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Abstract: Green tide area is a crucial indicator for monitoring green tide dynamics. How-
ever, scale effects arising from differences in image resolution can lead to estimation errors.
Current pixel-level and sub-pixel-level methods often overlook the impact of morphological
differences across varying resolutions. To address this, our study examines the influence
of morphological diversity on green tide area estimation using GF-1 WFV data and the
Virtual-Baseline Floating macroAlgae Height (VB-FAH) index at a 16 m resolution. Green
tide patches were categorized into small, medium, and large sizes, and morphological
features such as elongation, compactness, convexity, fractal dimension, and morphologi-
cal complexity were designed and analyzed. Machine learning models, including Extra
Trees, LightGBM, and Random Forest, among others, classified medium and large patches
into striped and non-striped types, with Extra Trees achieving outstanding performance
(accuracy: 0.9844, kappa: 0.9629, F1-score: 0.9844, MIoU: 0.9637). The results highlighted
that large patches maintained stable morphological characteristics across resolutions, while
small and medium patches were more sensitive to scale, with increased estimation errors
at lower resolutions. Striped patches, particularly among medium patches, were more
sensitive to scale effects compared to non-striped ones. The study suggests that incorporat-
ing morphological features of patches, especially in monitoring striped and small patches,
could be a key direction for improving the accuracy of green tide monitoring and dynamic
change analysis.

Keywords: green tide area; scale effects; morphological feature; fractal dimension; striped
patches; resolution sensitivity

1. Introduction
The excessive proliferation of Ulva prolifera in coastal areas leads to large-scale marine

green tides, which harm the ecosystem and economy [1,2]. Satellite remote sensing data
support green tide early warning, monitoring, and post-event assessment [3,4]. They
also provide technical and data support for green tide prevention, coastal protection, and
aquaculture [5,6]. Green tide area is a crucial indicator in green tide detection, making the
selection of an appropriate estimation method essential [7,8].
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Traditional index-based green tide extraction methods calculate the index value for
each pixel and use a threshold to determine the presence of Ulva prolifera, thus identifying
the spatial distribution of the green tide [9]. Based on spectral response characteristics,
researchers have designed and applied methods such as the Normalized Difference Vege-
tation Index (NDVI) [10], Normalized Difference Algae Index (NDAI) [11], Scaled Algae
Index (SAI) [12,13], Floating Algae Index (FAI) [14], and Virtual Baseline Floating macroAl-
gae Height (VB-FAH) [15] for green tide extraction. While effective to some extent, these
traditional methods have limitations when faced with complex environmental conditions
and changes in spectral characteristics [16]. Notably, in cases where green tide coverage is
sparse, the background is complex, or there is spectral mixing, the accuracy and robustness
of these methods may be significantly impacted [17], highlighting the need for innova-
tion and improvement in green tide extraction methods. With the rapid development of
artificial intelligence technologies, deep-learning-based remote sensing image processing
methods have gradually been applied to green tide extraction and monitoring [18–20].
The application of artificial intelligence in green tide extraction not only provides break-
throughs in methodology but also significantly improves the efficiency and accuracy of
green tide monitoring, especially in areas with complex sea backgrounds and severe spec-
tral confusion [21,22]. By leveraging deep learning’s automatic feature extraction, image
enhancement, and time-series analysis capabilities, researchers have overcome many of the
limitations of traditional methods, significantly improving the accuracy and reliability of
green tide extraction [23,24].

Traditional and emerging deep-learning-based extraction methods are essentially
pixel-level semantic segmentation techniques. However, due to differences in the spatial
resolution of satellite payloads used by researchers, estimating green tide areas from
different remote sensing data has an inherent scale effects. For example, high-resolution
images can capture the boundaries and details of green tide more clearly, while low-
resolution images may lead to underestimation or overestimation of green tide areas.
To address the scale effects in remote sensing, researchers have proposed methods for
calculating the areas of objects at the subpixel level. Standard techniques include the
Linear Unmixing Algorithm (LA) [25], Algae Pixel-Growing Algorithm (APA) [26], Spectral
Mixture Analysis (SMA) [27–29], and Fractional Pixel (FP) model [30,31]. For instance,
APA estimates the coverage area of algal blooms in Lake Taihu at the subpixel level. First,
it identifies the “growth point” pixels of algae in the image, and then, by analyzing the
spectral and spatial characteristics of adjacent pixels, it gradually extends the algal bloom
area to neighboring pixels to obtain a more refined coverage estimate. APA combines
FAI and LA to dynamically adjust and optimize the algae coverage ratio within each
mixed pixel. SMA analyzes the spectral contribution of different objects within a pixel and
decomposes the spectral characteristics of the original pixel into a weighted combination of
multiple subpixel components, thus quantifying the coverage degree of each target object.
The FP model estimates the coverage area of the target object in low-resolution data by
utilizing the target’s characteristic spectra and the image’s local spatial information.

By performing subpixel-level calculations, researchers can obtain more refined and
reliable information on the distribution of green tide and more accurate estimates of green
tide coverage. However, this method for mitigating the scale effects is mainly limited to
analyzing pixel values or spatial correlations between pixels without fully utilizing the
morphological characteristics of green tide patches. The morphological study of green
tide focuses on the shape, size, edge characteristics, and connectivity of patches, which
not only reflect the growth state and spread pattern of the green tide but also provide
richer information for monitoring and estimating green tide areas. As shown in Figure 1,
the morphological characteristics of patches are primarily represented by scattered small



Remote Sens. 2025, 17, 326 3 of 22

patches (Figure 1a,b) and morphologically diverse large patches. Small patches are visible
in high-resolution images. However, as the resolution decreases, their detection signal
weakens and may even disappear, leading to an underestimation of green tide coverage,
which is one of the critical causes of the scale effects. Large patches are typically strip-
like, possibly due to the drifting of the green tide with ocean currents and the rapid
proliferation of Ulva prolifera during drift. Striped patches (Figure 1c,d) are narrow, with a
higher proportion of edge pixels, making them more prone to being recognized as mixed
pixels in low-resolution images, which weakens their detection signal and exacerbates
the scale effects. As the drift speed slows and factors such as ocean currents and wind
direction change, striped patches gradually merge to form larger non-striped patches
(Figure 1e,f). During this process, due to the movement of patches and the proliferation or
decay of Ulva prolifera, the morphology of new patches becomes highly complex, differing
significantly from striped patches. Although non-striped patches have relatively fewer
edge pixels, they are usually large, with many holes and fragmented boundaries. In low-
resolution images, pixels around the edges and holes are still recognized as mixed pixels,
so the scale effects persists. Therefore, analyzing the morphological characteristics of green
tide patches provides significant potential and feasibility for reducing the scale effects in
area estimation.

Figure 1. False-color composite images of patches with three different morphologies. Subfigures
(a,b): small patches; subfigures (c,d): striped patches; subfigures (e,f): non striped patches. The red
pixels in the false color image is the green tide pixels.

Due to the imbalance between the satellite image swath width and spatial resolu-
tion, multi-source satellite collaborative monitoring of green tide may become an essential
technological approach in the future. Researchers have advanced green tide monitoring
through different approaches: some have developed fusion modules integrating multi-
source satellite data, leveraging resampling, area refinement, and drift tracking to produce
consistent, comprehensive products that enhance prediction efficiency [32]. Others have
combined optical and SAR remote sensing data to analyze spatiotemporal correlations be-
tween marine aquaculture and green tide outbreaks, offering critical insights into balancing
marine environmental protection and resource management [33]. Given that the spatial
distribution of green tide and the green tide coverage within each pixel must be accurate,
the scale effects in collaborative monitoring deserve attention. Therefore, this study aims to
evaluate the impact of different patch morphologies on the scale effects. First, a classifi-
cation was performed based on the morphological features of the patches, where various
morphological features were designed and introduced as the basis for classification. The
results demonstrated high classification accuracy, confirming the feasibility of classifying
patches based on these features. Subsequently, the classification model was applied to
conduct a full-range analysis of patch morphologies across the study area. Through this,
resampling was employed to simulate patches at different resolutions, allowing an assess-
ment of the area loss for various morphological patch types during the resolution reduction
process, and fitting equations for patch area at each resolution were derived. Finally, the
results were summarized, focusing on the necessity and feasibility of incorporating patch
morphological factors in future green tide collaborative monitoring tasks.
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2. Materials and Methods
2.1. Data Collection and Green Tide Detection

We selected GF-1 satellite WFV (wide field of view) data with a sufficiently high
spatial resolution to study green tide patch morphology. Interference factors such as clouds
and glare were manually removed, leaving areas that predominantly contain green tide
and seawater. Since most interference factors had been manually eliminated, traditional
index-based methods were chosen for green tide detection. The study area is located in the
Yellow Sea of China, where green tide events have frequently occurred in recent years, with
coordinates ranging from 31° to 37°N and 119° to 125°E. The GF-1 images were obtained
from the China Resource Satellite Application Center (https://data.cresda.cn/#/home,
accessed on 20 September 2024). The satellite was developed by the China Academy of
Space Technology (CAST), based in Beijing, China. The primary sensor parameters are
shown in Table 1. The research data include approximately 85 images from the Yellow
Sea between 2015 and 2024. The images were processed through radiometric calibration,
atmospheric correction, and geometric correction, resulting in the bottom of atmosphere
(BOA) reflectance. The green tide detection index chosen for this study is VB-FAH, with
the calculation formula as follows:

VB-FAH = (R4 − R2) +
(R2 − R3) · (λ4 − λ2)

2λ4 − λ3 − λ2
(1)

where R4, R3, and R2 represent the BOA reflectance in the near-infrared, red, and green
bands, respectively; λ4, λ3, and λ2 represent the central wavelengths of the near-infrared,
red, and green bands, respectively. The VB-FAH threshold fluctuates within the range of
0.015 to 0.035, with the exact value selected based on the specific conditions of the image.
Pixels with a value above this threshold are detected as green tide pixels.

Table 1. Main parameters of the GF-1 WFV sensor.

Band Bandwidth (nm) Spatial Resolution (m) Central Wavelength (nm)

Blue 450–520 16 485
Green 520–590 16 555
Red 630–690 16 645
NIR 770–890 16 830

2.2. Patch Segmentation

After obtaining the green tide extraction results using the VB-FAH index, the Con-
nected Component Labeling (CCL) algorithm was applied to segment and extract all the
patches [34]. The basic idea of this algorithm is to label all connected target pixels through
two scans of the image, where connected pixels are groups of pixels with the same at-
tributes [35]. The connectivity used is 8-connectivity, meaning that a pixel is connected to
its neighboring pixels in the vertical, horizontal, and diagonal directions.

First, assume the image is represented by a binary matrix I, where the target pixels
have a value of 1, and the background pixels have a value of 0. The first step of the
CCL algorithm is to scan matrix I and label all connected target pixels with the same
connectivity label using an equivalence table. During this process, for the current pixel
I(i, j), the following rules are applied based on its labeled neighboring pixels:

1. If I(i, j) is a target pixel and at least one neighboring pixel is already labeled, the
current pixel is labeled with the same label as the neighboring pixel.

2. If multiple neighboring pixels have different labels, their equivalence relationship is
recorded in the equivalence table, and the current pixel is assigned the smaller label.

https://data.cresda.cn/#/home
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3. A new label is assigned to the current pixel if no neighboring pixels are labeled.

After the first scan, initial labels for all target pixels are obtained, and an equivalence
table is created. During the second scan, the labels are updated according to the equivalence
table, ensuring that all connected components with equivalent labels have the same label.
Finally, each label represents an independent patch. Through this process, segmentation
and extraction results for all patches are obtained, resulting in approximately 1.04 million
binary images, where pixels with a value of 1 represent green tide pixels, and those with a
value of 0 represent non-green tide pixels.

2.3. Patch Classification Based on Size

Regarding patch size, patches that are too small typically do not exhibit significant mor-
phological differences between “striped” and “non-striped” forms, especially in satellite
imagery. These small patches often have only a few pixels and lack prominent morphologi-
cal features. Therefore, the research value of their morphological characteristics is relatively
limited. Although some morphological differences can be observed for medium and large
patches, the extent of elongation in striped patches or the complexity in non-striped patches
can vary significantly due to differences in size. Therefore, it is necessary to conduct distinct
morphological studies for patches of different sizes to more comprehensively assess their
morphological characteristics and the impact of size on scale effects.

In this study, the size of a patch is defined as the maximum value between the length
and width of the patch image. By analyzing the distribution of patch sizes, the point
with the most significant gradient change in the data distribution was selected as the
threshold for size classification, which was determined to be 26.67 pixels and 99.10 pixels.
Accordingly, patches between [1, 26] pixels are classified as small patches, patches between
[27, 99] pixels as medium patches, and patches larger than 99 pixels as large patches. The
quantity and area proportions of the three patch types are shown in Figure 2. It can be
observed that small patches account for nearly 80% of the total quantity, far exceeding
medium and large patches. However, in terms of area, medium and large patches account
for more than 90%, with large patches alone covering 78.5% of the total area. Therefore,
medium and large patches play a dominant role in calculating green tide coverage area,
but the impact of all three patch types on scale effects requires further investigation.

Figure 2. Proportions of quantity (a) and area (b) for three patch types.

2.4. Elongation, Compactness, Convexity and Concavity

Various morphological features, including elongation, compactness, convexity, concav-
ity, fractal dimension, and morphological complexity, were introduced to explore further
the impact of patch morphology on the scale effect. These features provide essential criteria
for morphology-based patch classification and contribute to a deeper understanding of
green tides’ growth and decay patterns.
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Based on patches’ fundamental characteristics (such as perimeter, area, and the number
of holes), various morphological features were designed to quantify the patch’s extensibility,
compactness, and convexity/concavity, as shown in Figure 3.

The elongation index E is defined to quantify the extent of patch elongation. It is
calculated as the ratio of the maximum Manhattan distance between any two pixels within
the patch to the total number of pixels in the patch (Figure 3a):

E =
Dmax

N
(2)

where Dmax represents the maximum Manhattan distance between any two pixels within
the patch, and is calculated as follows:

Dmax = max
i,j

(
|xi − xj|+ |yi − yj|

)
(3)

where (xi, yi) and (xj, yj) represent the coordinates of the i-th and j-th pixels within the
patch, and | · | denotes the absolute value operation; N is the total number of pixels
in the patch. The elongation index E reflects the extent of the patch’s elongation. As
E approaches 1, it indicates that a more significant proportion of the pixels along the path
of the maximum Manhattan distance are within the patch, suggesting that the patch is
more “slender”. Conversely, as E approaches 0, the patch becomes “fatter”.

The compactness index C is defined to quantify the compactness of the patch shape.
It is calculated as the ratio of the perimeter’s square to the patch’s area. In practice, it
is calculated as the ratio of the square of the number of boundary pixels (including hole
boundaries) to the total number of pixels in the patch (Figure 3b):

C =
(Nedge)

2

N
(4)

where Nedge represents the number of boundary pixels, and N is the total number of pixels
in the patch. The compactness index C reflects the complexity of the patch’s boundary and
its shape compactness. As C approaches 1, the proportion of boundary pixels within the
patch is relatively high, suggesting that the perimeter is longer and the shape may be more
elongated or irregular. Conversely, as C approaches 0, the proportion of boundary pixels is
smaller, indicating a shorter perimeter and a more compact and regular shape.

The convexity index S is defined to quantify the concavity/convexity of the patch. It
is calculated as the ratio of the actual area of the patch to its convex hull area (Figure 3c):

S =
A

Ahull
(5)

where A represents the actual area of the patch, which is the product of the number of
non-zero pixels N and the square of the image resolution; Ahull represents the area of the
convex hull, which is the smallest convex polygon that encloses the patch. The convex hull
is computed using the convex hull algorithm, which calculates the smallest convex polygon
that completely encloses the set of non-zero pixels. The area of this convex polygon is Ahull.
When S approaches 1, it indicates that the patch shape is close to convex, with a more
regular boundary. When S approaches 0, it indicates that the patch has a more complex
shape with concavities or irregular edges.

The concavity index K is defined to further quantify the concavity of the patch and its
internal complexity, which represents the proportion of holes in the total area after filling
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the holes. In practice, it is calculated as the ratio of the number of hole pixels to the total
number of pixels in the patch after the holes are filled (Figure 3d):

K =
Nhole
Nfilled

(6)

where Nhole represents the number of hole pixels, and Nfilled represents the total number of
pixels in the patch after the holes are filled. The concavity index reflects the relative scale of
the holes within the patch. A higher value indicates that the patch contains more or larger
holes, resulting in a more complex shape and a more irregular boundary.

Figure 3. Schematic diagrams of patch elongation (a), compactness (b), convexity (c), and concavity
(d) features.

2.5. Fractal Dimension

Fractal dimension (FD) is an index used to quantify the complexity and self-similarity
of geometric shapes, reflecting the level of detail and spatial filling ability of an object at
different scales [36]. The fractal dimension helps reveal patches’ morphological complexity
and spatial distribution patterns in studying patch morphological features. We used the
box-counting method to calculate the fractal dimension of patches [37]. We performed
preprocessing steps on the patch images, including orientation calculation, edge filling,
and image rotation to a standard angle. These preprocessing steps are crucial for ensuring
the accuracy and consistency of the fractal dimension calculation.

2.5.1. Box-Counting Method

The box-counting method estimates the fractal dimension F by covering the image
at different scales and counting the boxes containing non-zero pixels. The box size ϵi is
selected as powers of 2, from the maximum to the minimum, so ϵi is no larger than the
image size:

ϵi = 2i (7)

where i = (k, k − 1, . . . , 1), and k = log2 S. For each box size ϵi, the image is divided into
a grid with a size of ϵi × ϵi, and the number of boxes containing non-zero pixels, N(ϵi),
is counted. For each box size ϵi, the values of log2 N(ϵ) and log2

(
1
ϵ

)
are calculated and

linearly fitted. The fractal dimension F is then obtained as the slope of the fitted line:

F =
∆ log2 N(ϵ)

∆ log2

(
1
ϵ

) (8)

where ∆ represents the increment of log2 N(ϵ) or log2

(
1
ϵ

)
at different scales.
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2.5.2. Orientation Calculation

First, it is necessary to determine the principal axis orientation of the binary image,
which represents the primary direction of the patch’s extension. Principal component
analysis (PCA) is applied to analyze the coordinates of non-zero pixels in the binary
image. Let the set of coordinates of non-zero pixels in the binary image be {(xi, yi)}N

i=1,
where N is the number of non-zero pixels. PCA is performed on all non-zero pixels to
obtain the eigenvector u1 = (u1,0, u1,1) corresponding to the first principal component,
which represents the direction of maximum variance in the data, i.e., the principal axis
orientation θ, calculated as follows:

θ = arctan 2(u1,0, u1,1) (9)

where θ is the calculated angle of the eigenvector u1 in the two-dimensional space relative
to the origin. To ensure that the angle is measured from the positive x-axis (0° in the
eastward direction) and in the counterclockwise direction as positive, the value of θ needs
to be adjusted accordingly:

θ′ = (θ × 180
π

+ 90) mod 360 (10)

where θ′ represents the calculated orientation of the patch.

2.5.3. Image Rotation

In the box-counting method, we overlay grids of boxes with different scales on the
image and count the number of boxes containing non-zero pixels. If the orientation of
the image differs, the alignment of image features with the grid will also change, and
this difference becomes more pronounced at larger scales. For example, when oriented
diagonally, a line segment of the same length may pass through more boxes, while hori-
zontally or vertically aligned line segments pass through fewer boxes. Therefore, different
orientations can lead to variations in the box count, affecting the fractal dimension’s calcu-
lation. Rotating the image to a consistent orientation can eliminate this orientation-induced
variation. This study rotates all binary images to a standard 45° orientation (i.e., northeast
direction). Nearest-neighbor interpolation is used during the rotation to maintain the
binary characteristics of the image. By rotating all images to a uniform orientation, we
can eliminate any bias in fractal dimension calculations caused by orientation differences,
ensuring that the fractal dimension reflects the intrinsic complexity of the shape rather than
the external influence of orientation.

2.5.4. Image Padding

To apply the box-counting method, the image dimensions must be powers of 2. This
requirement arises because, during the box-counting process, the image must be divided
evenly at different scales. When the image dimensions are powers of 2, the boxes can
perfectly cover the image without leaving any residuals, simplifying the calculation and
improving the accuracy of fractal dimension estimation. Therefore, the height H and width
W are adjusted to the nearest power of 2 greater than or equal to their original dimensions
to ensure that the image meets this requirement:

Hnew = 2⌈log2 H⌉, Wnew = 2⌈log2 W⌉ (11)

where ⌈·⌉ represents the ceiling function. Symmetric (or approximately symmetric) padding
with a value of 0 is applied to the image’s top, bottom, left, and right sides to minimize
the impact of padding on the calculation results. Adjusting the image dimensions to the
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nearest power of 2 ensures that the image can be evenly divided into an integer number of
boxes at each box scale, avoiding generating residual areas. This adjustment allows for a
more precise box-counting process and reduces errors caused by boundary effects.

2.5.5. Calculation of Fractal Dimension

Before calculating the fractal dimension, the patches need to be preprocessed. First,
the patch orientation is calculated (Figure 4a) and rotated to a standard orientation of
45° (Figure 4b) to eliminate calculation biases caused by orientation differences. Then, the
rotated image is padded (Figure 4c) to ensure that the image can be fully divided. Finally,
the box-counting method is applied to calculate the fractal dimension F of each patch.
As F approaches 1, it indicates that the patch shape is closer to a one-dimensional linear
structure, similar to the elongation index, suggesting that the patch is more “slender”. As
F approaches 2, it indicates that the patch shape is closer to a two-dimensional planar
structure, suggesting the patch is “fatter”.

Figure 4d shows the box coverage effect when Nϵ = 32 and the complete analysis
of the fractal dimension calculation results. The result shows that the fractal dimension
F of this patch is 1.2091, which is closer to 1. This value aligns with the patch’s elongated
strip-like morphological feature, indicating a low spatial filling capacity, a simple boundary,
and a lack of a complex fractal structure.

Figure 4. Process of calculating the fractal dimension of a patch.

2.6. Morphological Complexity

Morphological complexity (MC) is an index used to quantify the structural complexity
of geometric shapes [38]. Skeletonization is an important morphological processing tech-
nique aimed at extracting the skeleton of a target object from a binary image. This process
simplifies the shape representation while preserving the essential topological structure [39].
Through skeletonization, the target object is reduced to single-pixel-width lines, allow-
ing the extraction of its primary geometric information without altering its connectivity
and morphological characteristics. Thus, we applied this algorithm to assess the patches’
morphological complexity quantitatively.

The skeleton retains the fundamental shape features of the patch, so the ratio of
skeleton length to patch area effectively quantifies morphological complexity. In practice, it
is calculated as the ratio of the number of skeleton pixels to the total number of pixels in
the patch (Figure 5):

W =
L
N

(12)
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where L represents the number of skeleton pixels, and N is the total number of pixels in
the patch. A larger W value indicates that the skeleton length is relatively long compared
to the patch area, suggesting that the patch has more complex morphological features,
such as additional branches, extensions, and twists, making the shape more elongated or
irregular. Conversely, a smaller W value indicates that the skeleton length is relatively short
compared to the patch area, implying that the patch shape is more compact and regular,
with a more straightforward structure.

Figure 5. Schematic diagram of patch skeletonization.

2.7. Optimal Feature Selection

This study classified non-small patches into striped and non-striped types based on
their morphology. Each patch’s category is determined through manual interpretation,
and the morphological features of each patch are calculated to conduct classification and
analysis based on these morphological characteristics.

Before conducting patch classification research, we analyzed the data distribution,
importance, and correlation between all morphological features, as shown in Figure 6.
The results indicate that most features, including elongation, compactness, convexity,
fractal dimension, and morphological complexity, follow a normal distribution, have an
importance level above 10%, and exhibit some degree of correlation. In contrast, the
concavity index performed poorly; its data distribution, importance, and correlation with
other features were all suboptimal, with concavity values close to zero for most patches.
This phenomenon aligns with the characteristics of the green tide. Before Ulva prolifera
undergoes sufficient proliferation or striped patches merge into non-striped patches, it is
difficult for internal holes to form, resulting in concavity values near zero. Based on this
analysis, we ultimately selected elongation, compactness, convexity, fractal dimension, and
morphological complexity as the five optimal features for classification to ensure accuracy
and reliability.

2.8. Classification Based on Morphological Features

In terms of morphological features, smaller sizes and simpler edges characterize
medium-sized patches compared to large patches, and the boundary between “striped”
and “non-striped” forms is relatively indistinct. To ensure the generalization ability of the
classification model and the objectivity of classification results, we conducted a morphology-
based classification study separately for medium and large patches from the 1.04 million
patch images. Data augmentation was applied through flipping and rotation to increase the
number of training samples. Specifically, 25% of the samples were randomly selected for
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data augmentation, and for the selected samples, four augmentation methods—randomly
chosen from “vertical flip, horizontal flip, symmetric flip, rotation to 45°, rotation to 135°,
rotation to 225°, and rotation to 315°”—were applied to ensure that the data augmentation
did not significantly affect the sample distribution. The dataset was then divided into
training, validation, and test sets in a 7:2:1 ratio. Several machine learning models, such as
Random Forest, Support Vector Machine, and Logistic Regression, as well as deep learning
models like MLP, CNN, and RNN, were selected for training. Accuracy, kappa coefficient,
F1-score, and MIoU (mean intersection over union) were used to evaluate the classification
accuracy of the models.

Figure 6. Data distribution (a), importance (b), and inter-feature correlation (c) of six morphologi-
cal features.

The evaluation metrics are defined in Equations (13)–(18):

Accuracy =
TP + TN

TP + FP + TN + FN
(13)

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives. Accuracy measures the
overall correctness of the classifier by evaluating the proportion of correct predictions.

κ =
Po − Pe

1 − Pe
(14)
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where Po is the observed accuracy and Pe is the expected accuracy. The kappa coeffi-
cient is used to measure the reliability of the classification results, especially in cases of
class imbalance.

Precision =
TP

TP + FP
(15)

Precision evaluates the proportion of predicted positive samples that are actually
positive. A higher precision indicates that the classifier is more accurate in predicting
positive cases.

Recall =
TP

TP + FN
(16)

Recall measures the proportion of actual positive samples that are correctly identified
as positive. A higher recall indicates that the classifier is capable of detecting a larger
proportion of positive samples.

F1-score =
2 × Precision × Recall

Precision + Recall
(17)

The F1-score is the harmonic mean of precision and recall, providing a single measure
that balances both precision and recall.

MIoU =
1
C

C

∑
i=1

TPi
TPi + FPi + FNi

(18)

where C is the number of classes, and TPi, FPi, and FNi represent the true positives, false
positives, and false negatives for the i-th class. MIoU (mean intersection over union)
is a common evaluation metric in segmentation tasks, which measures the accuracy of
predictions for each class by considering both the true positive rate and the error rate.

The evaluation results for classification accuracy across models are shown in Table 2.
The results indicate that the Extra Trees model, with 100 estimators, and the Random
Forest model performed exceptionally well overall, demonstrating high accuracy, kappa
coefficient, F1-score, and MIoU values for both medium and large patches. Specifically, the
Extra Trees model achieved outstanding performance on large patches, with an accuracy of
0.9844, a kappa coefficient of 0.9629, an F1-score of 0.9844, and an MIoU of 0.9637. The Multi-
Layer Perceptron (MLP), configured with a hidden layer size of 100 units and a maximum
of 500 iterations, exhibited strong performance on medium patches, with an accuracy of
0.8763, along with high F1-score and MIoU values. CatBoost also demonstrated a balanced
performance across all metrics on medium patches. In comparison, Logistic Regression and
AdaBoost yielded slightly lower performance but still maintained reasonable classification
ability. Overall, all models performed better on large patches than on medium patches, with
ensemble models such as Extra Trees and Random Forest yielding notably superior results.

To further assess model performance, 10-fold cross-validation was used to calculate
each model’s AUC (area under the curve) values on medium and large patches. The ROC
(receiver operating characteristic) curves for each model are shown in Figure 7. The ROC
curve is a graphical representation of the trade-off between the true positive rate (TPR)
and false positive rate (FPR) at various classification thresholds. The TPR, also known as
sensitivity or recall, is defined as follows:

TPR =
TP

TP + FN
(19)
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Table 2. Evaluation results of classification accuracy for each model.

Model
Accuracy Kappa Coefficient F1-Score MIoU

Medium Large Medium Large Medium Large Medium Large

Random Forest 0.8659 0.9773 0.7174 0.9457 0.8660 0.9772 0.7538 0.9474
Support Vector Machine 0.8656 0.8643 0.7147 0.6692 0.8652 0.8620 0.7519 0.7221
Logistic Regression 0.8401 0.8574 0.6586 0.6562 0.8390 0.8559 0.7106 0.7128
Gradient Boosting 0.8599 0.8681 0.7035 0.6816 0.8597 0.8666 0.7434 0.7308
Decision Tree 0.8122 0.9548 0.6057 0.8928 0.8126 0.9547 0.6728 0.8990
Extra Trees 0.8693 0.9844 0.7240 0.9629 0.8692 0.9844 0.7589 0.9637
K-Nearest Neighbors 0.8562 0.9368 0.6962 0.8497 0.8561 0.9366 0.7379 0.8616
XGBoost 0.8669 0.9255 0.7198 0.8212 0.8671 0.9249 0.7556 0.8379
CatBoost 0.8716 0.9178 0.7294 0.8023 0.8717 0.9170 0.7629 0.8225
AdaBoost 0.8545 0.8544 0.6911 0.6481 0.8540 0.8526 0.7342 0.7072
LightGBM 0.8669 0.8945 0.7197 0.7197 0.8670 0.8935 0.7555 0.7786
Neural Network (MLP) 0.8763 0.8720 0.7393 0.6923 0.8764 0.8709 0.7706 0.7385
Attention-MLP 0.8737 0.8748 0.7325 0.7000 0.8734 0.8739 0.7654 0.7440
TabNet 0.8757 0.8805 0.7372 0.7116 0.8755 0.8791 0.7690 0.7526
CNN 0.8726 0.8694 0.7298 0.6844 0.8723 0.8678 0.7634 0.7329
RNN 0.8730 0.8801 0.7319 0.7127 0.8729 0.8792 0.7649 0.7533

Average Value 0.8625 0.9008 0.7094 0.7594 0.8624 0.8998 0.7482 0.7941

Figure 7. ROC curves of each model for medium (a) and large (b) patches. Since the Decision Tree
model typically outputs discrete classification results rather than continuous probabilities, its ROC
curve appears as a simple triangle in this study; therefore, the ROC curve for the decision tree model
was not plotted.

The FPR is defined as follows:

FPR =
FP

FP + TN
(20)

The ROC curve is plotted by varying the decision threshold, and the curve represents
the trade-off between TPR and FPR across different thresholds. The AUC is the area
under the ROC curve, providing a scalar value that summarizes the performance of the
classification model. The AUC value ranges from 0 to 1, with a higher value indicating
better model performance. AUC can be calculated as follows:

AUC =
∫ 1

0
TPR(FPR) dFPR (21)

An AUC of 0.5 indicates a model with no discriminative power (i.e., random guessing),
while an AUC of 1.0 indicates perfect classification performance.
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The results show that RNN, TabNet, and Attention-MLP performed well on medium
patches, with AUC values reaching 0.9506, 0.9504, and 0.9502, respectively. Extra Trees and
Random Forest achieved near-perfect AUC values of 0.9997 and 0.9989 on large patches,
demonstrating extremely high recognition ability for large patches. Ensemble models
outperformed traditional linear models on medium and large patches, with a particularly
pronounced advantage on large patches.

Considering the classification performance of each model, the morphological features
proposed in this study, such as elongation and fractal dimension, have demonstrated
significant effectiveness in patch classification, especially when combined with ensemble
models like Extra Trees and Random Forest. Through a comparative analysis of medium
and large patches, the classification effectiveness of each feature across different scales was
validated, confirming the utility and applicability of these morphological features in patch
classification tasks. This provides a basis for further assessing the impact of patches with
different morphologies on the scale effects.

3. Results
Based on the size and morphological features of green tide patches, the patches were

classified into five types: small, medium-striped, medium-non-striped, large-striped, and
large-non-striped. The impact of each type on the scale effects was then evaluated. Patches
at a 16 m resolution were used as the baseline, and integer multiples of 16 m were applied
for resampling to generate images with resolutions ranging from 32 m to 256 m. The
actual area of each patch was estimated by multiplying the square of the resolution by
the number of patch pixels, simulating the detection performance of the same patch at
different resolutions.

The resampling was conducted using a block-aggregation-based vectorization strat-
egy [40]. The original binary image was cropped to match the specified scaling factor
and then resized into a series of matrix blocks corresponding to the scaling factor [41].
The average proportion of target pixels within each block was calculated, and a specific
threshold was set to classify each low-resolution pixel, thus determining its value [42]. This
method preserves as many of the key morphological features of the patches as possible. A
fitting analysis was performed on the resampled patch areas compared to the baseline area,
evaluating the detection performance of patches with different morphologies and sizes at
each resolution to explore the correlation between patch morphology and the scale effects.

3.1. Striped Type

The resampling area fitting results for striped patches are shown in Figure 8. As the
resolution decreases, the area fitting’s linearity coefficient (R2) gradually decreases, and
the root mean square error (RMSE) progressively increases, indicating that the accuracy of
area estimation for striped patches declines significantly at lower resolutions. Specifically,
for large-striped patches at a resolution of 32 m, the fitting equation is y = 0.9371x − 0.0396
(Figure 8a), with an R2 of 0.999 and an RMSE of 0.0417 (Figure 8c), indicating a high
accuracy in area estimation. However, when the resolution is reduced to 256 m, the
slope of the fit decreases significantly to 0.5367, R2 drops to 0.8902, and RMSE increases
to 0.2602. These results indicate that striped patches are sensitive to the scale effects at
lower resolutions, as their elongated shape tends to lose detail at coarser scales, leading to
increased area estimation error. The linear extensibility of the striped structure makes it
difficult for low-resolution pixels in block aggregation to fully retain the strip’s elongation,
resulting in notable area errors.
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Figure 8. Area fitting results for large (a) and medium (b) striped patches and fitting evaluation
metrics (R2 and RMSE) for large (c) and medium (d) striped patches.

Medium-striped patches exhibit an even more pronounced loss of accuracy as the
resolution decreases. At a resolution of 32 m, the fitting equation is y = 0.9520x − 0.0040
(Figure 8b), with an R2 of 0.9969 and an RMSE of only 0.0036 (Figure 8d), indicating that the
resampled area closely approximates the baseline area. However, as the resolution decreases
to 256 m, the slope of the fitting equation drops sharply to 0.3456, and R2 takes on negative
values (R2 values for 224 m, 240 m, and 256 m resolutions are −0.0070, −0.3385, and
−1.0285, respectively, in Figure 8d), with RMSE increasing to 0.0387. Negative R2 values
indicate a lack of linear relationship in area fitting, with resampled areas significantly
deviating from the actual values. This area estimation error is due to the elongated shape
of medium-striped patches, which tends to be masked by low-resolution pixel aggregation
at coarse scales, resulting in the loss of strip characteristics.

The area fitting results after resampling reveal variations in signal strength for striped
patches of different sizes across resolutions. In practical applications, medium-striped
patches have high signal strength in high-resolution images (e.g., 16 m and 32 m) due
to their linear solid extensibility, making them detectable by remote sensing algorithms.
However, as the resolution decreases, the signal strength of medium-striped patches
weakens significantly or even disappears in low-resolution images, causing some patches
to have zero area at lower resolutions, thus exhibiting a significant scale effect. This area loss
phenomenon reflects the difficulty in detecting striped patches in low-resolution images,
highlighting the high sensitivity of striped patches to the scale effects.

3.2. Non-Striped Type

The resampled area fitting results for non-striped patches are shown in Figure 9. In
contrast, the fitting accuracy of large-non-striped patches demonstrates higher stability as
the resolution decreases. At a resolution of 32 m, the fitting equation is y = 0.9754x− 0.0192,
with an R2 of 0.9998 and an RMSE of 0.0292, which greatly agrees with the reference area.
When the resolution is reduced to 256 m, the fitting slope slightly decreases to 0.7470, while
the R2 remains at 0.9713 and the RMSE increases to 0.2883. Although there is some error
in area estimation at lower resolutions, the fitting accuracy for large-non-striped patches
remains relatively stable. This stability can be attributed to the compact and homogeneous
morphology of non-striped patches, which retain their structural and area characteristics
well even at a resolution of 256 m, effectively preventing area loss due to reduced resolution.
This characteristic allows for relatively accurate monitoring results for non-striped patches
at low-resolution images, with area estimation less affected by scale effects.
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Figure 9. Area fitting results for large (a) and medium (b) non-striped patches and fitting evaluation
metrics (R2 and RMSE) for large (c) and medium (d) non-striped patches.

For medium-non-striped patches, although the resolution reduction similarly leads
to a decrease in fitting accuracy, the change is more gradual. At a resolution of 32 m, the
fitting equation is y = 0.9647x − 0.0044, with an R2 of 0.9988 and an RMSE of 0.0040,
indicating high accuracy in area estimation. However, when the resolution is reduced to
256 m, the fitting slope decreases to 0.5346, the R2 drops to 0.6365, and the RMSE increases
to 0.0480. These results suggest that medium-non-striped patches are less sensitive to
scale effects than striped patches. While medium-non-striped patches have higher signal
strength in high-resolution images, there is a slight signal attenuation in low-resolution
images, leading to a minor impact on area estimation accuracy. This signal attenuation is
particularly pronounced in medium-non-striped patches, indicating that even compactly
structured patches face some scale effects in multi-scale detection.

3.3. Small Type

The distribution of resampled area data points for small patches is shown in Figure 10a.
It illustrates that for most resolutions, different reference areas correspond to similar
resampled areas, indicating that the linear relationship between the resampled area and
reference area has been significantly lost. Additionally, many data points lie above the
standard fitting line y = x, suggesting that small patches exhibit both overestimation and
underestimation in scale effects, with overestimation being more common than other patch
types. Figure 10b shows the change in the proportion of patches with a resampled area
of zero as the target resolution decreases. During the resolution reduction process, many
patches have their area reduced to zero, meaning that the detection signal for these patches
completely disappears in low-resolution imagery, which is one of the critical causes of
scale effects.

Figure 10c presents the variation in the ratio of resampled area to baseline area as
resolution decreases. It can be observed that as the resolution reduces, the proportion
of retained area decreases for all patch types, indicating an increasing loss of green tide
coverage. The rate of area loss varies among patch categories. Small patches experience the
most pronounced loss, with their resampled area-to-baseline area ratio rapidly declining,
highlighting their susceptibility to underrepresentation in lower resolutions. Medium
and large patches also exhibit area loss, but the decline is relatively more moderate, with
non-striped patches generally retaining a higher proportion of their area compared to
striped ones. This trend underscores the increasing difficulty of accurately detecting and
characterizing green tide patches at coarser resolutions, emphasizing the scale effects and
their impact on detection reliability.



Remote Sens. 2025, 17, 326 17 of 22

Figure 10. (a) Scatter plot of resampled area for small patches. (b) Change in the proportion of
patches with a resampled area of zero across different patch types as the target resolution decreases.
(c) Change in the ratio of the resampled area to the baseline area across different patch types as the
target resolution decreases. The data points for patches with a resampled area of zero at multiple
resolutions are not displayed in (a) due to significant overlap.

There is a significant difference in the scale effects between striped and non-striped
patches. Striped patches, especially medium-striped ones, are highly sensitive to resolution
changes due to their linear, elongated morphology, which leads to severe signal attenuation,
area estimation deviations, or even complete loss of detection at coarser scales. In contrast,
non-striped patches, with their compact structure, maintain relatively high signal strength
and area estimation accuracy even in low-resolution imagery. Small patches, inherently
smaller in area, are more prone to signal loss and misestimation in low-resolution images,
often disappearing entirely during the downscaling process. This makes the scale effects
for small patches more complex and pronounced compared to medium-striped and large-
striped or large-non-striped patches.

4. Discussion
4.1. Scale Effects and Morphological Sensitivity of Green Tide Patches

As shown in Figure 11, the impact of scale effects on green tide patches with different
morphologies varies significantly. By constructing resampling area fitting equations for
medium and large patches, we found that these equations demonstrate higher reliability for
area estimation of large-non-striped patches. The patches maintain good distinguishability
across different resolutions (Figure 11(a1–a16), indicating that changes in scale have mini-
mal influence on the morphological characteristics of large-non-striped patches. In contrast,
the linearity of the fitting equations for medium patches decreases with size reduction,
while small patches almost entirely lose their linear relationship. This finding suggests that
medium and small patches are more sensitive to resolution changes, resulting in significant
errors in area estimation. Furthermore, striped patches exhibit better detection performance
in high-resolution imagery, but when the resolution decreases, they tend to fragment into
small strips or isolated patches. As shown in Figure 11(b3–b16), patches are divided into
multiple parts, losing connectivity. The existing fitting equations fail to map green tide
areas in low-resolution imagery accurately.

In practical green tide monitoring tasks, data resolution is often inversely proportional
to the satellite’s swath width and revisit cycle. Therefore, obtaining long-term and large-
scale monitoring results requires synergistic observations from multi-source satellite data.
However, the actual morphological characteristics of green tide patches can typically be
accurately identified only in high-resolution imagery. For example, Figure 11(b1) illustrates
a distinct striped patch at a 16 m resolution. However, as the resolution decreases, the
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detection results degrade into several small patches, which makes estimating the 16 m reso-
lution area using existing fitting equations at lower resolutions challenging. This outcome
highlights the irreversibility of the area-fitting equations and reflects the limitations of the
proposed method.

Based on these findings, we believe that effectively incorporating morphological
features into multi-source remote sensing data can further enhance the accuracy and
stability of green tide monitoring. Specifically, the differential responses of patches with
varying morphologies to scale effects suggest more robust algorithms addressing the high-
scale sensitivity of striped and small patches in multi-scale data fusion. Such improvements
will contribute to better spatial characterization of green tide dynamics, especially in multi-
source data environments with inconsistent resolutions. They will more accurately reflect
the actual distribution of green tides.

Figure 11. Morphological changes of five types of patches as the resolution decreases, including
large-non-striped (a1–a16), large-striped (b1–b16), medium-non-striped (c1–c16), medium-striped
(d1–d16), small (e1–e16).
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4.2. Potential of Super-Resolution Methods in Green Tide Area Estimation

The limitations of area estimation at low resolutions, as highlighted in our findings,
suggest that super-resolution methods could be a promising approach to address these
challenges. Super-resolution techniques, which aim to reconstruct high-resolution images
from low-resolution data, have shown significant potential in enhancing spatial detail and
improving feature detection in various remote sensing applications. By applying super-
resolution algorithms, such as convolutional neural networks (e.g., SRCNN [43]) or genera-
tive adversarial networks (e.g., SRGAN [44,45]), the spatial resolution of low-resolution
imagery could be effectively enhanced, potentially mitigating the loss of morphological
detail and improving the reliability of green tide area estimation.

For instance, super-resolution methods could help preserve the connectivity and struc-
tural integrity of striped patches, which tend to fragment into smaller parts as resolution
decreases. This would enable more accurate area estimation and morphological analysis,
even in imagery with coarser resolutions. Similarly, small patches that are particularly
sensitive to resolution changes might retain their detectable area proportions through
enhanced spatial detail provided by super-resolution techniques, thereby reducing the
proportion of zero-value patches.

Despite these advantages, the practical application of super-resolution methods in
green tide monitoring presents challenges. These include the computational cost of process-
ing large-scale datasets, the potential introduction of artifacts during reconstruction, and
the need for high-quality training data to ensure robust model performance. Additionally,
the effectiveness of super-resolution methods in preserving the spectral and morpholog-
ical fidelity of green tide patches across multi-source remote sensing datasets requires
further investigation.

Nevertheless, integrating super-resolution techniques into existing area estimation
workflows could complement the proposed methods by improving the spatial characteriza-
tion of green tides in low-resolution imagery. Future work should explore the feasibility
and effectiveness of super-resolution approaches for green tide monitoring, particularly in
multi-scale and multi-source data fusion scenarios. This could enhance the accuracy and
reliability of green tide area estimation, offering valuable insights into their spatial and
temporal dynamics.

5. Conclusions
This study systematically investigated the impact of morphological characteristics

of green tide patches on scale effects in area estimation. First, green tides were detected
using the VB-FAH index based on GF-1 WFV data, and patch regions were segmented
and extracted using the CCL algorithm. The extracted patches were then categorized
by size into small, medium, and large patches. Next, morphological features such as
elongation, compactness, convexity, fractal dimension, and morphological complexity
were introduced to construct machine learning models, enabling accurate classification of
striped and non-striped patches. Finally, resampling simulations at various resolutions
were performed to analyze changes in area estimation for patches of different sizes and
morphologies as resolution decreased, resulting in the derivation of fitting equations
between the baseline area and the resampled area. The results showed that area estimation
for large patches remained relatively stable across resolution changes. In contrast, the
errors in area estimation for medium and small patches increased as resolution significantly
decreased. Striped patches, mainly, were more sensitive to scale effects, exhibiting greater
deviations in area estimation under low-resolution imagery and partial irreversibility in the
fitting equations. This phenomenon highlights the critical role of size and morphological
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features in green tide area estimation. It emphasizes incorporating patch morphology in
multi-source remote sensing monitoring to enhance accuracy.

Future work should prioritize enhancing morphological feature extraction and classifi-
cation algorithms to improve the detection and characterization of green tide dynamics.
Advanced methods, such as deep-learning-based shape descriptors and attention mech-
anisms, could better capture subtle morphological variations, particularly for small and
fragmented patches, thereby mitigating the scale effects observed in area estimation. Fur-
thermore, integrating these enhanced algorithms into multi-scale monitoring frameworks
would allow for more consistent and accurate representation of green tide dynamics across
varying resolutions. Additionally, the prospective application of these advancements in
early warning systems for green tide outbreaks deserves further investigation. By leverag-
ing enhanced morphological features and improved classification algorithms, such systems
could provide timely and reliable predictions, aiding in the mitigation of green tide impacts
on coastal environments. In the future, developing robust area estimation models tailored
to different morphological types, combined with multi-source and multi-scale monitoring
data, will significantly improve the spatial representation of green tide dynamics and
support the effective management of green tide events.
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