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Abstract: This study explores advanced methodologies for estimating subcanopy solar
radiation using LiDAR (Light Detection and Ranging)-derived point clouds and GIS (Ge-
ographic Information System)-based models, with a focus on evaluating the impact of
different LiDAR data types on model performance. The research compares the performance
of two modeling approaches—r.sun and the Point Cloud Solar Radiation Tool (PCSRT)—in
capturing solar radiation dynamics beneath tree canopies. The models were applied to
two contrasting environments: a forested area and a built-up area. The r.sun model, based
on raster data, and the PCSRT model, which uses voxelized point clouds, were evaluated
for their accuracy and efficiency in simulating solar radiation. Data were collected using
terrestrial laser scanning (TLS), unmanned laser scanning (ULS), and aerial laser scanning
(ALS) to capture the structural complexity of canopies. Results indicate that the choice of
LiDAR data significantly affects model outputs. PCSRT, with its voxel-based approach,
provides higher precision in heterogeneous forest environments. Among the LiDAR types,
ULS data provided the most accurate solar radiation estimates, closely matching in situ
pyranometer measurements, due to its high-resolution coverage of canopy structures.
TLS offered detailed local data but was limited in spatial extent, while ALS, despite its
broader coverage, showed lower precision due to insufficient point density under dense
canopies. These findings underscore the importance of selecting appropriate LiDAR data
for modeling solar radiation, particularly in complex environments.

Keywords: solar radiation model; LiDAR; forest canopy; GIS; beam radiation; subcanopy
solar radiation

1. Introduction
The spatial distribution of solar radiation on land surface is driven by many factors,

such as latitude, topography, atmospheric situation, and vegetation [1–3]. The vegetation
canopy significantly influences solar radiation, as tree crowns absorb a large portion of the
incoming solar radiation. However, depending on the canopy’s density, some fraction of
the sunlight still reaches the ground. This reduction in solar radiation below the canopy is
manifested especially in the beam (direct) component of solar radiation which is usually
the largest component of the global solar radiation during clear sky atmospheric conditions.
The reduction is also evident in a diffuse component, which is anisotropic and related to
beam solar radiation [4].

Vegetation represents a complex data structure. Physical aspects such as form, height,
density, branching structure, and leaves are the main components that create shade and
important variables characterizing the light conditions inside the stand, and under the
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treetops [1,5–10]. These structural elements significantly influence the accuracy of solar
radiation modeling, necessitating high-resolution data to capture fine-scale interactions
between vegetation and solar radiation.

Traditional methods of quantifying solar radiation are performed either directly (e.g.,
using quantum sensors) or indirectly (e.g., with hemispherical photography). Comprehen-
sive reviews on the quantification of forest light environments, focusing on tools, methods,
accuracy, and costs, have been published by many authors, e.g., [6,11,12]. However, these
reviews do not address the use of remote sensing technology. The issue of modeling solar
radiation in the forest using remote sensing data is present in a review study by Olpenda
et al. [13].

LiDAR (Light Detection and Ranging) technology, including airborne laser scanning
(ALS), terrestrial laser scanning (TLS), and unmanned aerial system laser scanning (ULS),
has revolutionized the collection of high-resolution 3D data on forest and urban canopies.
ALS provides broad coverage, making it suitable for large-scale studies, but its lower point
cloud density can limit its ability to capture fine canopy details. In contrast, TLS and ULS
generate high-density point clouds, enabling detailed analysis of canopy gaps, understory
vegetation, and shading patterns [14–16]. Wu et al. [17] demonstrated that ALS excels at
capturing top-of-crown metrics such as crown area and height in horticultural crops, while
TLS provides superior accuracy for metrics that rely on lower canopy structures, such as
crown volume and vertical leaf area profiles. These findings underscore the importance
of selecting the appropriate LiDAR technology based on the application and structural
complexity of the environment. Similarly, Neuville et al. [18] highlighted the potential of
Unmanned Aerial Vehicle (UAV) LiDAR in dense forest stands, particularly for detecting
tree stems and estimating Diameter at Breast Height (DBH), even under challenging leaf-on
conditions. These studies illustrate how the choice of LiDAR platform affects the spatial
resolution, coverage, and ability to capture fine structural details.

For example, the integration of UAV LiDAR for urban and forest applications has
demonstrated significant potential in studies by Li et al. [19] and Moudrý et al. [20]. Much
of the research on modeling solar radiation under tree canopies has utilized LiDAR and
photogrammetry [13,21–23]. Currently, these methods are the most effective ways of
data collection, enabling high spatial resolution of landscape features [14,15,24]. LiDAR
provides high-resolution 3D point clouds of forest structures, allowing detailed analysis of
canopy gaps and understory vegetation. Photogrammetry, especially with the advent of
UAVs, has also been used to capture high-resolution images for the 3D reconstruction of
forest environments. Methods such as Structure from Motion (SfM) produce dense point
clouds that, while less accurate than LiDAR, offer a cost-effective alternative for large-scale
applications [25].

Several studies have demonstrated the potential of LiDAR and photogrammetry-
based methods for modeling solar radiation under tree canopies. For example, Witzmann
et al. [26] introduced an algorithm that utilizes terrestrial LiDAR point clouds to estimate
potential solar radiation reaching the forest floor. This approach transforms point clouds
into a coordinate system aligned with solar rays, calculates the path length of sunlight
through the canopy, and applies Beer’s law to quantify radiation attenuation. Validation
using hemispherical photographs and Solariscope measurements confirmed the accuracy
of this method, highlighting its utility for ecological and silvicultural applications. Sim-
ilarly, Xue et al. [27] developed a synergistic approach combining airborne LiDAR and
computer graphics to model radiant fluxes in forest plots. By simulating solar beams and
their interactions with canopy surfaces, this method demonstrated strong agreement with
hemispherical photo-based and pyranometer measurements, providing a robust framework
for analyzing spatiotemporal variations in solar radiation. Zhang et al. [28] and Sahu and
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Jena [29] further explored the use of fisheye photography for capturing canopy structures
and estimating subcanopy solar radiation. Their findings underscore the effectiveness of
fisheye photographs in representing canopy heterogeneity and calculating light conditions
beneath the canopy. Despite some limitations in accuracy due to mismatched observation
conditions, these studies highlight the utility of combining photographic techniques with
algorithmic modeling for understanding subcanopy radiation dynamics.

Solar radiation models aim to quantify the amount of solar energy reaching various
layers of the forest canopy, taking into account factors such as the sun’s angle, atmospheric
conditions, and the structural complexity of the canopy. Traditional models like r.sun [30],
implemented in the GRASS GIS environment [31], are designed for raster data and excel in
large-scale or regional studies where computational efficiency and simpler data structures
are required. Tools such as Solar Analyst [32] also rely on raster data and have been
widely used for similar applications. These raster-based models are particularly effective
in urban environments where canopy structures and terrain are less complex, allowing
for accurate solar radiation predictions with minimal preprocessing. In contrast, recent
advancements have focused on utilizing high-resolution 3D point cloud data for solar
radiation modeling. The Point Cloud Solar Radiation Tool (PCSRT) [33] transforms point
cloud data into voxel grids, enabling detailed analysis of solar radiation dynamics in
environments with heterogeneous canopy structures, such as dense forests. By accounting
for fine-scale shading effects and light attenuation, PCSRT offers a level of precision that
surpasses traditional raster-based methods, particularly in complex forested settings. The
choice between r.sun and PCSRT reflects the trade-offs inherent in their design; r.sun
prioritizes computational efficiency and simplicity, making it ideal for studies requiring
broad spatial coverage with straightforward data processing requirements. Conversely,
PCSRT emphasizes precision and the ability to capture detailed subcanopy dynamics,
albeit with higher computational and memory demands. Empirical models, often based on
ground measurements, remain critical for validating both approaches, as highlighted by
Parker et al. [34]. Their study underscores the importance of field data in understanding the
intricate interactions between canopy structure and light transmission, which are central to
both raster-based and voxel-based modeling approaches.

Modeling subcanopy solar radiation is vital for understanding forest ecosystems; yet,
it remains a complex challenge due to the variability in light penetration. The integration
of GIS (Geographic Information System) and LiDAR has significantly enhanced these
models by improving spatial resolution. GIS enables large-scale spatial analysis, while
LiDAR provides high-resolution data on canopy structure, allowing for more accurate light
distribution modeling within forest canopies [13].

This paper explores two approaches to modeling solar radiation beneath tree canopies,
each based on different input data sources. The first approach utilizes the r.sun model,
which requires raster data, while the second approach employs the PCSRT model, which
uses point clouds. Both approaches use the same solar radiation modeling principles based
on the European Solar Radiation Atlas (ESRA) model [30,33], but they differ significantly
in their data requirements and capacity to represent subcanopy environments. Therefore,
the goal of this study is to compare these modeling approaches, assess their accuracy in
predicting solar radiation under tree canopies represented by point clouds collected by
different LiDAR data sources, and analyze the impact of different input data types on
model performance.
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2. Methods and Data
2.1. Solar Radiation Models
2.1.1. r.sun

The r.sun solar radiation model calculates two-dimensional (2D) raster maps of di-
rect, diffuse, and reflected radiation for a specific day, latitude, surface, and atmospheric
conditions [30]. The r.sun model is implemented in the GRASS GIS v7.8.7 software as the
r.sun module [35]. It is based on the European Solar Radiation Atlas (ESRA) model [36].
The r.sun module operates in two modes: the first mode calculates the angle of incidence
of the sun and solar irradiance (W/m2) at a specific time of day, and the second mode
calculates the global solar radiation (Wh/m2) for a specific day of the year. Both modes
calculate global solar radiation with its three components—beam, diffuse, and reflected
solar radiation—based on time, location, topography, and atmospheric conditions. The
input data include a raster of elevations and a day of the year. Location values are provided
by latitude and longitude grids or through internal calculations. Shading is calculated
internally or using horizon raster maps generated by the r.horizon module in GRASS GIS.
The slope, aspect ratio, Linke turbidity coefficient, and albedo parameters can be provided
as uniform values or spatially variable rasters. A detailed description, parameters, notes,
and examples are available in the GRASS GIS manual [35] and in the book by Neteler and
Mitasova [31].

In the r.sun module, the clear-sky solar radiation can be attenuated by the coeff_bh
and coeff_dh raster-based parameters to calculate the real-sky radiation by estimating
the influence of clouds or haze. The coeff_bh and coeff_dh input raster maps define the
fraction of the respective clear-sky radiations reduced by attenuation factors. The values
of real-sky coefficients are in the range of 0–1. The same principle can be used for the
estimation of attenuation of clear-sky solar radiation by the canopy via Leaf Area Index
(LAI) or Light Penetration Index (LPI). The LPI metric assesses the extent to which light
penetrates through a canopy. LPI is typically calculated as the ratio of light that passes
through the canopy to the light available above the canopy. The LPI used in this study to
estimate the attenuation of beam radiation via the coeff_bh parameter is calculated from the
classified LiDAR data by dividing the number of ground hits (points) by the total number
of hits.

The primary input for solar radiation modeling is the Digital Surface Model (DSM)
which includes elevation, slope, and aspect rasters. The calculation of irradiance values for
this study requires the specification of a day of the year and a local (solar) time provided
in the decimal system. Another crucial input parameter is the Linke turbidity coefficient
usually estimated for the given environment and atmospheric conditions.

2.1.2. Point Cloud Solar Radiation Tool

The PCSRT software is used for three-dimensional (3D) solar radiation modeling using
voxelized point clouds [33]. PCSRT implements a developed method for modeling solar
radiation in a 3D space represented by a volume grid. It can be used for objects represented
by point clouds produced by a laser scanner or other methods. It is especially useful for
highly fragmented areas, such as those covered by vegetation. The tool converts the point
cloud coordinate system into a voxel-based system, where voxels have a uniform size,
shape, and volume [33]. Similarly, to r.sun, PCSRT calculates beam, diffuse, and global solar
radiation using the ESRA model for every point. The PCSRT transforms the input point
cloud into a volume grid, constructs regression planes for each voxel based on surrounding
points, and then calculates the insolation time and solar radiation components for the
specified period. The Sun’s position is calculated based on a reference point, ideally the
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centroid of the point cloud. Currently, LAS and LAZ file formats are supported as input
files, and LAS, LAZ, and PLY are supported as output files.

The tool is implemented using the Rust programming language, and after compilation,
it can be run on any commonly used operating system (Windows, Linux, and MacOS).
The solar radiation modeling method using the PCSRT aims to minimize the number of
necessary input parameters and strives for the universality of use and calculation efficiency.
The input data for the tool is a processed and optimized point cloud using other software
tools such as CloudCompare v2.12.4. PCSRT is a command-line tool that requires at least
the point cloud centroid position (latitude, longitude), Linke turbidity factor, and time
period to be specified in addition to the input and output file paths. However, additional
optional parameters can be used to modify how PCSRT processes the point cloud. The
most “sensitive” parameters are the Linke turbidity factor, which has a direct impact on
the output solar radiation values, and voxel size, which determines the level of detail in
which the cloud is processed. The resolution limits the level of detail of the trees. If a voxel
is too large, it causes the shadowing of other voxels located behind it and blocks the sun’s
rays. Conversely, if the voxel is too small, the voxel structure can allow sunlight to pass
through the trunk or branches of trees, leading to inaccuracies. A detailed analysis of voxel
size selection is provided by the authors of PCSRT in [33]. In this study, voxel sizes were
set to 0.05 m for TLS and ULS data and 0.8 m for ALS data for both areas, reflecting the
respective data densities.

2.1.3. Quantitative Comparison of Models

A quantitative comparison of PCSRT and r.sun was conducted to evaluate their input
requirements, preprocessing demands, and computational efficiency. The computational
experiments and model simulations were conducted on a system equipped with an Intel(R)
Core(TM) i7-4790 CPU operating at 3.60 GHz. The system uses a 64-bit operating system
with an x64-based processor architecture. The processor featured 8 cores, allowing for
efficient parallel processing. The system was supported by 32.0 GB of DDR3 RAM.

PCSRT requires voxelization of point cloud data, enabling high-resolution subcanopy
modeling but significantly increasing processing time and memory usage. In contrast,
r.sun utilizes raster DSMs, which require minimal preprocessing and are computationally
less intensive. Benchmarking experiments revealed that PCSRT required approximately
6 min to process TLS data (forested area), compared to 5 s for r.sun using a raster DSM.
Memory usage for PCSRT was 23 GB, reflecting the additional computational complexity
of voxelized data, while r.sun required significantly less memory.

2.2. Study Areas and Input Parameters

The study areas were selected to provide a realistic representation of typical environ-
ments in Central Europe. We have selected two study areas representing distinct landscape
types with tree canopies: forested and built-up/urban landscapes (Figure 1). Each land-
scape exhibits unique structural characteristics. In forests, tree canopies play a dominant
role in regulating the amount of solar radiation that reaches the ground. In contrast, urban
landscapes are characterized by a diversity of structures, including buildings with various
roof types and other constructions. Trees are also a vital and integral part of urban areas,
but their spatial arrangement differs significantly from that in forests.
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cus petraea), pedunculate oak (Quercus robur), white ash (Fraxinus excelsior), and sycamore 
maple (Acer pseudoplatanus). In addition to these in the selected area, we also identified 
small islands of coniferous trees, specifically Scots pine (Pinus sylvestris). The forest con-
sists of approximately 80% deciduous species and 20% coniferous species, capturing the 
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features frequent canopy gaps due to built structures, creating heterogeneous solar radi-
ation conditions within the area. This variability in canopy cover and structure ensures 

Figure 1. Locations of study areas. (A): Forested area; (B): built-up area; (C): side view of the forested
area; (D): side view of the built-up area—Jesenná Street. Green lines indicate canopy areas.

The forested area with adjacent grassland near the village of Rudník is located in the
Košice-okolie district in eastern Slovakia (48◦42′32′′N 21◦01′15′′E) at an altitude of 314 m
above mean sea level. The forested area was chosen to represent a typical Central European
deciduous forest, characterized by a mixed-species canopy structure that provides a diverse
range of canopy densities and light penetration conditions. This area was selected for its
species diversity and structural variability, which are reflective of regional forest ecosys-
tems. The deciduous forest in the selected area consists of various types of trees typical for
the Central European region including beech (Fagus sylvatica), sessile oak (Quercus petraea),
pedunculate oak (Quercus robur), white ash (Fraxinus excelsior), and sycamore maple (Acer
pseudoplatanus). In addition to these in the selected area, we also identified small islands
of coniferous trees, specifically Scots pine (Pinus sylvestris). The forest consists of approxi-
mately 80% deciduous species and 20% coniferous species, capturing the mixed-species
nature of the region. Tree heights in this area have a mean of 18.2 m (±4.6 m), with values
ranging from 10 m in younger stands to 28 m in mature stands.

The urban area, on the other hand, was selected to represent a typical built-up envi-
ronment in a mid-sized Central European city, characterized by varied building heights
and scattered vegetation, including ornamental trees. The built-up area is located in the
central part of the city of Košice (48◦42′32′′N 21◦01′15′′E) at an altitude of 210 m above
sea level. The area includes segments of Jesenná, Jilemnického, and Park Angelinum
streets. Since this is an urban area, the selected location contains various types of trees
typical for urban environments and urban planning such as box elder (Acer negundo), silver
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birch (Betula pendula), and Norway spruce (Picea abies), among others. Within the selected
area, there are several buildings, including a university building, residential buildings,
and technical buildings. In the urban area, vegetation distribution was described by tree
density, which averages approximately 5 trees per hectare, and species diversity, which
includes 12 dominant tree species with variable crown structures. The urban vegetation
also features frequent canopy gaps due to built structures, creating heterogeneous solar
radiation conditions within the area. This variability in canopy cover and structure ensures
the urban area is representative of typical urban environments in the region, characterized
by a mix of vegetation and infrastructure.

The input parameter for solar radiation modeling using r.sun was the elevation raster
map representing DSM, created in the CloudCompare software v2.12.4 with a resolution
of 0.5 m. Additional input parameters included the slope and aspect raster maps derived
from DSM. The module operates using a specific day of the year: for the built-up area, it
was the 271st day of the year, and for the forested area, it was the 272nd day of the year.
We analyzed 2 days with clear-sky conditions to ensure consistent atmospheric and solar
input parameters. Time was specified in solar (local) time.

The Linke turbidity factor values used in the study were obtained from the SoDa1
database, a comprehensive resource for atmospheric and solar radiation data [37]. Since
no meteorological measurements of the Linke turbidity factor were available for the study
areas, the selection of these values for the particular day was further refined through cali-
bration against pyranometer measurements conducted in the study areas. Solar radiation
was modeled for the specified day and time, and the modeled values were adjusted to align
with observed pyranometer readings.

For the built-up area, a Linke turbidity factor value of 3 was determined, reflecting
typical atmospheric conditions for urban environments in the northern hemisphere during
September. Conversely, a lower value of 2.5 was applied to the forested area, representing a
rural setting with minimal air pollution and aligning with established values for clear-sky
conditions. To ensure consistency, these values were applied uniformly across all models,
maintaining compatibility with local seasonal conditions and adhering to established solar
radiation modeling principles.

The input parameters for solar radiation modeling using PCSRT for the forested area
data were set as follows: the point cloud centroid’s geographical coordinates, the time range,
in RFC3339 format, was defined as 2023-09-28T06:00:00.000Z to 2023-09-28T06:01:00.000Z,
with a step interval of 1 min. The Linke turbidity factor was also set to 2.5. The voxel size
was adjusted according to the type of input data. The input parameters for the built-up area
data were set as follows: the point cloud centroid’s geographical coordinate, the time range,
in RFC3339 format, was defined as 2023-09-27T06:00:00.000Z,2023-09-27T06:01:00.000Z,
with a step interval of 1 min. The Linke turbidity factor was also set to 3.

2.3. Data Collection Methods

Laser scanning, or LiDAR, is currently the most effective technique for mapping the
geometric structure of landscapes [16,19]. It is an active remote sensing technique that
emits laser pulses and records their reflections to create highly accurate point clouds of
landscape features. The LiDAR method produces a point cloud that can be processed to
create various data products, including vector models, Triangulated Irregular Network
(TIN) or mesh models, and raster layers.
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When it comes to efficiency in mapping large areas with high detail, aerial platforms
such as manned aircraft and UAVs are particularly effective. Both platforms can carry
LiDAR, but they produce different results due to varying operational parameters, such as
altitude and speed. UAVs typically capture finer details, which is crucial for accurately mod-
eling solar radiation beneath tree canopies, as the canopy structure greatly influences the
transmission of sunlight. To complement aerial data, ground-based methods, particularly
terrestrial laser scanning, are essential for achieving highly detailed point clouds.

Terrestrial and airborne laser scanning differ notably in the quality and detail of the
point clouds they generate. Terrestrial laser scanning, conducted from a static tripod,
provides a high-density point cloud near the scanner, allowing for detailed capture of tree
canopies and the terrain beneath them. In contrast, airborne laser scanning relies on a
mobile platform, where precise flight trajectory calculations are critical for accurate data.
Modern software tools can correct errors resulting from positional uncertainties during
data collection.

This study employs a combination of advanced laser scanning techniques to accurately
capture the structural characteristics of both forested and built-up environments (Figure 2).
Three different types of laser scanning technologies—terrestrial laser scanning, unmanned
aerial system laser scanning, and aerial laser scanning—were used to obtain detailed point
cloud data across the study areas. For the forested area, we used data from TLS, ALS, and
ULS. For the built-up area, we used 2 types of data, data from TLS and ALS.
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2.3.1. TLS

To obtain terrestrial laser scanning data, we used the Riegl VZ-1000 terrestrial laser
scanner, which is well suited for mapping vegetation in both forested and urban landscapes.
This 3D laser scanner offers a wide field of view with a 100◦ vertical and 360◦ horizontal
range. The selected research areas, forested area, and built-up area were both mapped using
TLS. For both sites, we employed the same scanning parameters: a frequency of 300 kHz
with Panorama 40 mode, providing a 0.04◦ step for pulse emission in both horizontal and
vertical directions. In the forested area, we performed 26 scanning positions, and in the
built-up area, we conducted 30 scanning positions (Figure 3). The scanning positions were
spaced within 25 m of each other, ensuring sufficient overlap, which is crucial for the
accurate registration of individual scan positions.
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The registration of the individual scan positions was carried out using the RiSCAN
Pro v2.9 software. In the initial step, noise was removed from the scan data based on
the deviation parameter. This parameter helps identify points with a high likelihood of
positional uncertainty—specifically, points whose trace deviates significantly from a perfect
circle. Such points typically occur on grass, tree branches, or surfaces with sharp angles of
incidence and could compromise the accuracy of the registration. In our case, we applied a
deviation filter with a value of ≤20.

The second step involved coarse registration using four identical points, with the first
scan position serving as the reference. After this, automatic registration was performed
using the Multi-Station Adjustment (MSA) tool, with a plane patch filter applied. The re-
sulting automatic registration error for aligning each scan position to a common coordinate
system was 0.015 m.

To georeference the point cloud within a global coordinate system, we employed a
straight-line registration method based on ground control points (GCPs). Photogrammetric
targets were used to signal the GCPs, and their positions were recorded using the TOPCON
HiPer HR GNSS system. The GCPs were captured using the RTK method with access
to the SKPOS (Slovak real-time positioning service) network. A total of 8 GCPs were
used for registration, resulting in a total registration error of 0.018 m. Finally, the point
cloud was subsampled to a 0.02 m resolution using the “Spatial Sampling” filter in the
CloudCompare software. This step removed duplicate and redundant points, significantly
reducing computational demands for solar radiation modeling without compromising the
accuracy of the final estimates.
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In the forested area, TLS captured 58,528,112 total number of points (vegetation and
ground) with 1353.44 average density per m2 (Figure 4A). Of these, 13,195,446 points
represent terrain, with a terrain point density of 333.66 points per m2 (Figure 4B). Figure 4
shows the highest point densities near the TLS positions and within dense vegetation areas
where the laser beam could capture more details due to the proximity and structure of the
objects. Conversely, the point density decreases in open areas like the meadow, further
away from the scanner, where fewer surfaces are available to reflect the laser pulses. The
high density is due to the ground-based nature of TLS, which allows for detailed data
collection of the lower canopy and forest floor. However, the density of the point cloud is
affected by the number of scanning positions, which causes inhomogeneous data coverage
(see Figure 4).
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In the built-up area, TLS captured a total number of points of 107,277,108 (vegetation
and ground) with 3991.41 average density per m2 (Figure 5A). Of these, 22,236,808 points
represent terrain, with a terrain point density of 1102.02 points per m2 (Figure 5B). The point
cloud (Figure 5) shows typical TLS results for an urban environment, with the highest point
density near the scanner positions, particularly on building facades and nearby objects.
However, the density decreases with distance and occlusion, leading to varied distribution
across the scene. While TLS provides high-resolution data, capturing intricate details of
buildings and structures, the overall coverage is influenced by the number and placement
of scanning positions, resulting in a non-uniform distribution of points.
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2.3.2. ULS

Another type of data used for modeling solar radiation under tree canopies is laser
scanning data collected from UAVs. Due to local legislative restrictions on flying in built-up
areas, these data were only available for the forested areas. Data collection at this area
took place on 12 September 2023, at 08:14 UTC under clear weather conditions, with an air
temperature of 26 ◦C and moderate winds up to 1 m·s−1.

For mapping, we utilized a unique laser system that integrated a modified DJI AGRAS
T30 UAV carrier, a VUX-1 laser scanner, and an IMU OxTS xNAV 550 equipped with GNSS
antennas from Novatel. The flight was conducted at an altitude of 60 m above ground
level (AGL) with a speed of 3 m·s−1, and a scan rate of 550 kHz. The flight followed a
double-grid flight plan. To reconstruct the flight trajectory and register the point cloud in
the JTSK 03 coordinate system (EPSG code: 8353), corrections from a virtual base station
derived from the SKPOS (Slovak real-time positioning service) system were applied in
post-processing mode.

The flight trajectory was calculated using the Combined (Forwards + Backwards)
processing method in the NAVsolve v3.12 software, with corrections applied for the corre-
sponding epochs. The trajectory was exported at a recording rate of 100 Hz and imported
into the RiPROCESS v1.8.6 software. Subsequently, the individual flight paths were ex-
ported using the rxp cutter tool, and systematic errors in the scanner’s rotation angles were
identified and corrected using the auto tie planes method. Each flight trajectory was then
exported separately, and the StripAlignment v14.4 software from BAYES Solution was used
to eliminate fluctuations in the point clouds. After alignment, the resulting data achieved
an internal accuracy of 0.019 m.

The final step in processing the ULS data involved correcting the positioning error
in the JTSK03 coordinate system using ground control points (GCPs). A total of 8 GCPs
were used, marked by targets with dimensions of 0.3 × 0.3 m. These targets were surveyed
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using the TOPCON HiPer HR GNSS system with the RTK method and access to the SKPOS
network. The resulting point cloud accuracy was 0.021 m.

In the forested area, ULS captured 125,232,784 total number of points (vegetation
and ground) with 2559.85 average density per m2 (Figure 6A). Of these, 12,305,991 points
represent terrain, with a terrain point density of 254.06 points per m2 (Figure 6B). The point
cloud shows (Figure 6) a dense canopy structure in the forested areas, leading to high point
densities. Lower point density is on tree trunks and multiple levels of vegetation below the
tree canopy ULS provides high-resolution spatial data and homogeneous coverage.
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2.3.3. ALS

ALS data were provided by the Office of Geodesy, Cartography, and Cadastre of the
Slovak Republic (ÚGKK SR). Data collection took place during the vegetation-free period
from 10 April 2021 to 26 April 2021, for both study areas. The reported height accuracy is
0.3 m (ETRS89-h) and positional accuracy is 0.09 m in ETRS89-TM34 [38].

In the forested area, ALS captures a total number of points of 1,718,408 (vegetation
and ground) with a 20.38 average density per m2 (Figure 7A). Of these, 1,069,650 points
represent terrain, with a terrain point density of 12.71 points per m2 (Figure 7B). ALS
captures significantly fewer points and has the lowest average point cloud density. The
lower point density is due to the higher altitude of ALS data collection, resulting in less
detailed coverage, especially in complex vegetation structures.
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In the built-up area, ALS captured a total number of points of 713,347 (vegetation and
ground) with 23.08 average density per m2 (Figure 8A). Of these, 383,995 points represent
terrain, with a terrain point density of 16.93 points per m2 (Figure 8B). The built-up areas,
such as buildings, roads, and sidewalks, display a uniformly high point density, reflecting
the effectiveness of LiDAR in capturing detailed surface information from man-made
structures. The vegetated areas around the buildings show a more variable density, which
corresponds to the complexity and heterogeneity of the natural environment. Trees and
bushes, for example, cause varying levels of obstruction to the laser pulses, resulting in
a mixed-density distribution. The edges of buildings and other structures might show
slightly lower densities where the LiDAR pulses were at oblique angles, causing some data
loss or scattering (see Figure 8). Although ALS provides uniform coverage of the area, the
point density remains low.
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2.4. Preprocessing of LiDAR Data

To ensure the comparability of TLS, ULS, and ALS data during the experiments, a
standardized preprocessing workflow was implemented. This workflow consisted of
several steps designed to harmonize the datasets. First, all point clouds underwent an
initial noise filtering process to remove outliers caused by scanning inaccuracies, with a
uniform threshold applied across all datasets. Next, ground classification was performed,
during which ground points were identified and separated from vegetation and other
non-ground features using consistent ground-filtering algorithms applied uniformly to the
TLS, ULS, and ALS datasets.

Additionally, TLS and ULS data for both built-up and forested areas were optimized
to a resolution of 2.5 cm. This optimization step was necessary to address the large volume
and high density of the data, which would otherwise impose excessive computational
demands. Importantly, reducing the resolution to 2.5 cm did not compromise the quality
or accuracy of the point clouds, ensuring the models retained sufficient detail for precise
analysis. In contrast, ALS data were not optimized, as their lower initial density did not
warrant further reduction.

The limited spatial extent of TLS data was addressed by focusing the analyses on
small-scale areas with comprehensive TLS coverage. These areas were carefully selected to
align with the overlapping ULS and ALS datasets. To ensure comparability, the larger-scale
ULS and ALS datasets were clipped to match the spatial boundaries of the TLS coverage.
This approach ensured that all models operated within the same spatial extent during the
evaluation, facilitating consistent and reliable comparisons.

2.5. Validation

Validation of the results of solar radiation modeling was conducted using pyranometer
measurements. A set of two MS-60 pyranometers with automatic data recording produced
by the EKO-INSTRUMENTS company was used to measure solar radiation levels. The
MS-60 is an ISO 9060:2018 Class B pyranometer with analog output and double dome
construction for lower offsets and cosine errors. Validation measurements were carried
out in the selected forested area over two days. On 27 September 2023, the validation
measurement was conducted directly in the forest (see Figure 9C,D), while on 29 September
2023, it was conducted in a meadow with a free-standing coniferous tree (see Figure 9A,B).
The measurements took place continuously between 9:30 a.m. and 4:50 p.m., with the
amount of solar radiation recorded every minute. The two pyranometers were placed at
selected locations approximately 10 m apart. The positions of the deployed pyranometers
were recorded using a GPS device.

In the selected built-up area location, validation took place on 28 September 2023. The
pyranometer was positioned on the roof of the Pavol Jozef Šafárik University building on
Jesenná Street (Figure 10A). Placing a pyranometer sensor in a built-up area beneath tree
canopies and around buildings is generally very challenging. In our area of interest, street
corridors around the buildings experience heavy foot and motor vehicle traffic, making
it impractical to place the sensor on sidewalks or streets. Another challenge in accurately
measuring the amount of incident solar radiation around buildings is the reflection from
surrounding surfaces, such as facades, windows, and parked cars. Modeling these reflec-
tions is complex because different materials exhibit varying reflectance properties. The
measurements took place continuously between 8:45 a.m. and 6:00 p.m., with the amount
of solar radiation recorded every minute. Given the public setting and frequent pedestrian
activity in the area of interest, the pyranometer was not placed in vegetated areas.
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3. Results
3.1. Point Clouds in the Forested Area

In the forested area, four distinct polygons (P1, P2, P3, and P4) were selected and used
to analyze data derived from the ULS, ALS, and TLS datasets (Figure 11). Each polygon
represents a specific type of vegetation or a forest structure, providing a basis for comparing
data outputs from different scanning technologies. Polygons are 10 × 10 m in size.
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Figure 11. Selected polygons for detailed data analysis in the forested area. P1: High vegetation; P2:
meadow; P3: low vegetation; P4: high vegetation with canopy gaps.

P1 (high vegetation) polygon covers an area with dense and high vegetation, repre-
senting mature trees and thick canopy layers. It is characterized by pronounced vertical
vegetation profiles, making it suitable for evaluating the performance of point cloud data
in complex canopy conditions. P2 (Meadow) polygon represents an open meadow area
without a tree cover. It is ideal for assessing point density and accuracy in an unobstructed
environment. P3 (Low vegetation) polygon captures an area with low vegetation, such as
shrubs or young trees. The variable heights of the vegetation in this polygon make it a
good test case for evaluating subcanopy penetration and point cloud accuracy. P4 (High
vegetation with canopy gaps) polygon represents an area with tall vegetation but with
visible gaps in the canopy. It simulates a scenario where direct sunlight reaches the forest
floor, making it ideal for studying light penetration and solar radiation modeling.

Figures 12–15 compare point cloud data from TLS, ALS, and ULS for P1, P2, P3,
and P4. The comparison is presented from both the top view and side view, providing a
visual representation of how each scanning technology captures the vertical structure of
the canopy.
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In polygon 1 (Figure 12), TLS provides the highest density and detail in both the top
and side views, capturing complex canopy structures and ground details. ALS has the
sparsest point cloud, particularly in the side view, indicating that it captures limited detail
in high and low vegetation layers. ULS offers a balance between ALS and TLS, providing
more detail than ALS but slightly less than TLS in both views. This figure highlights the
differences in point cloud density and vertical penetration among the three technologies,
with TLS and ULS being more suitable for detailed forest structure analysis compared
to ALS.

In the polygon 2 (Figure 13), TLS captures the most detailed point cloud data, pro-
viding a highly accurate representation of both the surface and vegetation structure of the
meadow. ALS has the sparsest point cloud, limiting its ability to capture fine details of
the meadow, which results in a less precise surface model. ULS offers an intermediate
point density, capturing more detail than ALS but less than TLS. It provides a good balance
between resolution and coverage for analyzing larger surface features.

The comparison of TLS, ALS, and ULS for low vegetation in polygon 3 (Figure 14)
highlights significant differences in the ability of these technologies to capture detailed
vegetation structure. Given the nature of low vegetation, which includes smaller plants,
shrubs, and young trees, the level of detail and point density is critical for accurate analysis.
For detailed analysis of low vegetation, TLS is the most reliable scanning method, offering
high resolution and accuracy. ULS provides a reasonably detailed alternative for capturing
low vegetation structure. Unlike TLS, however, ULS reaches its limits in this case when it
comes to the detailed capture of tree trunks and the structure of small branches. ALS is
not well suited for this task due to its sparse point cloud and inability to capture fine-scale
vegetation details.

Figure 15 compares the capabilities of three LiDAR scanning methods—in capturing
the structure of a 10 × 10 m plot of dense vegetation with a gap in the vegetation. TLS and
ULS provide detailed and dense point clouds, both from the top and side views, accurately
representing the vegetation’s height and structure. ALS data are sparse and lack detail,
especially in the side view, where it fails to capture lower vegetation and finer canopy
details. The color gradient represents vegetation height, ranging from blue (low) to red
(high). The comparison illustrates the superior resolution of TLS and ULS over ALS for
capturing high-density vegetation.

Table 1 provides a comparison of different types of laser scanning data across four
10 × 10 m polygons (P1–P4) in the forested area (see Figure 11). The parameter height of
vegetation indicates the maximum vegetation height present within each polygon. The
canopy is further divided into two categories: canopy total, representing all points within
the tree crown, and canopy top 5 m, representing the points located in the uppermost 5 m
of the crown, where the largest concentration of biomass is typically found. For vegetation
with a height of 25 m, TLS recorded the highest total number of points (418,463) and a
density of 4184.63 points/m2 followed by ULS with 2549.09 points/m2, and a significantly
lower density of 10.79 points/m2 recorded by ALS. Data for P2 reflected a low-lying vege-
tated area. TLS recorded a point density of 252.78 points/m2, ULS 94.15 points/m2, and
ALS 10.00 points/m2. For this 14 m high vegetation (P3), TLS achieved a point density of
963.01 points/m2 for the entire canopy, while ALS and ULS recorded 9.26 points/m2 and
1932.72 points/m2, respectively. TLS and ULS provided significantly higher detail, captur-
ing lower vegetation layers and subcanopy points compared to ALS. Vegetation with a
height of 25 m, TLS recorded 166,336 total points and a density of 1663.36 points/m2 for the
canopy, while ALS and ULS achieved densities of 8.77 points/m2 and 1857.00 points/m2,
respectively (Table 1).
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Table 1. Comparison of TLS, ALS, and ULS data in the selected polygons—forested area.

TLS ALS ULS

Height of
Vegetation (m) Polygons 10 × 10 m Points % Density Points % Density Points % Density

25 P1 Total points 418,463 100 4184.63 1079 100 10.79 264,809 100 2648.09
P1 Ground 17,830 4.26 178.3 557 51.62 5.57 9162 3.46 91.62
P1 Canopy total 400,633 95.74 4006.33 522 48.38 5.22 255,647 96.54 2556.47
P1 Canopy top 5 m 120,464 30.07 1204.64 246 47.13 2.46 113,384 44.35 1133.84

Points % Density Points % Density Points % Density

0 P2 Total points 25,278 100 252.78 551 100 5.51 9415 100 94.15
P2 Ground - - - - - - - - -
P2 Canopy total - - - - - - - - -
P2 Canopy top 5 m - - - - - - - - -

Points % Density Points % Density Points % Density

14 P3 Total points 96,301 100 963.01 926 100 9.26 193,272 100 1932.72
P3 Ground 3269 3.39 32.69 573 61.88 5.73 9854 5.1 98.54
P3 Canopy total 93,032 96.61 930.32 353 38.12 3.53 183,418 94.9 1834.18
P3 Canopy top 5 m 11,759 12.64 117.59 95 26.91 0.95 83,387 45.46 833.87

Points % Density Points % Density Points % Density

25 P4 Total points 164,336 100 1643.36 877 100 8.77 207,452 100 2074.52
P4 Ground 10,712 6.52 107.12 600 68.42 6 124,88 6.02 124.52
P4 Canopy total 153,624 93.48 1536.24 277 31.58 2.77 194,964 93.98 1949.64
P4 Canopy top 5 m 31,565 20.55 315.65 102 36.82 1.02 61,025 31.3 610.25

The symbol “-” indicates that the calculation for the given statistic is not feasible.

TLS consistently provides the highest point density, capturing fine structural details of
both ground and canopy layers. The main limitation of TLS is the significant fluctuation
in point density. There is a high concentration of points near the scanner and at the forest
edges, where trees are visible from multiple positions. In the case of the forest canopy, the
higher the height, the lower the density of points. This means that the ground parts of
the trees are captured best, but the canopy of the trees already reaches a lower density of
points. ALS, with its lower point density, is suitable for the terrain and broader canopy
outlines but lacks subcanopy detail. ULS offers a balance between coverage and detail,
performing well in both dense and open canopy conditions. These metrics are crucial for
selecting the appropriate scanning technology, depending on the specific analysis needs in
forested environments, such as canopy structure assessment, ground surface modeling, or
leaf point differentiation.

3.2. Point Clouds in the Built-Up Area

Figure 16 displays a view of a built-up area segmented into four distinct polygons (P1,
P2, P3, and P4). These polygons have been selected for detailed data analysis using ALS
and TLS datasets and represent different surface types and structures commonly found
in an urban environment. The area includes buildings, vegetation, and open spaces. Each
polygon is designated to capture specific features within the built-up landscape.

P1 (high vegetation) polygon is located in an area with tall trees. It is used to evaluate
the ability of point cloud data to capture complex vertical structures, such as tree canopies.
P2 (roof) polygon is positioned on the roof of a building. It is useful for analyzing flat, ele-
vated surfaces and assessing the precision and density of the data. P3 (Parking lot) polygon
is placed on a parking area with flat terrain. It serves to analyze the accuracy and density
of point cloud data in capturing ground-level surfaces with no major obstructions. P4
(high vegetation) is similar to P1, this polygon is located in another area of high vegetation,
allowing for comparative analysis of tree canopy structures and variations in point cloud
representation across different vegetated regions.
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Figures 17–20 compare point cloud data from TLS and ALS for P1, P2, P3, and P4. The
comparison is presented from both the top view and side view, providing a visual repre-
sentation of how each scanning technology captures the vertical structure of the canopy.
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Figure 20. Comparison of TLS and ALS data from the top and side views of polygon 4, 10 × 10 m,
high vegetation.

Figure 17 illustrates a comparison between ALS and TLS data for a 10 × 10 m area of
high vegetation. TLS provides significantly higher resolution and detail in both top and
side views compared to ALS. The top view from TLS captures intricate details of the tree
canopy, while ALS data show a more generalized structure. In the side view, TLS highlights
the detailed vertical structure of the tree, including lower branches, whereas ALS presents
a less detailed vertical profile.

Figure 18 compares TLS and ALS data for a 10 × 10 m area with a roof structure. TLS
provides significantly more detail and precision in both top and side views, capturing the
roof’s edges and small structural features more clearly. In contrast, ALS presents a coarser
and less defined representation of the roof and its vertical profile.

Figure 19 compares TLS and ALS data for a 10 × 10 m parking lot area. TLS provides
a much more detailed and accurate representation of the flat surface, both in the top and
side views, capturing subtle elevation changes. ALS, on the other hand, offers a coarser
resolution with fewer details, particularly in the side view. In the case of TLS data, we can
observe the absence of data under the position of the scanner.

Figure 20 compares TLS and ALS data of a 10 × 10 m high vegetation from top and
side views. TLS provides a denser, more detailed representation of the vegetation structure,
while ALS shows a sparser point cloud with fewer details but captures the overall shape.
TLS excels in precision, particularly in capturing fine details, whereas ALS offers a broader
but less detailed overview.
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Table 2 provides a comparison of TLS and ALS data across four 10 × 10 m polygons
(P1–P4), focused on vegetation height and structure. TLS consistently captures significantly
more points and provides much denser data compared to ALS across all polygons.

Table 2. Comparison of TLS and ALS data in the selected polygons—built-up area.

TLS ALS

Height of
Vegetation (m) Polygons 10 × 10 m Points % Density Points % Density

17.3 P1 Total points 901,575 100 9015.75 2634 100 26.34
P1 Ground 203,692 22.59 2036.92 2214 84.05 22.14
P1 Canopy total 697,883 77.41 6978.83 420 15.95 4.2
P1 Canopy top 5 m 262,281 37.58 2622.81 213 50.71 2.13

Points % Density Points % Density

0 P2 Total points 295,750 100 2957.50 2325 100 23.25
P2 Ground - - - - - -
P2 Canopy total - - - - - -
P2 Canopy top 5 m - - - - - -

Points % Density Points % Density

0 P3 Total points 160,791 100 1607.91 2377 100 23.77
P3 Ground - - - - - -
P3 Canopy total - - - - - -
P3 Canopy top 5 m - - - - - -

Points % Density Points % Density

20 P4 Total points 969,124 100 9691.24 2336 100 23.36
P4 Ground 170,515 17.59 1705.15 1702 72.86 17.02
P4 Canopy total 798,609 82.41 7986.09 634 27.14 6.34
P4 Canopy top 5 m 273,612 34.26 2736.12 290 45.74 2.9

The symbol “-” indicates that the calculation for the given statistic is not feasible.

ALS data show a higher percentage of ground points, but a lower percentage and
density of canopy points compared to TLS, especially in the higher vegetation polygons
(P1 and P4). In P2 and P3, ALS and TLS both provide limited data, likely due to less or no
vegetation in these areas. For canopy top (5 m) data, TLS captures a substantial number of
points in P1 and P4, while ALS captures fewer points but with a higher percentage in P4.

3.3. Estimated Subcanopy Solar Radiation in the Forested Area

In this section, we present the estimation of subcanopy solar radiation in the forested
area using the PCSRT model and the r.sun model implemented in GRASS GIS. To compare
the performance and results of the models, four distinct small polygons (P1 to P4) within
each study area were analyzed (Figure 11). The point cloud data collected through TLS, ULS,
and ALS were processed and compared to evaluate the models’ effectiveness. Furthermore,
solar radiation attenuation was assessed using calculated polygons to better understand
the spatial distribution of sunlight under varying canopy conditions.

Table 3 presents irradiance values (in W/m2) for ground and canopy top across four
polygons (P1 to P4). ULS and TLS provide more detailed and higher irradiance readings,
with data for both ground and canopy top across all polygons.
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Table 3. Average irradiance values calculated by PCSRT from ULS, TLS, and ALS data in W/m2—
forested area, 27 September 2023.

ULS P1 P2 P3 P4

Time Ground Canopy Top Ground Canopy Top Ground Canopy Top Ground Canopy Top

8:00 61.11 199.04 446.93 - 56.67 169.71 61.78 185.41
10:00 140.72 399.27 655.34 - 226.54 395.46 146.48 412.50
12:00 460.30 447.13 699.37 - 198.49 431.95 162.12 435.48
14:00 372.81 456.45 672.27 - 218.19 456.04 190.19 444.29
16:00 189.79 315.38 530.98 - 154.46 323.63 140.71 302.14

TLS P1 P2 P3 P4

Time Ground Canopy Top Ground Canopy Top Ground Canopy Top Ground Canopy Top

8:00 64.25 220.69 424.94 - 247.18 366.06 207.46 344.33
10:00 129.69 413.40 624.14 - 405.41 584.51 346.61 537.90
12:00 379.54 459.92 651.85 - 355.73 636.60 334.79 574.19
14:00 297.55 451.73 613.54 - 280.88 633.22 286.47 560.86
16:00 180.98 306.39 437.10 - 114.66 504.25 118.65 403.38

ALS P1 P2 P3 P4

Time Ground Canopy Top Ground Canopy Top Ground Canopy Top Ground Canopy Top

8:00 92.18 294.99 408.92 - 74.77 193.07 125.30 326.43
10:00 243.05 534.64 704.90 - 413.48 401.35 279.15 558.47
12:00 707.24 623.36 756.09 - 427.31 486.81 333.67 544.20
14:00 642.97 615.07 717.20 - 528.03 599.84 388.93 638.48
16:00 465.78 474.54 572.35 - 410.26 577.03 300.10 494.77

The symbol “-” indicates that the calculation for the given statistic is not feasible.

ALS shows generally lower irradiance values. Ground irradiance values are fairly
consistent across all methods, while canopy top values show greater variation, especially
in ALS. This comparison highlights ULS and TLS as superior in capturing spatial detail
and greatly affecting irradiance data in forested areas, while ALS provides less coverage
and lower irradiance readings (see Figures 21–23).
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The estimation of subcanopy solar radiation was conducted in areas with the canopy
layer (refer to Figure 1A). Figures 21–23 present the results of solar radiation modeling by
PCSRT on the terrain beneath the tree canopy in the forested area on 27 September 2023,
at 12 a.m. To enhance the visualization of solar radiation distribution, the point clouds
representing the canopy were filtered out, revealing the underlying terrain. Figure 21
represents subcanopy solar radiation distribution using the ALS data. Due to the low
density of points, the model reveals significant spatial variations in solar radiation within
the forested area. We can also observe missing data directly under the crowns of some trees
(white areas).

Figure 22 represents the estimated subcanopy solar radiation distribution using the
ULS data. It indicates that the model was able to capture the variations in solar radiation
due to factors such as tree canopy density, slope orientation, and other topographic features.

Figure 23 represents the estimated subcanopy solar radiation distribution using the
TLS data. We can observe that the estimated subcanopy solar radiation is sufficiently
modeled only in the areas where the scanning positions were located. Further outside of
these positions, the white areas are present, indicating missing data.

Table 4 presents the comparison of solar radiation values captured by the pyranome-
ters and modeled by the PCSRT for all data types, showing how closely the modeling
corresponds to the actual measurements at various times of the day. Pyranometer read-
ings generally increase throughout the day, peaking around noon to early afternoon, with
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some drop-off towards late afternoon. ULS shows consistent readings that are generally
close to pyranometer values, especially in the morning and midday. ALS tends to have
higher readings than ULS and the pyranometer, particularly around 2:00 p.m. This is due
to missing canopy data thus affecting sub-canopy solar radiation estimation. TLS data
are only available for Pyranometer A and B at select times and align closely with ALS at
those points.

Table 4. Validation measurements and solar irradiance in W/m2 calculated by PCSRT, forested area,
28 September 2023 (for localization of pyranometers see Figure 9).

PYRANOMETER A

TIME PYRANOMETER ULS ALS TLS

10:00:00 617.542 590.997 664.745 593.198
12:00:00 777.954 777.237 765.97 721.913
14:00:00 672.696 637.349 779.813 620.007
16:00:00 346.068 295.425 655.849 302.356

PYRANOMETER B

TIME PYRANOMETER ULS ALS TLS

10:00:00 73.085 89.322 687.937 84.972
12:00:00 90.258 99.443 100.04 94.644
14:00:00 703.066 680.618 745.775 729.164
16:00:00 402.928 437.489 617.777 413.154

PYRANOMETER C

TIME PYRANOMETER ULS ALS TLS

10:00:00 68.628 89.322 695.264 N/A
12:00:00 64.032 87.185 100.04 N/A
14:00:00 308.327 240.642 745.817 N/A
16:00:00 39.44 73.787 614.322 N/A

PYRANOMETER D

TIME PYRANOMETER ULS ALS TLS

10:00:00 90.284 89.322 695.264 N/A
12:00:00 110.056 99.488 100.04 N/A
14:00:00 60.299 95.842 745.817 N/A
16:00:00 30.304 73.785 614.322 N/A

N/A—not available data.

For modeling solar radiation with the r.sun tool, we utilized data from three types
of laser scanning ULS, TLS, and ALS. These data sources provide high-resolution, three-
dimensional information on canopy structure, topography, and ground cover, which are
critical for accurately simulating solar radiation in complex landscapes. The model was
run on 27 September 2023, at 10:00 a.m. To account for atmospheric conditions, the Linke
turbidity coefficient was set to 2.5, which represents a moderate level of atmospheric clarity
based on seasonal averages. This parameter helps refine the model by accounting for the
scattering and absorption of solar radiation due to atmospheric particles and gasses.

To simulate the attenuation of beam solar radiation by the tree canopy, we used the
coeff_bh parameter in the r.sun module. The coeff_bh parameter was estimated using the
LPI calculated individually from the ULS, TLS, and ALS-derived point clouds with a fine
spatial resolution of 0.5 × 0.5 m. The spatial extent of the LPI calculation aligned with the
canopy layer (see Figure 1). LPI was calculated by first identifying vegetation taller than
2 m within the point cloud, based on the distance between the vegetation and the terrain.
For each 1 × 1 m window, the number of points was determined for both the full point
cloud and the ground-only points (after vegetation removal). The LPI was then calculated
as the ratio of ground points to total points. To account for spatial variability, the median



Remote Sens. 2025, 17, 328 28 of 44

LPI values were aggregated to a coarser resolution of 3 × 3 m. These aggregated values
were used to create the input raster layer for the coeff_bh parameter, allowing the model to
represent the spatial heterogeneity of canopy density and structural complexity.

Figure 24 shows the solar irradiance calculated by the r.sun module using the ULS data
for the ground under the canopy. The ULS data are a high-density point cloud enabling
comprehensive and continuous coverage of tree surfaces within the study area. This high-
resolution dataset captures the intricate details of the forest canopy, including the complex
structure and variability of individual tree crowns. Such fine spatial resolution allows
the r.sun model to accurately simulate the shading and light distribution patterns within
the subcanopy environment. As a result of the detailed ULS data, the solar radiation
estimation model produces reliable results, accurately reflecting the influence of canopy
gaps, foliage density, and tree structure on subcanopy radiation levels. This dataset’s ability
to capture complex vegetation geometry ensures that areas with dense foliage display
lower solar radiation values, while canopy gaps and less densely vegetated regions exhibit
higher values.
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Figure 25 shows the solar irradiance calculated by the r.sun module using the ALS
data for the ground under the canopy. The results of solar radiation estimation using
ALS data highlight limitations associated with the lower point density. In areas covered
by vegetation, the model output reveals a high amount of solar radiation reaching the
terrain, particularly in regions where shading from the canopy would be expected to reduce
incident radiation significantly. This overestimation is due to the insufficient data resolution
of ALS in capturing fine-scale canopy structures. This discrepancy suggests that, while
ALS data are useful for broader canopy structure assessments, they may lack the detail
necessary for accurate subcanopy radiation modeling in densely vegetated areas.
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Figure 26 shows the solar irradiance calculated by the r.sun module using the TLS data
for the ground under the canopy. The density of point cloud data from TLS is sufficient
for capturing detailed subcanopy features. However, the solar radiation estimates reveal
certain limitations in representing the full structure of the upper canopy, particularly the
crown surfaces. Since TLS is a ground-based method, it is inherently constrained in its
ability to capture the topmost portions of tree crowns and higher canopy layers, often
leading to gaps in the vertical structure of the canopy model. In densely vegetated areas,
where one would expect substantial shading, there are regions with relatively high incident
radiation, suggesting that the uppermost canopy layers may be incompletely represented.
This effect can result in an overestimation of sunlight reaching the subcanopy, particularly
in areas where TLS data cannot capture the complete height and spread of the tree crowns.
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Table 5 shows values of validation measurements and values from modeling using the
r.sun module for forested areas. The differences between ULS, TLS, and ALS suggest that
each data type has unique characteristics or assumptions impacting its irradiance estimates.
The relatively close values of TLS to ULS imply that TLS may capture similar factors or
environmental influences as ULS but with slightly lower values.

Table 5. Validation measurements and solar irradiance in W/m2 calculated by r.sun, forested area, 27
September 2023 (for localization of pyranometers see Figure 9).

PYRANOMETER A

TIME PYRANOMETER ULS ALS TLS

10:00:00 73.085 71.731 86.252 71.639
11:00:00 80.206 77.857 92.975 77.488
12:00:00 90.258 80.456 95.75 80.513
13:00:00 106.824 80.341 95.529 80.401
14:00:00 703.066 705.194 637.027 688.931
15:00:00 578.595 583.305 547.355 566.831
16:00:00 402.928 409.212 387.464 408.727

PYRANOMETER B

TIME PYRANOMETER ULS ALS TLS

10:00:00 617.542 606.531 608.084 446.173
11:00:00 727.011 712.391 663.321 713.914
12:00:00 777.954 776.435 738.917 767.755
13:00:00 758.059 756.302 721.221 750.116
14:00:00 672.696 673.561 661.943 666.586
15:00:00 531.918 531.379 522.343 526.103
16:00:00 346.068 347.107 355.937 335.744

PYRANOMETER C

TIME PYRANOMETER ULS ALS TLS

10:00:00 68.628 72.906 483.816 61.447
11:00:00 562.122 80.068 428.282 311.711
12:00:00 64.032 82.574 331.243 54.429
13:00:00 60.24 81.13 206.851 52.138
14:00:00 308.327 204.756 69.658 318.762
15:00:00 162.956 156.641 39.244 127.496
16:00:00 39.44 34.199 33.944 53.391

PYRANOMETER D

TIME PYRANOMETER ULS ALS TLS

10:00:00 90.284 80.468 63.997 77.116
11:00:00 63.346 56.219 69.244 61.373
12:00:00 110.056 96.131 71.498 94.895
13:00:00 169.114 119.074 71.656 155.704
14:00:00 60.299 96.026 69.793 49.158
15:00:00 81.472 89.26 65.131 68.826
16:00:00 30.304 45.739 56.335 41.517

Significant differences can be seen in the case of pyranometers located in the forest
(pyranometer C, D), especially with ALS data. Since the data were not dense enough in
the vegetation area and the vegetation structure was not well captured, this was reflected
between the measured and modeled values of the amount of solar radiation. Discrepancies
between the measured and modeled values in the forested area may be attributed to the fact
that data collection and pyranometer measurements were not conducted simultaneously.
Given the geometric complexity and temporal variability of vegetation, changes in crown
structure or slight movements of branches caused by wind could have occurred, potentially
influencing the penetration of sunlight through the tree canopy.
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3.4. Estimated Subcanopy Solar Radiation in the Built-Up Area

In this section, we present the estimation of subcanopy solar radiation in the built-up
area using two models: the PCSRT model and the r.sun model implemented in GRASS GIS.
To compare the performance and results of the two models, specific polygons within the
built-up area were analyzed (Figure 16). The point cloud data collected through TLS and
ALS were processed and compared to evaluate the models’ effectiveness. Furthermore,
solar radiation attenuation using r.sun was assessed using calculated LPI polygons to better
understand the spatial distribution of sunlight under varying canopy conditions.

Table 6 presents a comparison of irradiance values (in W/m2) between TLS and ALS
data collected over the built-up area on 28 September 2023. The irradiance values are
measured at different times of the day (8:00 a.m., 10:00 a.m., 12:00 a.m., 2:00 p.m., and
4:00 p.m.) for both ground and canopy top levels across four polygons (P1, P2, P3, and P4).

Table 6. Average irradiance values calculated by PCSRT for TLS and ALS data in W/m2—built-up
area, 28 September 2023.

TLS P1 P2 P3 P4

Time Ground Canopy Top Ground Canopy Top Ground Canopy Top Ground Canopy Top

8:00 93.85 164.00 221.51 - 221.51 - 169.63 238.13
10:00 93.85 164.00 221.51 - 96.92 - 169.63 238.13
12:00 305.11 282.77 539.63 - 672.70 - 478.26 432.93
14:00 209.98 288.51 640.19 - 610.30 - 274.75 468.72
16:00 193.68 231.67 504.62 - 265.00 - 207.30 371.06

ALS P1 P2 P3 P4

Time Ground Canopy Top Ground Canopy Top Ground Canopy Top Ground Canopy Top

8:00 326.68 438.03 391.33 - 204.58 - 299.95 400.96
10:00 498.08 538.37 513.21 - 429.97 - 582.67 517.61
12:00 0.86 0.92 0.99 - 0.97 - 0.94 0.97
14:00 0.63 0.95 0.99 - 0.89 - 0.92 0.94
16:00 0.85 0.94 0.95 - 0.39 - 0.85 0.97

The symbol “-” indicates that the calculation for the given statistic is not feasible.

Irradiance levels are generally higher for both ground and canopy in the morning
(8:00 a.m. and 10:00 a.m.) and peak around midday (12:00 a.m.), with the afternoon (2:00
p.m. and 4:00 p.m.) showing a sharp decrease. TLS data show more consistent irradiance
measurements throughout the day, whereas ALS data show significant variation, especially
with much lower values recorded in the afternoon. Canopy top levels often receive higher
irradiance than ground levels, especially during the morning hours, indicating higher
exposure at elevated points. These data reflect the irradiance variation throughout the day
for different measurement methods in a built-up area, highlighting the strengths of both
TLS and ALS in different periods and terrain levels.

The estimation of solar radiation was conducted in all areas including areas with a
canopy layer (refer to Figure 1B). Figures 27 and 28 present the results of solar radiation
modeling on the terrain beneath the tree canopy in the built-up area. To enhance the
visualization of solar radiation distribution, the point clouds representing the canopy were
filtered out, revealing the underlying terrain.
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Table 7 shows values of validation measurements and values from modeling using the
PCSRT software for the built-up area. Some deviations exist between the measured values
(from the pyranometer) and the modeled values (ALS and TLS data), which could be due
to diffuse radiation, atmospheric conditions, or model inaccuracies.

Table 7. Values of validation measurements and values from modeling using the PCSRT model,
built-up area, 28 September 2023 (for localization of the pyranometer see Figure 10).

PYRANOMETER A

TIME PYRANOMETER ALS TLS

10:00:00 533.578 615.933 490.058
12:00:00 670.942 653.664 703.752
14:00:00 581.518 652.778 626.85
16:00:00 309.94 568.497 559.602
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For modeling solar radiation with the r.sun tool, we utilized the TLS and ALS data. The
model was run on 28 September 2023, at 10:00 a.m. To account for atmospheric conditions,
the Linke turbidity coefficient was set to 3, which represents a moderate level of atmospheric
clarity based on seasonal averages. To simulate solar radiation attenuation within the study
area, we incorporated an input raster layer representing the coeff_bh parameter.

LPI was calculated individually from the TLS, and ALS-derived point cloud with a
fine spatial resolution of 0.5 × 0.5 m, and 1 × 1 m for ALS data, due to sparse vegetation
data. The LPI calculation followed the same methodology as applied in the forested area.
These aggregated values served as the input raster layer for the coeff_bh parameter. This
parameter attenuates the beam component of solar radiation by estimating the influence
of the canopy layer. The disadvantage is that it does not fully represent the 3D shape of
the crown and thus we cannot obtain higher values of beam radiation under the highest
crowns which start at a height of several meters, especially at low solar altitudes. The
resulting values of the calculated global radiation by r.sun are, therefore, most accurate at
high sun altitudes when the height of the crown does not have such a significant influence.

Figure 29 shows the estimated subcanopy solar radiation as modeled by the r.sun tool
using the ALS data. The map captures the distribution of solar radiation in an urban area,
accounting for the complex interactions of sunlight with both buildings and vegetation.
Due to the sparse nature of ALS data, this map might not accurately represent solar
radiation distribution in areas with dense canopy cover. In vegetated zones, the model
may overestimate radiation by assuming sunlight reaches the ground in places where the
canopy would realistically block it. This limitation affects the subcanopy analysis, as finer
shading patterns and complex tree structures are not fully captured with ALS data. The
results should be interpreted cautiously, especially in densely vegetated areas where ALS
data’s sparse resolution can lead to inaccuracies in subcanopy solar radiation estimates. For
precise applications, such as evaluating solar access in heavily wooded areas or estimating
microclimatic effects under tree cover, higher-density data sources, such as TLS, would
offer better accuracy.
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Figure 30 represents the estimated subcanopy solar radiation calculated by the r.sun
model using TLS data for the ground under the canopy. As in the case of the forested area,
the limitations of TLS data are also evident in the built-up area. In certain sections, the TLS
data do not fully capture the surfaces of building roofs or the tops of tree crowns. However,
despite these limitations, the results are more detailed and accurate compared to those
obtained from ALS data.
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The deviations in the validation between the solar radiation values that were mod-
eled using r.sun and the values that were measured by the pyranometer (Table 8) can
be explained by diffuse and reflected radiation since there is light-colored gravel on the
roof where the pyranometer was placed. Also, deviations can arise due to atmospheric
conditions and complex local environmental settings.

Table 8. Values of validation measurements and values from modeling using the r.sun module,
built-up area, 28 September 2023 (for localization of pyranometers see Figure 10).

PYRANOMETER A

TIME PYRANOMETER ALS TLS

9:00:00 386.319 338.802 330.278
10:00:00 533.578 485.354 476.621
11:00:00 625.63 592.889 585.085
12:00:00 670.942 650.510 644.491
13:00:00 657.264 653.255 649.592
14:00:00 581.518 600.979 599.943
15:00:00 471.407 498.297 499.810
16:00:00 309.94 355.540 359.094

3.5. The Difference in Solar Radiation Estimates

This section investigates the discrepancies in subcanopy solar radiation estimates
produced by two modeling tools, r.sun, and PCSRT, across both built-up and forested
environments. By creating difference maps (Figures 31 and 32) that subtract the radiation
rasters generated by each tool, this analysis highlights variations in their outputs, offering
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a visual and quantitative perspective on model-specific biases and limitations. The com-
parison provides insights into how each tool performs across different land cover types,
particularly in terms of their sensitivity to canopy structure and data resolution.

Remote Sens. 2025, 17, x FOR PEER REVIEW 36 of 45 
 

 

 

Figure 31. Solar irradiance difference maps between r.sun and PCSRT models using the TLS and 
ALS data, built-up area; (A): difference between r.sun TLS—r.sun ALS, (B): difference between 
PCSRT TLS—PCSRT ALS, (C): difference between r.sun TLS—PCSRT TLS, (D): difference between 
r.sun ALS—PCSRT ALS. 

Figure 31. Solar irradiance difference maps between r.sun and PCSRT models using the TLS and ALS
data, built-up area; (A): difference between r.sun TLS—r.sun ALS, (B): difference between PCSRT
TLS—PCSRT ALS, (C): difference between r.sun TLS—PCSRT TLS, (D): difference between r.sun
ALS—PCSRT ALS.

Remote Sens. 2025, 17, x FOR PEER REVIEW 37 of 45 
 

 

 

Figure 32. Solar irradiance difference maps between r.sun and PCSRT models—ULS, ALS, and TLS 
data, forested area; (A): difference between r.sun ULS—r.sun ALS, (B): difference between r.sun 
ULS—r.sun TLS, (C): difference between r.sun TLS—r.sun ALS, (D): difference between PCSRT 
ULS—PCSRT ALS, (E): PCSRT ULS—PCSRT TLS, (F): PCSRT TLS—PCSRT ALS, (G): r.sun ULS—
PCSRT ULS, (H): r.sun TLS—PCSRT TLS, (I): r.sun ALS—PCSRT ALS. 

 

Figure 32. Solar irradiance difference maps between r.sun and PCSRT models—ULS, ALS, and TLS
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To ensure a comprehensive evaluation, these analyses were conducted using all three
data types: ULS, ALS, and TLS. Additionally, histograms (Figures 33 and 34) for each
difference map were generated to quantify and statistically interpret the variations in
subcanopy solar radiation estimates. These complementary visual and statistical analyses
deepen the understanding of the factors influencing model performance and the inherent
differences between raster- and voxel-based approaches under varying environmental and
data conditions. Figure 31 illustrates the spatial differences in solar radiation estimates
between two models—r.sun and PCSRT—in a built-up urban area, based on TLS and
ALS data. White regions, where both models closely agree, are located in open areas
(like roofs) and also areas with vegetation. Here, both models appear to handle sunlight
distribution similarly. The blue regions show where the PCSRT model estimates higher
solar radiation compared to the r.sun model. The red areas indicate zones where data
coverage was insufficient.
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solar radiation compared to r.sun, reflect the PCSRT model’s ability to account for sunlight 
penetration beneath tree canopies, especially at lower solar angles. This difference 
highlights the advantage of PCSRT’s 3D voxel-based approach over r.sun’s 2D raster-
based simulation, which does not capture subcanopy dynamics effectively. 

Conversely, red regions correspond to open areas or locations with sparse canopy 
coverage, where sunlight penetration is less obstructed. Here, PCSRT often calculates 
higher solar radiation values due to its finer representation of canopy interactions. When 
comparing ALS data with ULS or TLS data, the PCSRT model tends to overestimate 
subcanopy solar radiation values. This overestimation stems from the insufficient density 
of ALS point cloud data, which fails to capture detailed canopy structures. In contrast, 
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Figure 34. Solar irradiance histograms between r.sun and PCSRT models—ULS, ALS, and TLS data,
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ALS, (E): PCSRT ULS—PCSRT TLS, (F): PCSRT TLS—PCSRT ALS, (G): r.sun ULS—PCSRT ULS, (H):
r.sun TLS—PCSRT TLS, (I): r.sun ALS—PCSRT ALS..

This limitation arises from the characteristics of the TLS method, which depends on
an adequate number of strategically placed scanning positions to achieve comprehensive
coverage. Due to its ground-based perspective, TLS is inherently restricted in its ability to
capture certain parts of the canopy and upper structures, resulting in incomplete data in
areas beyond its line of sight.

For ALS data, the differences between the models reflect the resolution and density of
the point cloud. While ALS provides aerial coverage that overcomes some of the line-of-
sight limitations of TLS, its relatively sparse data density compared to TLS can lead to the
underrepresentation of finer structural details. This limitation affects the PCSRT model’s
ability to accurately represent shading and light attenuation in urban areas with dense or
fragmented structures. Additionally, the reliance on ALS-derived DSMs for the r.sun model
can further oversimplify the radiation modeling in such environments, contributing to the
observed differences.

The histogram (Figure 33A–D) findings provide a quantitative basis for understanding
the spatial patterns observed in the difference maps, offering insights into the limitations
and capabilities of TLS and ALS data for solar radiation modeling in complex urban envi-
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ronments. Histogram 32B demonstrates that the differences in solar radiation modeling
between ALS and TLS data using the PCSRT model are substantial. These results highlight
that ALS data, characterized by insufficient density to accurately capture the detailed
structure of vegetation, lead to significant discrepancies when compared to TLS data, which
provide high-resolution, precise representations of canopy structure. Histogram 32C illus-
trates that when sufficiently dense data, such as TLS, are employed, the differences between
the r.sun and PCSRT models in estimating solar radiation are minimal. These results suggest
that both models are capable of delivering reliable solar radiation estimates when provided
with high-density input data that adequately represent the subcanopy environment. This
observation highlights the importance of data resolution in ensuring the robustness and
accuracy of solar radiation modeling across different computational approaches.

Figure 32 shows a map of the differences in solar radiation estimations between two
different modeling approaches, r.sun, and PCSRT, using the ULS, ALS, and TLS data in the
forest area. The difference maps reveal areas with minimal discrepancies (white regions),
indicating that both models provide relatively similar estimates of solar radiation in these
locations. Such consistency is observed in areas where structural complexity is low or
uniform. Blue regions, where the PCSRT model estimates higher solar radiation compared
to r.sun, reflect the PCSRT model’s ability to account for sunlight penetration beneath
tree canopies, especially at lower solar angles. This difference highlights the advantage of
PCSRT’s 3D voxel-based approach over r.sun’s 2D raster-based simulation, which does not
capture subcanopy dynamics effectively.

Conversely, red regions correspond to open areas or locations with sparse canopy
coverage, where sunlight penetration is less obstructed. Here, PCSRT often calculates
higher solar radiation values due to its finer representation of canopy interactions. When
comparing ALS data with ULS or TLS data, the PCSRT model tends to overestimate
subcanopy solar radiation values. This overestimation stems from the insufficient density
of ALS point cloud data, which fails to capture detailed canopy structures. In contrast,
TLS data, while providing high-resolution point clouds, can introduce inaccuracies in
areas with data noise or incomplete terrain coverage, leading to localized deviations in the
modeled outputs.

The r.sun model, on the other hand, produces consistent subcanopy solar radiation
estimates when applied with either TLS or ULS data (Figure 34B). This consistency un-
derscores its reliance on 2D DSMs, which smooth out variations in input data resolution.
However, the limitations of the r.sun model become apparent in regions with dense or com-
plex canopy structures, where it fails to capture the finer-scale shading and light attenuation
effects that PCSRT models effectively.

3.6. The Effect of Point Cloud Density on Model Performance

Point cloud density plays a critical role in the accuracy of solar radiation modeling,
as it directly influences the level of structural detail captured in canopy representations.
High-density point clouds, such as those from TLS and ULS, allow models like PCSRT to
accurately voxelize complex canopy structures, capturing fine-scale shading effects and
light attenuation. The TLS dataset had an average density of 1353.44 points/m2 in the
forested area and 3991.41 points/m2 in the built-up area, providing high-resolution data for
precise subcanopy solar radiation modeling. The ULS dataset, with an even higher density
of 2559.85 points/m2 in the forested area, contributed to even more accurate radiation
predictions in forest study area. In contrast, lower-density ALS point clouds, with an
average density of 20.38 points/m2 in the forested area and 23.08 points/m2 in the built-up
area, offer broader coverage but lack the detail necessary for precise voxelization. While
suitable for large-scale modeling, this lower resolution leads to oversimplifications in
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shading and light transmission, especially in dense forest environments. The raster-based
r.sun model is less directly sensitive to point cloud density, as it uses DSMs derived from
the point clouds. However, the resolution of the DSM still affects the model’s ability to
capture fine-scale terrain and canopy variations. These findings highlight the trade-offs
between scanning methods: dense point clouds provide higher accuracy but require more
computational resources, while sparser datasets offer greater efficiency and scalability at
the expense of detail.

3.7. The Comparative Analysis of Solar Radiation Modeling Tools

The PCSRT and r.sun models represent two distinct approaches to modeling solar radi-
ation. PCSRT utilizes voxelized 3D point clouds to model solar radiation dynamics, offering
fine-scale accuracy particularly suited for complex environments such as dense forests.
In contrast, r.sun operates on 2D raster-based DSMs and is optimized for computational
efficiency, making it ideal for large-scale applications.

PCSRT excels in environments with heterogeneous canopy structures, such as dense
forests, by capturing detailed shading and light attenuation effects. Leverages high-density
point clouds from LiDAR data, enabling precise modeling of subcanopy solar radiation.
Flexible for high-resolution studies, particularly when used with TLS or ULS data. The
PCSRT, while highly effective in modeling solar radiation in complex environments, has
notable limitations. It is computationally intensive, requiring significant memory and
processing power, which restricts its scalability for large regions. Additionally, the tool’s
accuracy heavily depends on the resolution and density of the input point clouds; sparse
datasets, such as those from ALS, can result in modeling inaccuracies. Furthermore, PCSRT
struggles in environments characterized by rapid temporal variability, such as areas with
frequent cloud cover or dynamically changing canopy structures, where the temporal
resolution of input data may not adequately capture these fluctuations.

The r.sun tool is highly efficient for large-scale studies, offering low computational
demands and reliable performance in relatively simple terrains or urban areas with limited
vegetation, where 2D DSMs provide sufficient accuracy for radiation modeling. It delivers
consistent results under clear-sky conditions and uniform atmospheric parameters. How-
ever, the tool has limitations, particularly in capturing fine-scale subcanopy dynamics in
dense or complex vegetation structures. Its reliance on raster-based data assumes homo-
geneity within cells, which can lead to oversimplifications in areas with steep topography
or fragmented canopies. Additionally, its performance is constrained by the resolution of
DSM inputs, often underestimating shading effects and light attenuation in detailed or
heterogeneous environments.

Table 9 presents a comparative overview of the r.sun and PCSRT solar radiation mod-
eling tools, focusing on key aspects such as data structure, input requirements, precision,
validation results, computation time, and recommended applications. The r.sun model
utilizes raster-based data and is better suited for broad-scale studies with computational
constraints, offering faster computation times but moderate accuracy in forested envi-
ronments. Conversely, PCSRT employs voxel-based point cloud data, achieving higher
precision in capturing 3D canopy structures, particularly in heterogeneous environments,
at the cost of increased computational demands. The observations highlight trade-offs
between efficiency and detail, providing guidance for selecting the appropriate model
based on study objectives.
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Table 9. Key differences and observations between r.sun and PCSRT models.

Aspect r.sun PCSRT Observations

Model data structure Raster based Voxel based PCSRT has higher computational
and memory demands

Input requirements DSM, slope and aspect rasters Processed and optimized
point cloud PCSRT is faster for data preparation

Precision in
forested areas

Moderate accuracy, limited by
2D representation

High precision with 3D
representation

PCSRT better captures subcanopy
dynamics in dense forests

Precision in urban areas Effective for simpler
canopy structures

Effective for detailed
canopy interactions

Both models perform well but differ
based on structural complexity

Validation results
Aligns well with pyranometer

readings, with slight
underestimations in forests

Closely matches pyranometer
readings with high accuracy

ULS data aligns well for both
models, ALS less so in

complex areas

Computation time Faster (e.g., 5 s for a
forested area)

Slower (e.g., 6 min for a
forested area)

r.sun is better for large-scale
applications, PCSRT for

detailed studies
Recommended

applications
Broad-scale studies with

computational constraints
Fine-scale studies in

heterogeneous environments
Trade-off between efficiency

and detail

The choice of model should be guided by the study’s objectives and environmental
context. PCSRT is recommended for localized studies requiring high precision, especially in
areas with complex canopy or terrain structures. r.sun, on the other hand, is more suitable
for large-scale or regional applications where computational efficiency is critical.

4. Discussion
The comparison between the 2D, raster-based r.sun model and the 3D, voxel-based

PCSRT model in estimating subcanopy solar radiation underlines the strengths and limi-
tations of each approach. The results from the forested and urban landscapes reveal that
the choice of input data significantly influences the model outcomes. PCSRT demonstrates
significant advantages in environments characterized by complex canopy structures, such
as dense forests. Its utilization of 3D voxelized point clouds enables detailed modeling of
shadowing effects and solar radiation dynamics at a fine spatial scale. PCSRT performs op-
timally with data acquired from TLS or ULS, which provide high-density point clouds and
detailed representations of canopy structures. Furthermore, PCSRT is adaptable to input
data from various LiDAR sources, making it particularly suitable for small-scale studies
requiring high precision. However, its applicability to large-scale studies is constrained by
high memory and computational demands. Additionally, the accuracy of PCSRT is highly
dependent on the resolution and density of the input point cloud, which may vary across
different LiDAR acquisition methods.

The comparison of PCSRT and r.sun also revealed significant differences in their per-
formance, particularly under complex terrain conditions. PCSRT, with its voxel-based
approach, demonstrated superior accuracy in capturing subcanopy solar radiation dynam-
ics, especially in forested areas with dense and heterogeneous canopy structures. This
accuracy, however, comes at the cost of higher computational demands. For instance,
processing TLS data for a forested area requires approximately 6 min and 23 GB of memory,
reflecting the increased complexity of voxelizing high-density point clouds. Additionally,
PCSRT’s sensitivity to input parameters, such as voxel size and point cloud density, further
emphasizes the need for careful parameter selection; smaller voxel sizes increase detail but
significantly impact computation time and resource requirements.

In contrast, the r.sun model was designed to address the requirements of large-scale
or regional studies, prioritizing computational efficiency and simpler data structures.
Utilizing a raster-based approach, r.sun completed the same forested area in just 5 s,
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with minimal memory usage. This computational efficiency highlights its suitability for
large-scale studies and simpler terrains. However, its reliance on raster DSMs limits its
ability to accurately simulate fine-scale shading effects and subcanopy light penetration in
heterogeneous environments, such as dense forest canopies. Furthermore, r.sun’s accuracy
is influenced by raster resolution, with coarser DSMs failing to capture intricate variations
in canopy and terrain.

The study also emphasizes the importance of point cloud data quality and resolution
in determining modeling effectiveness. ULS, due to its high-resolution and detailed data
capture, provides the most accurate solar radiation estimates, closely matching the ground-
based pyranometer measurements. TLS, while offering precise local data, is limited by its
small coverage area and not homogenous point cloud density and logistical challenges
in data acquisition. ALS, despite its broader coverage, produces lower accuracies due to
insufficient point density, particularly in complex forest structures. These findings suggest
that while ALS is suitable for large-scale applications, ULS is preferable for detailed studies
of forest light environments. Furthermore, integrating multiple data sources can potentially
improve model reliability, as each method compensates for the limitations of the others.

The findings of this study underscore several potential avenues for future research
to overcome the identified limitations. One promising direction is the development of
hybrid approaches that combine the strengths of PCSRT and r.sun. Such approaches
could leverage PCSRT’s accuracy for critical areas requiring fine-scale precision while
utilizing r.sun’s computational efficiency for broader analyses. This integration could offer
a balanced solution, accommodating diverse environmental conditions and study scales.
Furthermore, enhancing both models could significantly improve their applicability. For
PCSRT, implementing computational optimizations, such as more efficient algorithms
and advanced preprocessing tools, could reduce memory and processing requirements,
thereby expanding its usability in larger-scale studies. On the other hand, incorporating the
ability to model vertical structures and 3D elements into r.sun could enhance its accuracy
in complex forested environments, addressing some of the limitations associated with its
reliance on 2D raster data.

Another crucial area for future research is refining the integration of TLS, ULS, and
ALS data. Developing hybrid models that utilize the strengths of each data acquisition
method could lead to improved simulations of subcanopy solar radiation across diverse
landscapes. Additionally, refining PCSRT to handle varying voxel resolutions could en-
hance its adaptability in heterogeneous environments, particularly in landscapes with
intricate canopy structures.

Expanding the scope of validation frameworks would further strengthen the robust-
ness of these models. Increasing the density of pyranometer measurements and integrating
additional data sources, such as satellite-derived solar radiation or UAV-based light sensors,
could provide a more comprehensive basis for evaluating model performance. Furthermore,
to enhance the generalizability of the findings, future studies should include a broader
range of environmental conditions. These could encompass other forest types, such as
coniferous-dominated stands, boreal forests, and Mediterranean woodlands, as well as ur-
ban configurations that range from densely populated megacities to low-density suburban
areas with diverse vegetation compositions.

This study contributes valuable insights into the trade-offs between precision and
efficiency in solar radiation modeling, providing guidance for selecting tools based on
study objectives, environmental complexity, and resource constraints. By addressing the
proposed recommendations, future work can enhance the accuracy and applicability of
these models, offering more robust solutions for ecological and environmental research.
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5. Conclusions
This study evaluated two solar radiation modeling approaches—PCSRT and r.sun—

using data from TLS, ULS, and ALS, making several novel contributions to the field of solar
radiation modeling. It addresses a research gap by employing GIS-based tools to estimate
solar radiation beneath tree crowns—an approach not previously utilized in this context.
Additionally, it introduces the innovative use of the r.sun tool, incorporating the real-sky
coefficient derived from LPI as an input parameter for solar radiation attenuation caused
by a canopy layer. This study also offers a new perspective on modeling subcanopy solar
radiation using LiDAR data from various sources, emphasizing the importance of spatial
variability in point clouds representing the canopy.

The results demonstrate that the choice of modeling tool and input data significantly
affects solar radiation estimates, especially in complex environments. The PCSRT model,
leveraging high-density point cloud data, provided superior accuracy in capturing sub-
canopy radiation dynamics, particularly in complex forest structures. In contrast, the
raster-based r.sun model excelled in computational efficiency and scalability, making it
more suitable for broader regional applications and simpler urban environments.

A key finding is the substantial influence of LiDAR data type and quality on mod-
eling outcomes. ULS provided the most reliable results due to its high spatial resolution,
closely matching ground-based pyranometer measurements. TLS captured highly detailed
local data but faced challenges in spatial coverage and uniformity. ALS, despite offering
broader coverage, exhibited the highest deviations, limiting its precision in intricate canopy
environments and demonstrating its suitability primarily for large-scale assessments.

The findings also highlight practical implications. PCSRT is recommended for de-
tailed, small-scale analyses requiring high precision, such as ecological modeling and
silvicultural planning, while r.sun is ideal for large-scale applications where computational
efficiency is paramount. These insights underscore the critical role of data acquisition
methods and modeling tools in enhancing subcanopy solar radiation estimation, providing
a methodological foundation for ecological modeling, forest management, and environ-
mental planning practices.

However, the results of this study have some limitations. PCSRT’s high computational
demands restrict its application to smaller areas, while r.sun’s reliance on raster DSMs limits
its precision in heterogeneous landscapes. Therefore, future research should explore hybrid
modeling frameworks that integrate the strengths of both models, optimizing precision
and efficiency for diverse environmental conditions. Further validation across different
vegetation types and varied atmospheric conditions would enhance the generalizability of
these findings.
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