◦E. Observation date and time: 4 June 2022, 16:39:50).

Overall, the visual analysis shows that the model not only replicates the spatial
features of ECOSTRESS observations, but it also enhances detail and effectively fills various
gaps appearing in the observations. These strengths highlight the model’s potential for
addressing common issues in remote sensing datasets and improving the accuracy of
LST predictions.

3.4. Quantitative Analysis of the Predictions

For the statistical analysis, we consider all the pixelwise LST pairs, consisting of the
prediction value and the corresponding ECOSTRESS measurement, within a single Sentinel-
2 tile. To ensure valid comparisons, we include only the pairs where both pixels contain
valid data. In particular, predictions for pixels lacking valid ECOSTRESS observation data
(e.g., due to QC masking) are excluded from the analysis. The set of N valid pixels for
a given tile and observation considered in the analysis is denoted as P . Each prediction
is evaluated based on the pixel prediction error ∆p = T̂p − Tp, where Tp and T̂p are the
true (ECOSTRESS) and predicted LST for a single pixel p ∈ P , respectively. The following
statistics are subsequently derived to analyze the pixelwise prediction error distribution
within a tile: (i) mean error (ME), defined as ME = ∑p∈P ∆p/N, and mean absolute error
(MAE), defined as MAE = ∑p∈P

∣∣∆p
∣∣/N [cf. Equation (2)]; (ii) coefficient of determination

r2, given by

r2 = 1 −
∑p∈P ∆2

p

∑p∈P
(
T − Tp

)2 , (3)

where T = ∑p∈P Tp/N is the mean value of the true LST for all pixels p ∈ P ; (iii) minimum
(min) and maximum (max) value of the prediction error; (iv) standard deviation (std) of
the prediction error; and (v) percentiles of the prediction error.

In our focus on urban applications, we prioritize the MAE—the metric we used as
the loss function during training—as the key statistic for validating the predictions. While
the maximum acceptable MAE varies depending on the specific application, a general
guideline is that the MAE should not exceed 3 ◦C, with no more than 25% of the pixelwise
absolute error above this threshold. This standard aligns with recent studies investigating
various machine learning approaches for estimating LST [93], as well as a milestone survey
referenced therein [99].

Additionally, we consider the r2 score defined in Equation (3). This is a scale-
independent metric that indicates how well a model fits data, with its values ranging
from −∞ to 1. The larger the value, the better the fit. The maximum value of 1 is achieved



Remote Sens. 2025, 17, 318 16 of 30

if and only if all the prediction errors vanish, indicating a perfect fit. Negative values
indicate that the model fits the data worse than a simple baseline prediction given by the
mean value of the data. Such baseline prediction has r2 = 0, as one can easily verify from
Equation (3). While r2 is a valuable metric for model evaluation, it can be challenging to
correctly interpret in isolation. In fact, a high r2 value can be a sign of a bad model which
overfits the data and is not capable of generalizing adequately. In general, acceptable r2

values depend on the data variability and how much of this variability is due to the noise
in the data, rather than the underlying signal. While there is no universal standard for
acceptable r2 values in LST modeling, remote sensing studies typically consider values
above 0.5–0.7 as acceptable, with a preference for higher values up to 0.9–0.95, above which
the chance of overfitting increases. Note that there is no direct relationship between MAE
and r2; low MAE can coexist with low r2, and vice versa. Finally, to ensure a comprehensive
analysis, we also include the minimum, maximum, standard deviation, and percentiles of
the prediction errors, which provide a more complete picture of model performance.

A total of 22 image predictions on test data are computed and evaluated. Table 4
summarizes the statistics for the individual predictions with the four best and four worst
resulting MAE, as well as the ensemble statistics of the 22 predictions. The columns
denoting the 10th, 15th, 85th, and 90th percentile are labeled as 10p, 15p, 85p, and 90p,
respectively. All predictions are generated for ECOSTRESS observations unseen during
training, with the time of observation indicated in the column Date and time, and the
fraction of valid pixels in the observation for which the statistics are calculated (e.g., pixels
unmasked by the ECOSTRESS QC mask) indicated in the column valid. Note that the
predictions are not all derived from the exact same trained model. Instead, they are derived
from different realizations of the model yielded by training on observations spanning
different hour ranges (as discussed in Section 3.2). The time range used for training the
corresponding model is indicated in the column hour range.

The bottom row in each tile cell displays ensemble statistics computed for all the
valid pixels across all 22 predictions. The ensemble statistics provide a comprehensive
assessment of the model’s overall predictive performance, as opposed to evaluating indi-
vidual predictions based on specific datasets or single training instances. It is important
to highlight that the ensemble MAE represents the average of the single prediction MAEs
weighted on their pixel count. However, this statement does not apply to r2 and percentiles.

As shown in Table 4, the ensemble MAE for tile 32TPT is 1.93 ◦C, with the 10th and
90th percentiles at −2.59 ◦C and +3.16 ◦C, respectively. The ensemble MAE for tile 33UWP
is 1.60 ◦C, with the 10th and 90th percentiles at −2.68 ◦C and +2.27 ◦C, respectively. This
means that at least 80% of the pixel errors fall within the ±3 ◦C range, with only a slight
deviation for the 90th percentile in 32TPT. The slightly worse performance over the 32TPT
tile could reflect the more complex microclimate and surface conditions of the alpine
environment in AREA I, which increases variability in the temperature data and leads to
a broader error distribution. In contrast, the flatter urbanized conditions in AREA II lead
to more stable LST patterns, resulting in a narrower error range. Despite this, the error
margins in both locations fall well within acceptable limits. Additionally, the ensemble r2

values of 0.87 for both tiles indicate a robust overall fit and a strong correlation between the
model predictions and the ECOSTRESS data, despite some individual predictions having
lower r2. Note that having a few individual predictions with low r2 can be expected because,
on one hand, noise and errors can particularly impact r2 for individual observations and,
on the other hand, as the ECOSTRESS training data are (temporally) scarce, there can be
specific conditions under which the model performance is more limited.
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Table 4. Statistics for the error distributions of 22 model predictions on tiles 32TPT and 33UWP,
showing the four best and four worst predictions based on mean absolute error (MAE). Predictions
are made on unseen ECOSTRESS observations. All metrics are reported in ◦C, except r2, which is
dimensionless. Column labels are defined in the main text.

32TPT

Date and time Hour range MAE ME r2 min max 10p 15p 85p 90p std valid

16 August 2023,
11:38:45 11:00–15:00 1.01 0.0 0.81 −24.32 30.05 −1.49 −1.18 0.93 1.28 1.79 0.59

4 August 2022,
13:17:00 13:00–19:00 1.44 −0.99 0.66 −12.5 27.14 −2.88 −2.48 0.42 0.76 1.62 0.27

13 June 2023,
12:40:05 11:00–15:00 1.56 −0.02 0.78 −12.2 25.62 −2.52 −1.96 1.81 2.31 2.15 0.48

21 August 2022,
05:57:47 04:00–11:00 1.6 0.51 0.68 −13.92 50.95 −1.78 −1.32 2.39 3.06 2.16 0.77

8 June 2023,
15:08:57 13:00–19:00 2.73 −1.35 0.79 −17.65 21.07 −5.64 −4.85 1.67 2.34 3.28 0.13

22 July 2023,
17:13:37 00:00–23:00 2.97 2.08 −0.27 −27.62 98.1 −1.35 −0.43 3.83 4.56 4.68 0.3

19 August 2023,
06:01:12 03:00–07:00 3.09 0.02 0.23 −49.21 41.42 −4.16 −3.22 3.89 4.74 4.49 0.21

19 August 2023,
06:01:12 00:00–23:00 3.67 −2.35 −0.02 −50.53 51.82 −7.02 −5.83 1.59 2.53 4.62 0.21

Ensemble statistics - 1.93 0.36 0.87 −50.53 98.1 −2.59 −1.94 2.62 3.16 2.71 0.54

33UWP

Date and time Hour range MAE ME r2 min max 10p 15p 85p 90p std valid

2 July 2022,
5:26:25 00:00–23:00 0.85 −0.14 0.46 −6.81 28.6 −1.43 −1.16 0.74 1.04 1.38 0.62

2 July 2022,
5:26:25 03:00–07:00 0.98 −0.46 0.49 −5.69 25.87 −1.83 −1.58 0.65 0.92 1.27 0.62

15 August 2023,
07:36:45 04:00–11:00 1.1 0.0 0.69 −7.39 8.05 −1.77 −1.4 1.38 1.74 1.43 0.66

2 July 2022,
5:26:25 04:00–11:00 1.1 0.03 −0.13 −16.65 56.41 −1.65 −1.37 1.23 1.56 2.01 0.62

16 August 2022,
11:38:39 00:00–23:00 2.18 −0.72 0.81 −20.24 17.37 −4.45 −3.42 1.85 2.41 2.97 0.41

12 August 2023,
13:13:33 07:00–11:00 2.26 −0.65 −0.15 −13.32 62.62 −3.9 −3.35 1.98 3.06 2.84 0.24

18 June 2023,
10:13:08 00:00–23:00 2.55 −2.14 0.4 −17.4 7.81 −5.7 −4.88 0.27 0.72 2.59 0.53

18 June 2023,
10:13:08 00:00–23:00 2.61 −2.39 0.4 −17.34 62.68 −5.59 −4.81 −0.21 0.33 2.33 0.53

Ensemble statistics - 1.6 −0.15 0.87 −33.14 135.46 −2.68 −2.08 1.78 2.27 2.22 0.59

Finally, it is important to note that the maximum overestimation and underestimation
errors at individual pixels can occasionally reach extreme values, with some predicted
temperatures falling outside reasonable ranges (refer to the max and min columns in Table 4).
Such errors are primarily outliers; they correspond to the artifacts reported in the qualita-
tive analysis in Section 3.3 and have a limited impact on overall predictive performance.
They could be mitigated through targeted postprocessing techniques, ensemble learning
(i.e., combining predictions from multiple models), or by flagging these data points
as invalid.
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Figure 7 provides further analysis of the LST distributions for the two prediction
ensembles, displayed through histograms and bivariate histograms. Panels (a) and (c)
compare the predicted with observed LST distributions for tiles 32TPT and 33UWP, respec-
tively. While the two datasets do not align perfectly, the model generally captures the major
temperature peaks in terms of both width and height, indicating reasonable agreement.
The bivariate histograms in panels (b) and (d) further reveal the relationship between the
predicted and the true LST values in 33TPT and 33UWP, respectively. Most data points fall
along the diagonal, confirming strong overall agreement, though some outliers are present.
These deviations may originate from systemic data issues such as unmasked clouds (thin
linear artifacts in the histograms), or from the model’s tendency to overestimate low LST
values in alpine areas [a larger concentration of outliers present in panel (b)].
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We considered models trained on different time windows to derive the 22 predictions
evaluated in Table 4. In particular, we considered full-day and afternoon models trained
on observations spanning, respectively, the entire day and afternoon hours. To assess
the impact of the training data time window on the model performance, in Table 5 we
compare the ensemble statistics for the predictions which are derived from the full-day
model with those derived from afternoon models. While the MAE is slightly lower for
the afternoon models, the r2 values are similar. This indicates that the full-day model is
less accurate than the afternoon model, while they explain data variability equally well.
However, the error distribution for the full-day model is significantly more spread, with
higher maximum overestimation and underestimation errors. In fact, the full-day model
mostly contributes to the lower performance metrics in Table 4. Despite having more data
for training, the full-day model thus performs worse overall than the narrower afternoon
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model. This is likely a sign that the relationship between the considered input features
(e.g., air temperature, etc.) and LST changes with the time of the day. In fact, the input
features include only atmospheric conditions at a single point in time, whereas time series
data are likely to determine the LST.

Table 5. Ensemble statistics for the predictions of Table 4 that were derived from a full-day model or
an afternoon model, grouped by model type and tile. All metrics are reported in ◦C, except r2, which
is dimensionless.

Model MAE ME r2 Min Max 10p 15p 85p 90p Std Valid

32TPT, full day 2.16 −0.04 0.82 −50.53 98.1 −3.41 −2.69 2.48 3.04 3.09 0.55

32TPT, afternoon 1.96 1.06 0.81 −27.3 27.14 −1.56 −0.92 3.02 3.47 2.29 0.48

33UWP, full day 1.79 −0.25 0.85 −33.14 135.46 −3.17 −2.48 1.86 2.38 2.51 0.58

33UWP, afternoon 1.39 −0.19 0.73 −9.71 10.44 −2.4 −1.94 1.58 2.06 1.77 0.61

For completeness, in Figure 8 we display the LST distributions for the afternoon model
prediction ensembles for tiles 32TPT and 33UWP, which can be directly compared with
Figure 7. The histograms in panels (a) and (c) show a similarly reasonable agreement,
as seen in Figure 7, with the morning-related lower temperature peaks now absent. The
bivariate histograms in panels (b) and (d) demonstrate improved correlation and fewer
outliers, indicating a stronger alignment between predictions and observations compared
to the full-day model prediction ensembles.
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Figure 8. Histograms for the disjoint (above) and joint (below) distribution of the LST for all pixels
across all afternoon model predictions considered in Table 4. The colored bars in the bivariate
histograms indicate pixel count. (a,b) Results for tile 32TPT; the MAE and r2 are, respectively, 1.96 ◦C
and 0.81. (c,d) Results for tile 33UWP; the MAE and r2 are, respectively, 1.39 ◦C and 0.73.

Note that the predictions considered so far were computed for the same tile on which
the model was trained. Here, to robustly evaluate the spatial generalization capabilities of
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the model, we consider predictions on Sentinel-2 tiles not seen during training. Specifically,
we consider several predictions on tiles neighboring the training tiles. We opt for the
validation on neighboring tiles because training and prediction should be performed on
geographically similar regions. Otherwise, the model cannot be expected to behave well,
as predicting on a geographically different area can result in spatial extrapolation that is
too far from what the model learns. Table 6 summarizes the statistical evaluation of such
predictions. As the table shows, the results are in line with the results of Table 4. We can
thus conclude that the model spatially generalizes well. This also indicates that the model
does not suffer from overfitting.

Table 6. Statistics for the error distributions of predictions generated on neighboring tiles. All metrics
are reported in ◦C, except r2, which is dimensionless.

Date and Time Predict
Tile

Train
Tile MAE ME r2 Min Max 10p 15p 85p 90p Std Valid

4 August 2022,
16:31:34 33UWP 33UVP 1.13 −0.7 0.7 −10.38 6.53 −2.52 −2.03 0.56 0.81 1.39 0.89

4 June 2022,
16:39:50 33UWP 33TWN 1.21 −0.38 0.57 −8.88 8.65 −2.62 −2.03 1.06 1.37 1.59 0.7

12 June 2022,
13:26:01 32TPT 32TQT 1.33 −1.01 0.77 −12.65 12.43 −2.69 −2.28 0.25 0.55 1.42 0.49

4 August 2022,
16:31:34 33UVP 33UWP 1.43 −1.04 0.48 −9.73 6.23 −2.9 −2.52 0.41 0.75 1.46 0.89

2 August 2023,
16:26:54 33UWP 33UVP 1.56 −0.04 0.4 −7.47 10.97 −2.5 −2.03 2 2.44 1.93 0.46

3 August 2022,
17:19:33 32TQT 32TPT 1.68 0.89 0.7 −23.23 20.03 −1.29 −0.78 2.83 3.34 2.04 0.89

8 June 2023,
15:08:57 32TPT 32TQT 3.15 −1.6 0.72 −64.92 24.07 −5.28 −4.62 1.47 2.66 3.7 0.13

Ensemble statistics - - 1.44 −0.39 0.84 −64.92 24.07 −2.66 −2.16 1.3 1.8 1.9 0.64

Finally, as all the predictions discussed so far are generated within the same temporal
range as the training data, we also evaluate the model’s performance when extrapolating
beyond this range, such as generating morning predictions from afternoon models. The
results are summarized in Table 7. The accuracy for these extrapolated predictions is
significantly lower compared to interpolated ones. This is somewhat expected, given the
inherent challenges of temporal extrapolation. Nonetheless, the statistics remain close to
the acceptable bounds, with approximately 80% of the pixel errors falling within the ±5 ◦C
range. This suggests a robust and consistent relationship between input features and LST,
with minimal variations between morning and afternoon predictions. However, for more
fine-scale modeling and improved accuracy, such extrapolation is not sufficient.

Table 7. Ensemble statistics for extrapolating morning predictions from afternoon models. All metrics
are reported in ◦C, except r2, which is dimensionless.

Model MAE ME r2 Min Max 10p 15p 85p 90p Std Valid

32TPT, extrapolating predictions 3.12 −0.35 0.72 −52.81 56.51 −5.41 −4.28 3.42 4.33 4.14 0.55

33UWP, extrapolating predictions 2.96 0.28 0.64 −46.14 30.37 −4.67 −3.48 3.92 4.57 3.8 0.61

4. Discussion
4.1. Application of the Data Fusion Approach

In our proposed approach, we employ a CNN model for pixelwise LST predictions at
moderate to high spatial resolution (i.e., 70 m) combining multi-source and multi-resolution
input features (i.e., coarse resolution reanalysis data from a meteorological nowcasting
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prediction system, high-resolution land cover data, high-resolution multi-spectral optical
satellite data) to gap-fill and densify remote-sensing-based LST observations. The CNN
model is trained based on the ECOSTRESS-LSTE L2 dataset provided via the NASA
Earthdata portal. The model makes use of the 5 × 5 input pixel patches, corresponding to a
350 m × 350 m area at the native resolution of ECOSTRESS, incorporating surrounding
contextual information such as vegetation cover and water bodies to enhance prediction
accuracy. The advantage of the proposed methodology compared to conventional and
purely remote sensing-based techniques is that the model-based approach combines the
superior dense temporal sampling of the meteorological model data with the substantially
higher spatial detail of the remote-sensing-based LST observations. Having such a model
in place allows us to obtain dense LST estimates at a high spatial resolution to support
a variety of applications like supporting local spatial planning authorities in identifying
hotspot regions within urban environments, analyzing the context between land use and
land cover and associated heat impact, or supporting the development of local, near-real-
time heat stress warning systems by exchanging the reanalysis data with numerical weather
prediction parameters, to name a few. Having such applications in mind, the prediction
accuracy (i.e., observed r2 and MAE) of our model is good, and allows us to highlight and
analyze the spatial variability and temperature contrasts between various land cover types.

The advantage of our method compared to other approaches which purely rely on
remote-sensing-based LST estimates and data cross-calibration (e.g., [59]) is two-fold.
First, due to the strong diurnal variations in LST mainly depending on the meteorolog-
ical conditions, fusing data from various satellite sensors to gap-fill LST data requires
sophisticated inter-calibration techniques to correct for LST differences caused by different
overpass times. Thus, using meteorological reanalysis data from a highly resolved numeri-
cal weather prediction (NWP) model with similar spatial resolution, like coarse resolution
satellite-based LST estimates (e.g., Sentinel-3, MODIS, VIIRS), has the advantage of offer-
ing the meteorological conditions for any observation time and already incorporating a
physical-based treatment of meteorological processes. Second, due to the superior temporal
sampling of the NWP model outputs, our trained model can be applied to any time step
and is less dependent on satellite flight schedules and revisit times, finally enabling us to
create a more representative LST dataset which provides comparability between regions
over large scales. Furthermore, the NWP output can also be replaced with the output
from Regional Climate Models (RCMs) to analyze and evaluate future climate change
impacts. Alternative approaches (e.g., [85]) make use of geostationary satellite imagery
(e.g., MSG SEVIRI, GOES) to gap-fill LST data, which offers hourly or even sub-hourly
temporal observations. Yet, they typically have a larger Ground Sample Distance (~5 km in
mid-latitudes) than the above-mentioned polar-orbiting instruments (~1 km) and cannot
be considered for the RCM approach in the context of climate change adaptation studies.

Other studies have successfully used multi-source data fusion to gap-fill LST by incor-
porating land surface models [77] and applying deep learning techniques to fuse remote
sensing data with in situ observations [94]. These approaches have demonstrated high
spatial and temporal coverage with strong accuracy over specific areas and time windows
of interest. Our approach complements these efforts by introducing a lightweight CNN
model that is robust across time domains, allowing us to generate LST predictions consis-
tently over a 3-month summer period. This flexibility enables the creation of long-term,
high-density LST datasets for any region with available meteorological data, facilitating the
development of near-real-time LST monitoring systems that can be seamlessly implemented
for real-time applications.
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4.2. Limitations of the Deep Learning Model

While the model demonstrates generally good performance, there are several lim-
itations that affect its accuracy and reliability. One of the main issues observed is the
occurrence of over- and underestimation errors at individual pixels, as reflected in the
minimum and maximum values in the ensemble statistics (see Table 4). Although these
errors are infrequent, they contribute to outliers that can affect the model’s overall pre-
dictive performance. Tracing the exact source of these errors is challenging due to the
intricate relationships between input features—such as land cover, meteorological data,
and satellite imagery—and LST, as well as the intrinsic complexities of deep-learning-based
models. These errors could originate from the inherent variability in surface conditions
(leading to a complex LST modeling response), from the inconsistencies in the input data
(e.g., unmasked clouds, noise, and other artifacts), or from model architecture limitations.
While the calculated ensemble MAEs for both tiles remain within acceptable limits, ad-
dressing these outliers could further enhance accuracy. Potential approaches that could
help improve error management and provide a more robust and interpretable framework
include tailored postprocessing techniques, ensemble learning, or hybrid models which
incorporate additional physical constraints.

The performance of the model is also impacted when trained on the data spanning an
entire day, as demonstrated by the comparison of the full-day and the afternoon ensemble
statistics (see Table 5). Specifically, the full-day model tends to exhibit poorer performance
compared to models trained on specific time ranges, such as afternoon-only datasets,
despite having generally more data available for training. This difference is likely due
to the dependency of the LST on the input features changing with the time of day, as
more complex time series dynamics in such relationships are not considered in our model.
Consequently, the full-day model exhibits a more spread error distribution, with higher
maximum over- and underestimation errors. We speculate that the history of the solar
radiation input might have a particular influence on this behavior, as for instance discussed
in [114]. This is supported by the observed improved performance when only considering
observations of a specific time of the day compared to the full day model.

Another limitation is the model’s ability to generalize across temporal and spatial
domains. Temporally, the model’s performance is impacted when predictions are made
outside the training time range. For example, morning predictions made by a model trained
on afternoon data exhibit lower accuracy than interpolated predictions, suggesting that
fine-scale modeling and improved accuracy for temporally extrapolated predictions would
require training on time-specific data. Likewise, any out-of-season extrapolation would
likely face similar limitations. This can be mitigated in future studies by training models on
data corresponding to the specific season and conditions of interest [115,116]. Spatially, we
observe that the model performs well when applied to unseen regions (see Table 6), which
highlights the potential for spatial extrapolation. However, this level of generalization is
limited to neighboring areas with similar characteristics to those used during training. For
broader applications, regional robustness could be improved by training the model on a
tile-by-tile basis or using data from multiple representative regions, enabling the model to
learn a more diverse set of spatial patterns and new geographic areas.

An additional limitation stems from the scarcity and uneven quality of ECOSTRESS
data available for training. The limited availability of good-quality observations affects
the model’s ability to generalize, particularly in cases where predictions are made outside
of the training data time range. For instance, morning predictions from models trained
on afternoon data show worse statistics than interpolated predictions, but they remain
within acceptable limits. Extrapolation, in general, proves to be more error-prone than
interpolation due to the model’s inability to fully capture diurnal variations in LST.
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4.3. ECOSTRESS Data Quality

We encountered several data quality issues when collecting the ECOSTRESS-LSTE
data for both areas of interest. These issues are primarily observed in the form of miss-
ing data due to cloud contamination and artifacts and georeferencing inconsistencies,
which can impact the reliability of the data. Applying the associated ECOSTRESS quality
mask (provided by the QC layer in the ECOTRESS-LSTE dataset) helps mitigate some of
these issues.

The quality issues affecting the ECOSTRESS dataset can be divided into three cat-
egories: (i) instrument artifacts, (ii) incorrect georeferencing, and (iii) QC layer insuffi-
ciencies. (i) Instrument artifacts are a prominent issue, appearing as stripes (linear or
grid-like patterns disrupting data uniformity) and grooves (irregular indentations affecting
data consistency), as illustrated in Figure 9a. These artifacts are caused by damage to the
thermal infrared sensor during pre-launch testing [117]. They are an intrinsic property of
the ECOSTRESS dataset, arising from issues in the sensor itself, and as such, they cannot
be eliminated. However, as shown in the visual analysis in Section 3.3, the CNN model
is able to correctly identify and mitigate these artifacts effectively (see, e.g., Figure 6).
(ii) Another significant issue is inconsistent or incorrect georeferencing, as provided by the
ECOSTRESS-GEO geolocation dataset within the swath2grid algorithm (see Section 2.3.1
for details). As illustrated in Figure 9a, incorrect georeferencing appears as misalignment
between LST data and geographic coordinates, while inconsistent georeferencing refers
to variability in spatial accuracy across different observations. This issue is sporadic and
unpredictable, and developing an automated correction procedure is beyond the scope of
this work. In our processing workflow, we addressed this by reviewing all observations
in the training dataset and excluding those with inaccurate georeferencing from further
analysis, as the accuracy of the deep learning model depends on the quality of the tar-
get data (i.e., ECOSTRESS LST). (iii) The original ECOSTRESS QC mask is intended to
filter out unreliable data. However, it is not always sufficient and can introduce further
complications, such as incorrect cloud masking, leading to erroneous temperature read-
ings. Specifically, the QC mask occasionally failed to fully remove cloud cover, leading to
unrealistic temperature gradients and misleading thermal readings due to partial cloud
obstruction. An example of this issue is illustrated in Figure 9b,c, where a cloud is not
correctly masked. To address this, we screened the QC data and added additional manual
masking in observations with significant cloud masking artifacts.

Despite our efforts to mitigate ECOSTRESS data quality issues, some of the observed
prediction artifacts (such as the significant under- or overestimation errors reported in
Table 4) may still originate from undetected low-quality data used for the model training.
Similar data filtering and quality issues with ECOSTRESS datasets have been reported in
previous studies [117,118].

4.4. Future Directions

Planned future directions include efforts to enhance the spatial resolution of LST
predictions, specifically by exploring techniques to downscale LST to 10 m resolution. This
approach will explore the scaling effects characteristic of downscaling, reported in previous
studies [59–62], as well as deep-learning-based methodologies to overcome these issues.
A downscaled LST product provided at high temporal resolution and spatial coverage
would provide more detailed insights, particularly in urban environments where fine-scale
temperature variations are critical for local climate analysis and planning.
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where sensors embedded in roads provide high-precision point measurements of surface 
temperature. Despite these data being limited to one surface type, they serve as valuable 
reference points for model validation. By integrating in situ data, future studies can bridge 
the gap between modeled predictions and real-world conditions, thus providing more 

Figure 9. Examples of data quality issues for ECOSTRESS observations showing LST in ◦C. (a) Issues
identified in a single observation: missing data due to masking by the ECOSTRESS-QC layer (back-
ground image visible); fringe-pattern sensor artifacts that remain even after the QC mask is applied;
incorrect georeferencing (cf. position of the river in the ECOSTRESS observation and the background
image, the displacement is further accentuated by the double arrow). (Location: WGS84 coordinates:
47.26646◦N, 11.38075◦E. Observation date and time: 11 June 2022, 14:49:19). (b) Summer observation
before masking by the QC layer. A cloud is clearly identifiable by the negative temperature values,
inconsistent with the season in which the observation was taken, as well as by the spatial extent
which does not follow any spatial features in the area. (Location: WGS84 coordinates: 47.1852◦N,
16.8806◦E. Observation date and time: 9 July 2022, 03:02:29). (c) The same observation as in (b) after
masking by the QC layer, demonstrating that the cloud was not sufficiently masked.

Furthermore, the inclusion of in situ temperature measurements to validate and com-
plement remote sensing LST data should be considered. Planned ground truth validation
activities focus on using data from the black ice monitoring system in Upper Austria,
where sensors embedded in roads provide high-precision point measurements of surface
temperature. Despite these data being limited to one surface type, they serve as valuable
reference points for model validation. By integrating in situ data, future studies can bridge
the gap between modeled predictions and real-world conditions, thus providing more
robust datasets for urban heat monitoring. Additionally, model comparisons are planned
using satellite-derived datasets from commercial satellite operators like OroraTech [119]
and Constellr [120], although alignment between timestamps and resolutions remains
a challenge.

Finally, a thorough evaluation of the INCA dataset should be conducted in future
studies and larger-scale applications of our methodology, especially outside of urban
regions, as it is a model-based dataset. Previous validations have demonstrated high
accuracy for air temperature, while wind speed data, although generally acceptable, shows
deviations, particularly in complex mountainous terrains such as peaks and valleys [74].
The accuracy of INCA data is important for achieving reliable LST estimation and overall
model performance. Given that INCA is the only dataset matching the exact time of the
ECOSTRESS observation, it plays an essential role in attaining the temporal gap-filling
and density of LST predictions. Ensuring the reliability of input models like INCA is thus
crucial for improving the predictive quality of downstream applications.
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5. Conclusions
This study presents a deep-learning-based methodology for estimating land surface

temperature (LST) using a combination of multi-source and multi-resolution meteorolog-
ical, land cover, and satellite data, including the ECOSTRESS LST data. The proposed
convolutional neural network model demonstrates promising results in generating a gap-
filled LST time series over large areas at medium to high spatial resolution (<100 m). We
showed that the generated LST predictions lead to at least 80% of the pixel errors falling
within an acceptable ±3 ◦C range. Unlike traditional satellite-based techniques, our model
leverages high-resolution meteorological data to capture diurnal variations, allowing for
more robust LST predictions across different regions and time periods. The proposed
methodology is timely and can be applied to a variety of fields including urban planning,
climate resilience, and real-time heat stress monitoring, with the goal of supporting spatial
planning and climate change adaptation activities.

While the model offers robust performance over extended time periods and large
areas, several challenges remain, particularly in terms of error traceability, ECOSTRESS
data quality, and limitations related to model-based inputs such as INCA. Future work
should focus on addressing these limitations by integrating ground truth measurements
for improved validation. Through continued refinement and validation, the approach
holds significant potential to support climate adaptation strategies and to improve our
understanding of land use and climate interactions.
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