
Academic Editor: Kun Jia

Received: 24 December 2024

Revised: 12 January 2025

Accepted: 14 January 2025

Published: 19 January 2025

Citation: Anku, K.; Percival, D.;

Vankoughnett, M.; Lada, R.; Heung, B.

Monitoring and Prediction of Wild

Blueberry Phenology Using a

Multispectral Sensor. Remote Sens.

2025, 17, 334. https://doi.org/

10.3390/rs17020334

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Monitoring and Prediction of Wild Blueberry Phenology Using a
Multispectral Sensor
Kenneth Anku 1,* , David Percival 1, Mathew Vankoughnett 2, Rajasekaran Lada 1 and Brandon Heung 1

1 Department of Plant, Food, and Environmental Sciences, Dalhousie University, 50 Pictou Road,
Truro, NS B2N 5E3, Canada; david.percival@dal.ca (D.P.); raj.lada@dal.ca (R.L.); brandon.heung@dal.ca (B.H.)

2 Center of Geographic Sciences, Nova Scotia Community College, 50 Elliott Road,
Halifax, NS B0S 1M0, Canada; mathew.vankoughnett@nscc.ca

* Correspondence: kenneth.anku@dal.ca; Tel.: +1-(902)-706-0034

Abstract: (1) Background: Research and development in remote sensing have been used to
determine and monitor crop phenology. This approach assesses the internal and external
changes of the plant. Therefore, the objective of this study was to determine the potential of
using a multispectral sensor to predict phenology in wild blueberry fields. (2) Method: A
UAV equipped with a five-banded multispectral camera was used to collect aerial imagery.
Sites consisted of two commercial fields, Lemmon Hill and Kemptown. An RCBD with six
replications, four treatments, and a plot size of 6 × 8 m with a 2 m buffer between plots
was used. Orthomosaic maps and vegetative indices were generated. (3) Results: There
were significant correlations between VIs and growth parameters at different stages. The
F4/F5 and F6/F7 stages showed significantly high correlation values among all growth
stages. LAI, floral, and vegetative bud stages could be estimated at the tight cluster (F4/F5)
and bloom (F6/F7) stages with R2/CCC = 0.90/0.84. Variable importance showed that
NDVI, ENDVI, GLI, VARI, and GRVI contributed significantly to achieving these predicted
values, with NDRE showing low effects. (4) Conclusion: This implies that the F4/F5 and
F6/F7 stages are good stages for making phenological predictions and estimations about
wild blueberry plants.

Keywords: unmanned aerial vehicle; vegetative indices; machine learning; remote sensing;
Vaccinium angustifolium; leaf area index; Monilinia blight; Botrytis blight

1. Introduction
The wild blueberry plant, commonly referred to as the “lowbush” blueberry, is a peren-

nial calcifuge shrub managed on large commercial fields. These fields are largely dominated
by two species, Vaccinium angustifolium and V. myrtilloides [1]. Management practices re-
quire a two-year production cycle consisting of vegetative and cropping years. Several
diseases affect the plant, but the most common in the cropping year are the Monilinia blight
(MB) and Botrytis blossom blight (BB) diseases, which affect plant foliage and flowers,
respectively [2,3]. However, the plant’s disease susceptibility depends on the phenological
stage and phenotype.

Monitoring phenology in the field is crucial for managing and producing wild blue-
berries. The phenological difference in phenotypes, slope direction, and surrounding
vegetation creates a varying pattern of disease damage. The Vaccinium myrtilloides phe-
notype observes a delayed growth pattern, reproductive budburst, and flowering late
by a week when compared with V. angustifolium [4]. The methods for carrying out field
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assessments on growth and development stages have always depended on physical moni-
toring, which adopts a destructive approach. Therefore, to determine growth parameters,
plants are destroyed, and this affects the plant population structure. Different methods and
approaches have been adopted in monitoring wild blueberry phenology including the use
of weather data and monitoring the morphological traits [5]. However, this approach still
poses challenges, as these methods are not always accurate, require extensive field scouting
by experienced personnel, and are time-consuming and expensive. The advancement in
the use of remote sensing (RS) has allowed predictions and determinations to be made
using VIs. These VIs are mathematical computations or ratios of the different wavelengths
reflected from vegetation [6,7]. Several studies adopting VIs have been utilized to make phe-
nological determinations and predictions on crops including cotton, rice, and wheat [7,8].
Therefore, the physiological changes being observed in the wild blueberry field as a result
of upright stem growth and development can be monitored aerially using remote sensing
approaches. This allows for early field evaluation and possible predictions or estimations
of growth parameters.

The use of remote sensing technologies and machine learning (ML) approaches has
become a routine activity for early field-scale evaluations to support management and
production practices through the application of computational algorithms such as support
vector machines (SVMs) and random forests (RFs) [9,10]. Unmanned aerial vehicles (UAVs)
mounted with different sensors have been used to acquire imagery to compute VIs in
extracting information from remotely sensed data [7,11]. Thus, VIs have been adapted
to monitor phenology and determine other growth parameters such as leaf area, stem
branches, nitrogen content, and plant height, among other plant parameters [12]. Recent
developments in remote sensing have used VIs such as the normalized difference vegeta-
tive index (NDVI) to monitor and estimate phenology [13,14]. Several studies have also
demonstrated the possibility of using VIs such as the green leaf index (GLI) and normalized
difference red edge index (NDRE) to monitor plant growth and development in many
crops, including sunflower [15], rice [16,17], rapeseed [13,14], wheat [7], cotton [8], and
wild blueberries [18]. Outcomes from these studies, using their correlation and coefficient
of determination values, have demonstrated accuracy in monitoring and estimating growth
and development parameters in the field. Despite the progress in some initial works
conducted by Maqbool et al. [19], Anku et al. [11,18], Barai et al. [20], and Pare et al. [21]
in monitoring growth parameters and improving management practices, these studies
used simple techniques that focused on a limited number of VIs, and they were limited
to a few growth parameters. In a similar survey conducted, Forsström et al. [12] assessed
the seasonal dynamics of lingonberry and blueberry; however, their study focused on
highbush blueberry using the hyperspectral technique. A recent study by MacEachern
et al. [22] highlighted the potential of monitoring and prediction; however, their study
focused only on predicting wild blueberry yield. Although significant progress has been
made, remote sensing activities in wild blueberry fields have received little attention for
their potential to enhance yield, growth, and development, as well as to reduce the overall
cost of management and production practices. However, the adoption of multispectral
technology using VIs for the assessment of growth and development coupled with machine
learning approaches in wild blueberries is still lacking.

Considering the relevance and utilization of these precision agricultural techniques
in crop production, there is the potential to apply these remote sensing approaches in
monitoring plant growth and development in wild blueberries. Given this, the study was
conducted on the wild blueberry field using a multispectral sensor (i) to determine the
potential of using machine learning approaches to predict plant height (PH), floral and
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vegetative buds, leaf area index (LAI), and yield and (ii) to determine the best phenological
stage where predictions can be made.

2. Materials and Methods
2.1. Study Area

This study was conducted in the 2020 growing season in two locations, namely the
Lemmon Hill and Kemptown fields (Figure 1A). These commercial fields are located in
Colchester County in Nova Scotia, Canada, with the following geographic coordinates:
45.188587◦N, 62.874343◦W for Lemmon Hill and 45.498936◦N, 63.100716◦W for Kemptown.
The two trial sites are old commercial wild blueberry fields that have undergone several
years of cultivation with adequate plant coverage and minimized occurrence of bare areas
or weed patchiness, making them a good representation for this trial. These fields are
prone to wet conditions that can be encountered for an extended period, thus the need for
disease-controlling fungicides to mitigate the devasting effects of the Monilinia and Botrytis
blight diseases on the field, which affect plant yield [23]. These fields have good climatic
conditions, with an annual rainfall of between 1550 mm to 2000 mm and a temperature
range of between 16 ◦C to 22 ◦C in the month of May for agricultural activities. The
two fields were at the same cropping phase of production, with substantial variability
among vegetation, equal plant coverage, and the same plant stage.
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Figure 1. (A) Lemmon Hill trial site showing individual plots at the study area, and (B) the DJI
Matrice 600 Pro UAV equipped with a 5-banded MicaSense camera.

2.2. Experimental Design

The experimental design for these trials was a randomized complete block design with
six replications, 4 treatments, and a plot size of 6 × 8 m with 2 m buffers between plots.
A 1 × 1 m white marker card was placed outside the stake at each corner and georeferenced
with an SXblue Platinum GPS device. Treatments consisted of (1) MB control and BB
control, (2) MB but no BB control, (3) no MB control but BB control, and (4) untreated
control (i.e., no Monilinia or Botrytis blight prevention treatments). Despite this design, the
experimental approach adopted in this study may not conform to every location; thus, other
treatment options have been explored. Similar experimental designs have focused on using
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treatments such as nitrogen fertilization when monitoring the growth and development of
plants [8]. Notwithstanding, the experimental design and treatments should be compatible
with the wild blueberry plant type. Furthermore, since the growth and development of the
plant is influenced by both biotic (disease infestation) and abiotic factors (nutrients and
environmental conditions), continuous monitoring is required.

2.3. Fungicide Application

Fungicides were applied to the treatment plots as described by Anku et al. [18]. The
experimental design was intended not to study the effects of fungal control products on
MB and BB but rather to stimulate variation and the natural occurrence of these diseases
for analysis.

2.4. Data Acquisition
2.4.1. Field Data Collection on Growth Parameters

Fifteen (15) stems per plot were simultaneously collected as aerial imagery was ac-
quired. These collections were conducted from the F0/F1 stage until the F8 stage (fruit set;
Table 1). The stems were collected diagonally at 20 cm intervals along a 4 m line transect,
cutting the stem as close to the base as possible to avoid vegetative stems [23]. Growth
parameters taken from each plot included plant height (PH), vegetative node number (VN)
and stage (VS), floral node number (FN) and stage (FS), leaf area index (LAI; measured
with an SS1 SunScan Canopy Analysis System, Delta-T Devices), and harvestable yield.
Harvestable yield was collected in August 2020 with a forty-tine commercial wild blueberry
hand rake from six randomly selected 1 m2 quadrats in each plot [23].

Table 1. Flight details conducted at the Lemmon Hill and Kemptown locations at the different
phenological stages.

Flight Date Plant Stage
MicaSense RedEdge Camera

30 m Spatial Resolution (cm/px)

20 May 2020 F1 (Bud break)
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2.4.2. Multispectral Platform and Aerial Image Acquisition

The DJI Matrice 600 Pro UAV (a DJI product, Shenzhen, China) was equipped with
a 5-band MicaSense RedEdge™-M multispectral camera (AgEagle, Wichita, KS, USA)
(Figure 1B) to take images at these wavelengths: blue (475), green (560), red (668), red
edge (717), and near-infrared (840) banded imagery. Using ground control points (GCPs)
(Figure S1), the Matrice 600 Pro was flown at a 30 m height with a frontal image overlap of
75% and a side image overlap of 70%.

The imagery was acquired within an interval of 8 to 13 days (depending on weather
conditions) for a total of 5 flights. Image collection was conducted under clear conditions
to minimize the effects of clouds, wind, and rain. Calibration and adjustments were carried
out to minimize the effects of distortion on the quality of imagery obtained. All imagery
was acquired at a 2.2 cm spatial resolution (Table 1).
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2.4.3. Postprocessing and Extraction of Vegetation Indices

Imagery acquired from the multispectral camera was processed into a composite
orthomosaic image using a web processing tool, Solvi (https://solvi.ag/features, accessed
on 15 April 2022 which was previously owned by Precision Hawk) [18]. Individual plots
were digitized, and their vegetation indices were extracted. The extracted file was exported
as a comma-separated-value (CSV) file into Excel for further arrangement and processing.
ArcGIS version 10.5 was further used to digitize and process some of the images as shown
in the workflow (Figure 2).
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Figure 2. General overview of the workflow for the postprocessing of aerial images.

2.5. Vegetative Indices

VIs computed using light bands perform several functions in plants, including mon-
itoring and prediction, among other functions. Three of these VIs, NDVI, ENDVI, and
NDRE, use the near-infrared (NIR) band, with the other three restricted to the visible light
region (VIS) (Table 2).

Table 2. Vegetative Indices Used in This Study.

Vegetation Indices Bands a Equation b

Green Leaf Index (GLI) R, G, B (2·Rg − Rr − Rb)/(2·Rg + Rr + Rb)
Green, Red Vegetation Index (GRVI) R, G (Rg − Rr)/(Rg + Rr)
Normalized Difference Vegetation Index (NDVI) R, NIR (Rn − Rr)/(Rn + Rr)
Enhanced Normalized Difference Vegetation Index (ENDVI) B, G, NIR (Rn + Rg) − (2*Rb)/(Rn + Rg) + (2*Rb)
Normalized Difference Red Edge (NDRE) NIR RE (Rn − Rre)/(Rn + Rre)
Visible Atmospheric Red Index (VARI) G, R (1 + 0.5) (Rn − Rr)/(Rn + Rr + 0.5)

a Indices were grouped based on the major wavelengths of the MicaSense sensor: NIR (n, 840 nm), red edge of
chlorophyll absorption (RE, 717 nm), red (R, 668 nm), green (G, 560 nm), blue (B, 475 nm). b R is the reflectance at
wavelength; Rn, Rre, Rr, Rg, and Rb are the reflectance for the NIR, RE, red, green, and blue bands, respectively.

https://solvi.ag/features
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2.6. Statistical Analysis and Regression Methods

Correlation and regression analysis were used to establish the relationship between
VIs and the different growth parameters in the combined data set. The correlation method
focused on establishing the strength of the relationship between the two quantitative
(dependent and independent) variables. The regression method then described the rela-
tionship between the variables [24]. Therefore, machine learning, using the supervised
regression approach, was utilized. The supervised machine learning regression method
allows the system to model the relationship between the response and dependent variables
after training the machine. This gives the machine learning method a predictive ability.
Despite using other methods such as the coefficient of determination value (R2), recent
studies have adopted Lin’s concordance correlation coefficient (CCC) as a higher measure
of accuracy and precision. The CCC measures how far the linear relationship of the two
variables deviates from the concordance line (accuracy) and how far each observation also
deviates from the fitted line (precision) [25–27]. The correlation and regression analysis
and Lin’s concordance correlation coefficient (CCC) analysis were performed using the R
software, version 4.2.0.

In this study, stepwise multiple linear regression was used as a fundamental technique
to select a subset of useful independent variables and evaluate the order of importance of
these variables [28,29]. The support vector machine (SVM) was also used in this study as
a linear binary classifier that identifies a single boundary between two classes by finding
a hyperplane that separates the dataset using predefined training data [30]. This study
also adopted the random forest (RF), a supervised ML classifier based on decision trees
primarily used for classification and regression tasks [31]. This study also used a K-nearest
neighbor algorithm. This algorithm is used for classification and regression tasks based on
finding the k nearest data points to a given query point [32]. Lastly, cubist regression was
adopted. Cubist regression is a machine learning regression technique that is rule-based;
thus, it combines decision trees and linear regression. These classifiers were chosen for their
effectiveness with small datasets and their ability to manage overfitting, handle missing
values, deal with high-dimensional data and outliers, accommodate complex relationships,
and ensure model robustness [33,34].

Therefore, this study modified the approach of Yu et al. [35] by conducting these analyses
using five (5) machine learning algorithms, stepwise multilinear regression (SMLR), K-nearest
neighbor (KNN), random forest (RF), support vector machine (SVM), and the cubist method
(CB), to identify which method constructed the best regression relationship. These classifiers
were set up using a 10-fold cross-validation approach and were repeated 10 times. In addition
to the R2, CCC, and RMSE values in determining growth parameters, output or results from
the analysis also facilitated the generation of variable importance plots.

A variable importance chart was produced, and this determined the overall impact of
each VI, with the most significant VI having the most predictive power. To differentiate
between the two groups of vegetation indices, we determined which group (VIS and NIR
vegetation indices) had the highest predictive power. This was achieved by sampling
the top three VIs from all regression analyses to determine individual VI contributions in
achieving those predictions. The analysis generated from the R software presented ranked
contributions of the individual VIs on a scale of 0–100%, where 100% represented a high
contribution and 0% indicated a low contribution. These contributions were evaluated by
selecting the top 3 highest-ranking VIs within a specific phenological stage as the most
significant VIs. This approach facilitated the identification of the VI with the most predictive
ability for a given parameter as determined by the regression algorithm. This method was a
simplified and modified version of what was adopted by Souza et al. [36]. After identifying
the 3 best VIs (with an average of between 60% to 91%) across all phenological stages for
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the different classifiers, their occurrences in the first, second, and third positions of these
VIs were counted. The VI with the highest number of appearances in these positions was
considered the overall most influential vegetative index in the generated results.

3. Results
3.1. Correlations Between VIs and Growth Parameters

Correlation analysis between VIs and growth parameters showed moderately high,
significant values (Figure 3). However, these values were inconsistent among the different
parameters and phenological stages. The results indicated that VIs can be used to determine
and potentially make predictions on different plant parameters in the wild blueberry fields.

Among the different phenological stages, correlation values were generally low at the
bud break (F1) and the fruit set stages (F8) (Figure 3A,E). However, LAI and vegetative bud
number (VN) gave high correlation values under the NIR indices. At the tight cluster stage,
high correlations were observed among VIs, PH, and LAI (Figure 3B). While the NIR indices
showed a high correlation with yield, the visible light vegetative indices (VIS) showed a
good correlation with vs (Figure 3B). The tight cluster stage showed high correlation values
among some VIs, PH, FS, VS, and yield (Figure 3C). Among these values, ENDVI was
inconsistent with FS, VS, and yield. The bloom stage was characterized by high correlation
values occurring at PH, FS, VN, and LAI (Figure 3C). LAI observed very high values across
the different index types, with PH and VN.

Correlating with the VIS indices while FS correlated with the NIR indices. NDVI
showed a high correlation with yield and VN (Figure 3D). The fruit set stage was charac-
terized by the lowest correlation among the different phenological stages. Only ENDVI
showed a good positive correlation with yield (Figure 3E). Generally, the tight cluster,
early/late bud, and fruit set stages observed significant correlation values between growth
parameters and VIs. GLI, GRVI, and VARI were consistent in generating moderately high r
values for the tight cluster, early/late bud, and flowering stages, whereas NDVI, ENDVI,
and NDRE were consistent at the tight cluster and early/late bud stages. This trend points
to the relevance of some visible-light-generated VIs, which performed slightly better in
some parameters than the near-infrared VIs.

Variable importance enabled the determination of VIs that had the most predictive
power. Variables with high importance value were drivers of the outcome; thus, their values
significantly affected the overall outcome (Figures 4 and 5). This analysis revealed that the NIR
indices contributed significantly to the outcomes observed, with some contribution from the
VIS vegetative indices (Tables 3, 4 and S1A,B). For LAI under all phenological stages, NDVI,
NDRE, and ENDVI contributed significantly. FN and FS observed significant contributions
from GRVI, VARI, ENDVI, and NDRE. PH, VS, and VN were significantly impacted by VIs
such as NDRE, NDVI, ENDVI, and GRVI under all phenological stages. Sampling some
of the highest VIs of every parameter under a specific classifier of a variable importance
output implied that, despite the contribution from the NIR indices, the VIS vegetative indices
cannot be underestimated, as they contributed significantly to major outcomes observed
(Tables 3–5 and S1A,B). Representation on rankings was considered for only four classifiers,
excluding the cubist classifier, which had low or no represented results.
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Figure 3. Correlation coefficients between growth parameters and VIs using the multispectral
sensor at the different phenological stages. (A) F1 stage (bud break), (B) F2/F3 stage (tight cluster),
(C) F4/F5 stage (early/late bud), (D) F6/F7 stage (bloom), and (E) F8 stage (Fruit set). Color intensities
indicate the degrees of positive and negative correlation values.
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Figure 4. A variable importance chart of the random forest algorithm at the F6/F7 stage representing
the contributions of individual VIs to the observed output.
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Figure 5. Coefficient of determination (R2) values and Lin’s concordance (CCC) values from
5 regression methods on several growth parameters against VIs at the different phenological stages
(a–e) using the multispectral sensor. SMLR—stepwise multilinear regression, KNN—k-nearest neighbor,
RF—random forest, SVM—support vector machine, CB—cubist, F—floral stage, Yield—harvestable
yield, LAI—leaf area index, PH—plant height, FN—floral bud number, FS—floral stage, VB—vegetative
bud number, and VS—vegetative bud stage.
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3.2. Predicting Growth Parameters Using Vegetative Indices

Coefficient of determination (R2) values showed high significant values among some
parameters at the different phenological stages (Figure 5a–e; Tables 3, 4 and S1A,B). Regression
analysis estimated moderately high R2 values among all the regression methods of analysis.

A range of R2 values with relatively low RMSE values were observed among some
growth parameters, such as LAI (Figure 5a–e and Table 3). However, this observation was
consistent only for LAI at all phenological stages while being restricted to the F4/F5 stage
for FS and VS. Despite the relatively low values observed by LAI at the bud break, tight
cluster, and early/late bud stages, LAI recorded the highest R2 values at the bloom stage,
with an average of about 45–50% of RMSE (Figure 5d and Table 3). With the R2, CCC, and
RMSE as selective criteria, it was observed that relatively high R2 values were observed
among some parameters with moderate RMSE values (Table 3).

Table 3. Root means square error values (RMSE) for the R2 and CCC values obtained from 5
regression methods on several growth parameters against VIs at the different phenological stages
using the multispectral sensor. SMLR—stepwise multilinear regression, KNN—k-nearest neighbor,
RF—random forest, SVM—support vector machine, CB—cubist, F—floral stage.

Parameters
Bud break stage (F1)

SMLR KNN RF SVM CB

Yield (g.m−2) 225.85 223.83 249.73 240.11 223.86
LAI 0.11 0.12 0.12 0.11 0.11
Plant height (cm) 1.59 2.13 1.71 - 1.79
Floral bud no. 1.61 1.72 1.46 1.64 1.58
Floral bud stage 0.26 0.25 0.24 0.25 0.26
Veg. bud no. 3.17 3.32 3.14 2.77 2.75
Veg. bud stage 0.25 0.23 0.24 0.24 0.25

Tight cluster stage (F2/F3)

Yield (g.m−2) 340.10 273.35 266.10 333.75 372.77
LAI 0.11 0.13 0.13 0.11 0.12
Plant height (cm) 2.12 1.94 1.90 1.85 1.86
Floral bud no. 1.45 1.98 1.34 1.63 1.36
Floral bud stage 0.69 0.53 0.67 0.91 0.56
Veg. bud no. 3.08 2.59 2.64 2.37 2.23
Veg. bud stage 0.81 0.89 0.86 0.80 0.91

Early/late stage (F4/F5)

Yield (g.m−2) 230.12 224.70 240.80 224.27 221.05
LAI 0.11 0.14 0.13 0.11 0.12
Plant height (cm) 1.88 1.99 1.94 1.76 1.99
Floral bud no. 1.50 1.59 1.55 1.48 1.57
Floral bud stage 0.52 0.47 0.46 0.47 0.49
Veg. bud no. 3.08 2.59 2.64 2.37 2.23
Veg. bud stage 0.32 0.32 0.33 0.29 0.31

Bloom stage (F6/F7)

Yield (g.m−2) 232.24 254.21 232.13 224.38 264.94
LAI 0.56 0.56 0.54 0.46 0.55
Plant height (cm) 1.45 1.41 1.37 1.32 1.38
Floral bud no. 1.08 1.03 1.17 1.08 1.13
Floral bud stage 0.14 0.12 0.13 0.12 0.13
Veg. bud no. 1.54 1.43 1.53 1.66 1.56
Veg. bud stage 0.21 0.28 0.22 0.33 0.25
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Table 3. Cont.

Fruit set stage (F8)

Yield (g.m−2) 265.70 304.26 249.36 235.18 265.63
LAI 0.90 0.83 0.87 0.87 0.89
Plant height (cm) 2.05 2.00 2.14 2.88 2.19
Floral bud no. 1.05 1.00 1.08 1.11 1.05
Floral bud stage - - - - -
Veg. bud no. 2.07 2.05 2.15 1.97 2.02
Veg. bud stage 0.17 0.20 0.17 0.17 0.18

3.3. Phenological Growth in the Fields

The trend of VI measurements using the UAV multispectral sensor was similar at the
two locations. The UAV measurements clearly illustrated that the NIR VIs were separated
from the VIS vegetative indices, except for NDRE (Figure 6). At both locations, NDVI
and ENDVI obtained the highest VI values with a >100% and a 60.6% increase at harvest,
respectively, compared with the other indices across the phenological stages. NDRE at the
Kemptown and Lemmon Hill locations observed a 67.9% and a 51.7% increase in VI value
at harvest, respectively. The VIS vegetative index from both locations progressed from the
negative quadrant into the positive quadrant, with increases of over 100% in VI values for
all three indices (GLI, GRVI, and VARI), with VARI being the highest. From both fields,
VARI performed best among the three (3) VIS vegetative indices, followed by GLI and then
GRVI at all phenological stages (Figure 6). Interestingly, VARI observed continuous growth
until an almost equal value was observed with NDVI and ENDVI at the Kemptown field
site, giving it the highest increase in VI value at harvest compared with the initial bud
break value. Though a similar effect of VARI was not seen at Lemmon Hill, it observed the
highest increase compared with the other VIS indices. All VIs observed a varying degree of
decline at the bloom stage.
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3.4. Variable Importance Plot

A performance ranking of the vegetative indices (VIs) was conducted by selecting the
top three highest VIs from the variable importance plots (Tables 4, 5 and S1A,B). Significant
contributions were observed from the light-based VIs, particularly GLI, GRVI, and VARI.
Notably, GLI appeared 24 times in a first-place position in the variable importance plots
(Table 5), making it the most predictive vegetative index. Following GLI was ENDVI
appearing 22 times, with both NDRE and GRVI appearing 20 times, in third-placed position.
In second-place positions, VARI was the most prominent, followed by GRVI and NDVI.
Similarly, in the third-place positions, GLI was the most prominent, followed by NDVI and
NDRE (Table 5).

Table 4. Rankings on an SVM classifier for the best-performing indices for each phenological stage
and parameter using the multispectral sensor. Performance was evaluated using outputs from the
variable importance chart. Percentages represent the performance of the individual vegetative indices
in achieving that outcome. Indices are arranged in order from the best index to the least performing
index along with their corresponding percentages.

Bud break stage (F1)

Parameter Rank Percentage (%)

Yield (g.m−2) GLI, VARI, GRVI, NDRE, NDVI, ENDVI 100, 75,60, 25, 10, 0
Leaf area index NDRE, NDVI, ENDVI, GLI, GRVI, VARI 100, 90, 80, 10, 5, 0
Plant height (cm) NDRE, NDVI, ENDVI, GRVI, VARI, GLI 100, 95, 75, 68, 28, 0
Floral bud number NDRE, NDVI, ENDVI, GRVI, VARI, GLI 100, 75, 70, 45, 15, 0
Floral bud stage GLI, VARI, GRVI, NDRE, ENDVI, NDVI 100, 90, 88, 82, 30, 0
Vegetative bud number ENDVI, NDVI, NDRE, VARI, GRVI, GLI 100, 70, 18, 3, 2, 0
Vegetative bud stage GLI, VARI, GRVI, NDRE, ENDVI, NDVI 100, 88, 82, 30, 5, 0



Remote Sens. 2025, 17, 334 14 of 20

Table 4. Cont.

Tight cluster stage (F2/F3)

Parameter Rank Percentage (%)

Yield (g.m−2) GRVI, NDRE, NDVI, VARI, ENDVI, GLI 100, 80,75, 70, 45, 0
Leaf area index GRVI, VARI, GLI, ENDVI, NDRE, NDVI 100, 70, 45, 20, 14, 0
Plant height (cm) NDRE, NDVI, ENDVI, VARI, GLI, GRVI 100, 95, 80, 5, 5, 0
Floral bud number GRVI, VARI, NDRE, GLI, NDVI, ENDVI 100, 85, 30, 15, 10, 0
Floral bud stage GLI, GRVI, VARI, ENDVI, NDRE, NDVI 100, 90, 78, 45, 23, 0
Vegetative bud number ENDVI, NDRE, NDVI, GLI, VARI, GRVI 100, 68, 50, 48, 12, 0
Vegetative bud stage GLI, VARI, GRVI, ENDVI, NDVI, NDRE 100, 92, 83, 24, 18, 0

Early/late bud stage (F4/F5)

Parameter Rank Percentage (%)

Yield (g.m−2) VARI, GRVI, GLI, NDVI, NDRE, ENDVI 100, 100,100, 90, 70, 0
Leaf area index GRVI, VARI, GLI, ENDVI, NDRE, NDVI 100, 70, 45, 20, 15, 0
Plant height (cm) ENDVI, NDVI, NDRE, GLI, GRVI, VARI 100, 78, 50, 40, 30, 0
Floral bud number GLI, GRVI, ENDVI, NDVI, NDRE, VARI 100, 65, 55, 45, 18, 0
Floral bud stage GRVI, VARI, GLI, NDVI, NDRE, ENDVI 100, 95, 93, 65, 45, 0
Vegetative bud number ENDVI, NDRE, GRVI, DNVI, GLI, VARI 100, 63, 23, 22, 12, 0
Vegetative bud stage VARI, GRVI, GLI, NDVI, NDRE, ENDVI 100, 100, 98, 80, 72, 0

Bloom stage (F6/F7)

Parameter Rank Percentage (%)

Yield (g.m−2) GLI, ENDVI, NDVI, GRVI, NDRE, VARI 100, 95,80, 80, 50, 0
Leaf area index NDRE, NDVI, ENDVI, GLI, GRVI, VARI 100, 100, 90, 80, 25, 0
Plant height (cm) ENDVI, NDVI, NDRE, GLI, GRVI, VARI 100, 78, 50, 40, 30, 0
Floral bud number NDRE, GRVI, NDVI, GLI, VARI, ENDVI 100, 98, 82, 70, 50, 0
Floral bud stage ENDVI, NDRE, NDVI, GLI, GRVI, VARI 100, 95, 82, 58, 25, 0
Vegetative bud number GLI, GRVI, NDRE, NDVI, ENDVI, VARI 100, 82, 68, 50, 32, 0
Vegetative bud stage ENDVI, GLI, GRVI, VARI, NDRE, NDVI 100, 78, 55, 38, 15, 0

Fruit set stage (F8)

Parameter Rank Percentage (%)

Yield (g.m−2) ENDVI, NDRE, NDVI, GRVI, GLI, VARI 100, 90,80, 75, 50, 0
Leaf area index GRVI, VARI, GLI, NDVI, ENDVI, NDRE 100, 95, 92, 35, 23, 0
Plant height (cm) GRVI, VARI, GLI, ENDVI, NDRE, NDVI 100, 85, 80, 8, 4, 0
Floral bud number NDVI, GLI, NDRE, VARI, GRVI, ENDVI 100, 75, 70, 50, 15, 0
Floral bud stage NDRE, GRVI, VARI, NDVI, ENDVI, GLI 100, 58, 50, 40, 7, 0
Vegetative bud number GRVI, VARI, GLI, ENDVI, NDVI, NDRE 100, 90, 88, 70, 25, 0
Vegetative bud stage GLI, ENDVI, GRVI, NDVI, VARI, NDRE 100, 95, 45, 35, 11, 0

Table 5. Overall rankings of the best performing VIs at the different phenological stages. Performance
evaluation was based on the variable importance plot. Numbers indicate the number of appearances
in each position, indicating the performance index of each phenological stage.

VI Positions Bud Break (F1) Tight Cluster (F2/F3) Early/Late Bud (F4/F5) Bloom (F6/F7) Fruit Set (F8) Best Performance

GLI
1st 9 4 3 4 4 24
2nd 1 2 - 3 4 10
3rd - 2 11 1 7 21

GRVI
1st - 6 6 1 7 20
2nd - 4 7 6 5 22
3rd 6 3 2 2 4 17

VARI
1st - 3 5 2 2 12
2nd 7 5 6 - 8 26
3rd 3 4 2 1 5 15
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Table 5. Cont.

VI Positions Bud Break (F1) Tight Cluster (F2/F3) Early/Late Bud (F4/F5) Bloom (F6/F7) Fruit Set (F8) Best Performance

NDVI
1st 2 1 - 2 2 7
2nd 8 3 4 4 - 19
3rd 2 5 1 9 2 19

ENDVI
1st 3 3 6 7 3 22
2nd 4 1 1 2 2 10
3rd 8 3 2 3 1 17

NDRE
1st 7 4 1 5 3 20
2nd 1 6 3 6 2 18
3rd 3 5 3 5 2 18

Despite the individual rankings, it was observed that, collectively, the light VIs were
prominent at the tight cluster, early/late bud, and fruit set stages. Conversely, the NIR VIs
were significant at the bud break and bloom stages. Nevertheless, both types of vegetative
indices contributed significantly to the predictions observed (Table 5).

3.5. Assessment of Statistical Methods

The five adopted statistical classifiers performed similarly, with consistent values
across different methods applied to the parameters. Despite the slight differences in the
statistical approaches of these classifiers, they were consistent in their output values. The
support vector machine (SVM) generally had high output values across all phenological
stages, which were often consistent with the random forest (RF) method. The stepwise
multiple linear regression (SMLR) method was also consistent with the K-nearest neighbor
(KNN) method, with the cubist method (CB) considered slightly different from the other
four (4) methods. However, the general difference in result output observed between these
methods was not substantial.

A comparison between the coefficient values using R2 and CCC (Figure 5a–e;
Tables 3 and 4) illustrated great similarity. Apart from the tight cluster stage and bloom stage
(Figure 5b and Table 3), all the remaining phenological stages observed consistently higher
coefficient values using CCC than the R2 values (with a few exceptions, e.g., early/late bud
stage—LAI) (Figure 5a,c–e and Table 3). Therefore, slightly higher coefficient values were
observed using CCC across the different phenological stages (Figure 5a–e and Table 3).

4. Discussion
The trend in VI demonstrated the phenological growth over the measured period,

confirming the use of VIs to monitor phenology [12,13,15]. Findings from this study
confirmed that plant canopy and VIs showed a bell-like-shaped representation over the field
season [12]. Therefore, VI values were low at the beginning of the crop season, increased
midway, and diminished at the end of the season. This observation was consistent with
the study of Forsström et al. [12] regarding the general growth and development of plants.
Their work observed a similar occurrence when comparing lingonberry and blueberry
spectra. This phenomenon was due to leaf development over the growing period, which
continued until the autumn season, when chlorophyll and other pigments were degraded,
and leaves fell from the stem. The bell-shaped representation suggests that plant leaves are
major determinants of VIs and regulators of light, with pigment contributing to this process.
This result agreed with the work of Souza et al. [8], who observed a similar occurrence with
the phenological indices in cotton. This observation gives insight into the phenological
cycle of the wild blueberry plant (leaves), highlighting specific phenological stages for
management practices. Leaves, being the primary drivers of photosynthesis, are critical
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for growth and can serve as indicators for forecasting plant health and diseases such as
Monilinia and Botrytis blossom blight.

After the bud break stage, it was observed that the increasing trend of VIs was dis-
rupted at the flowering stage, where several VIs exhibited a moderate to severe decline.
This phenomenon was confirmed by the work of Hassan et al. [7], who reported a 10%
decline in VIs at the flowering stage. This decline was reflected in the Lemmon Hill field,
with an even greater decline observed in the Kemptown field.

The reasons accounting for this decline may vary; however, field observations suggest
that variations in VIs in the wild blueberry fields are strongly associated with the transition
between phenological stages. Notably, the dominant field species, V. angustifolium, produces
white corollas at the bloom stage, potentially affecting reflectance values and contributing
to the observed decline.

Additionally, leaf structure and angle significantly influence light reflection captured
by the MicaSense, which may have affected the computation of these VIs. Since wild
blueberry plants are not evergreen, their leaves exhibit varying colorations at different
phenological stages. Consequently, the presence of pink and white flowers along with the
diverse coloration of leaves, creates a mosaic of colors in the field [18]. Furthermore, new
flushes of vegetative growth after fruit set with the breaking of auxiliary buds and the
emergence of new flushes of leaves also contribute to this variation. This occurrence was
attributed to the chemical composition of leaves and the varied corollas along the early to
middle stages of development significantly affecting reflectance [37,38]. Other contributing
factors included the direction of incidence radiation and canopy architecture, among other
characteristics of the plant playing a role in these observations [13]. The variability effect of
phenotypes was also evident across fields. For example, during the bloom stage, Kemptown
observed a general decline in VIs, whereas this effect was less pronounced in Lemmon
Hill. This study largely confirms the findings of Forsström et al. [12], where variations in
the red and blue wavelength regions accounted for the decline at the bloom and berrying
stages of the plant [12]. Therefore, since VIs are computed from VIS and NIR light, this
potentially accounts for the observed variations in this study. However, the seeming
difference observed between the two fields stemmed from variations in the nature and
quantity of leaves, flowers, and berries present in both fields. These differences, particularly
at the transitioning phases, affect VIs at the different phenological stages [12]. Consistently
with these findings, Forsström et al. [12] demonstrated that VIs are sensitive to blueberry
shrub phenology observed throughout the growing season, underscoring the potential of
using VIs to monitor phenology effectively.

The predictability of growth parameters using RS techniques relies on obtaining high
correlative and regression values with minimal RMSE [7,8,16–18]. This study recorded a
range of moderately high R2 and CCC, values which agreed with the findings from other
crops such as wheat [7], wild blueberry [18], and rapeseed [13], among others. Among
the growth parameters, LAI demonstrated high predictability across various phenological
stages, except at the F8 stage, while FS and VS were predictable mainly during the F4/F5
stage. This study suggests that LAI, VS, and FS are growth parameters that can be estimated
at different phenological stages across the field season. This conclusion aligns with the
findings of Maqbool et al. [19], who used optimum multiple narrow-band reflectance
(OMNBR) indices to estimate LAI at the bloom stage in wild blueberry fields. These findings
corroborate our result that the bloom stage (F6/F7) is the optimal phenological stage for
estimating LAI. Converse to our assertion on yield, a previous study by Maqbool et al. [19]
indicated that yield can be predicted using reflectance data. Despite the seemingly different
approach adopted by Maqbool et al. [19], the use of VIs may support the predictability of
yield if measures are taken to rectify some issues on resolution, and specific harvest time.
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Maqbool et al. [19] argued that the polyphenolic compounds contained in flowers and
berries, compounded by the high variability levels present on the field, influenced spectral
resolution and accurate estimations. Therefore, the inconsistencies observed with some of
the results may directly point to field variability, which includes plant density across the
field, different phenotypes, and the varying pigment composition of plants, affecting VIs.
Findings on rapeseed and rice crops have pointed to the elongation and flowering stages
as good estimation points for plant canopy and other biophysical characteristics. Similarly,
as in this work, the optimal estimation stage for LAI is the bloom stage (white tip) (F6/F7),
with early/late bud as the optimal estimation stage for both FS and VS. In the conclusions
drawn by Lui et al. [16] and Zhou et al. [17], it was stated that VIs that show high correlation
and prediction of LAI can also correlate and predict yield. While this assertion is partially
supported by our study, with yield predictions showing high R2 and CCC values under
the RF and SVM models (Figure 5b), the high RMSE values implied high errors and low
precision. The yield results from this study confirmed the results of MacEachern et al. [22]
and Barai et al. [20]. Thus, to improve R2 and RMSE values, it may be beneficial to harvest
entire plots instead of relying on quadrant sampling. This approach would provide the
total yields for individual treatment plots, enabling more accurate and effective analysis.
On the selection of important VIs (variable importance), several vegetative indices (VIs)
contributed to the varied outcomes observed in the use of the MicaSense multispectral
sensor (Tables 4 and 5; Table S1A,B). Rather than a single linear regression method focusing
on a specific index, multiple linear regression was adopted, and as such, several significant
VIs showed their contributions to the values obtained. This result agreed with Yue et al. [39],
whose work found superior the use of multiple indices rather than a single index to estimate
crop parameters. Despite the advantages that the multiple index approach presents, other
studies have pursued single-index assessment [12,18,20]. Though single-index assessment
allows exploring the capabilities of a single index, it loses the ability to effectively compare
those index values with other indices. Notably, the NIR indices such as NDVI, ENDVI, and
NDRE contributed immensely across several parameters and growth stages with higher
chances of effect [12]. However, the contribution of some light vegetative indices cannot
be underestimated, and as such, this study makes a strong case for the VIS-VIs. Several
studies have established that VARI, among other visible light VIs, estimates and monitors
several growth parameters [11,16,17,40]. This agreed with Viña et al. [40] and Forsström
et al. [12], who identified the visible atmospherically resistance index (VARI) and plant
senescence reflectance index (PSRI), respectively, as good in monitoring phenology. The
use of the different statistical classifiers was necessary to determine a suitable classifier. The
classification methods applied proved robust; however, the results obtained varied slightly
depending on the use of the R2 and CCC approaches. In essence, both methods generated
similar values and may be considered the same. In this study, the results obtained indicate
that the SVM, RF, and CB classifiers generated high but similar values with minimal
deviations between them.

Effective wild blueberry management practices are crucial in improving disease control,
optimizing pollinator activity, and maximizing crop yields. Similarly, the ability to predict the
number and developmental stage of floral buds provides insights into potential yields, allow-
ing for early projections and better resource allocation. These advancements enable growers
to manage key growth stages with greater precision, improving efficiency and productivity.
The broader implication of this study lies in integrating these predictive capabilities into ad-
vanced decision-support models. By correlating plant growth dynamics with environmental
conditions and VIs, these models can forecast disease spread, optimize the timing of pollinator
release, and refine yield predictions. These tools help reduce costs, minimize environmental
impacts, and promote sustainable farming practices [41]. Ultimately, the introduction of this
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technique will empower growers to make data-driven decisions, enhancing productivity,
profitability, and long-term stability in wild blueberry production.

5. Conclusions
This study assessed the potential of using the VIs to monitor and estimate growth and

development parameters in the wild blueberry field. Results indicated the potential to adopt
remote sensing as a valuable technological tool in the wild blueberry field. Correlative
assessment of VIs against parameters showed good indication across all phenological
stages. Results showed that LAI, FS, and VS can be estimated at the F4/F5 and F6/F7
stages, but yield prediction could be challenging, despite the potential shown.

The overall results from this study indicated that vegetative indices can be effectively
used to generally monitor plant growth and make predictions. However, these determi-
nations are specific to individual growth parameters. Therefore, using a well-established
model, the introduction of VIs can help determine the LAI of the wild blueberry canopy.
Notwithstanding the challenges observed in the other parameters, further research is re-
quired to validate the findings on harvestable yield. We recommend additional studies to
compare the individual efficiencies of the VIS-VIs and the NIR-VIs. This comparison will
help identify the potential of these index types in monitoring plant phenology. In addition,
we recommend studies that would combine weather parameters to field and remotely
sensed data to monitor phenology on the wild blueberry field.
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