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Abstract: Clouds play a key role in the Earth’s radiation budget, weather, and hydrological
cycle, as well as the radiative and thermodynamic components of the climate system. Space-
borne observations are an essential tool to detect clouds, study cloud–radiation interactions,
and explore their microphysical properties. Recent advancements in spatial, spectral, and
temporal resolutions of satellite-borne measurements and the increasing variety of orbits
and observing geometries offer the opportunity for more efficient and sophisticated re-
trieval procedures, leading to the more accurate estimation of cloud parameters. However,
despite the availability of near-coincident observations of the same atmospheric state, the
synergy between the whole set of acquired information is still largely underexplored. The
use of synergy is often invoked to optimize the exploitation of the available information, but
it is rarely implemented. Indeed, the strategy currently used in most cases is that retrievals
are performed separately for each instrument and, only later, the retrieved products are
combined. In this framework, therefore, there is a strong need to study and exploit the
synergy potential of the instruments currently in orbit or that will be put in orbit in the
next few years. This paper reviews the efforts already made in this direction, combining
passive infrared and microwave to retrieve cloud microphysical properties. We provide
readers with a framework to interpret the state of the art, highlighting the pros and cons of
the various approaches currently used with a look to the most promising methodologies to
be deployed to address the challenges of this field.

Keywords: satellite observations; cloud properties; infrared; microwave

1. Introduction
Among the many factors influencing climate change, clouds occupy a first-order posi-

tion due to the high degree of uncertainty they bring, as stated by the Intergovernmental
Panel on Climate Change (IPCC) in the sixth Assessment Report (AR6) [1]. Furthermore,
understanding clouds and climate circulation and their implications for forecasting extreme
meteorological events is included among the World Climate Research Program’s grand
challenges (http://wcrp-climate.org/grand-challenges (accessed on 18 January 2025)) to
be addressed in the next decade. In addition, given the key role of clouds in moisture
redistribution and the hydrological cycle, advances in the field of atmospheric science
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cannot occur without real progress in understanding cloud-scale microphysical variables.
For these reasons, numerous efforts have been made in recent years to deepen the knowl-
edge of global cloud distribution and develop and improve the accuracy of methodologies
that estimate key microphysical cloud variables. Although satellite observations currently
offer a complete view of the entire Earth’s surface for both the frequency and geographic
distribution of the observations, as well as for their spectral range (from VIS to MW), and
despite the high quality level achieved in the field of radiative transfer modeling, the
accuracy in retrieving key cloud microphysical variables is not always satisfactory. The
results of the most recent works seem to indicate that a significant contribution in this sense
can come from the synergic use of information from different frequencies. However, today,
retrieval products typically come from separate observations at microwave (MW) and
infrared (IR) frequencies, which are combined only later, as illustrated in Figure 1. In this
way, the synergy potential between these observations is not fully exploited. Conversely,
algorithms should simultaneously/hierarchically combine all complementary information
derived from different spectral ranges, thus achieving more accurate retrievals than inde-
pendent retrievals combined a posteriori. In fact, MW is complementary to IR observations,
especially in cloudy situations. This is due to relatively low cloud opacity and, therefore, a
high degree of penetration through thick clouds at MW frequencies and higher sensitivity
but less ability to penetrate clouds at IR and visible (VIS) frequencies. This makes MW, IR,
and VIS observations ideal candidates for implementing a truly synergic approach. This
complementarity has already led to fruitful synergies in various fields of meteorological
science, as shown, for example, in [2], where the synergy of IR and VIS is exploited to esti-
mate rainfall classes at a high spatial and temporal resolution, or in [3], where a combined
MW-IR algorithm for convective precipitation estimation is described.
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To gain insight into the benefits of a synergic approach and the challenges to be
addressed, a deeper look at the current state of the art seems needed in order to also
understand what has already been done in this direction and how studies have customized
and adapted synergistic techniques to fit the remote sensing context. Thus, this work
explores the most recent knowledge and development achieved in the field of targeted
retrieval of cloud microphysical parameters, starting from observations performed in the
VIS, IR, and MW wavelengths in either a stand-alone or complementary manner, with
the aim of finding answers to the above-mentioned challenges. This review provides
an overview of the techniques developed for retrieval with observations in each of the
bands (MW and IR) individually, with their characteristics and main results. This work
highlights the achieved improvements and discusses how some techniques have evolved,
transformed, and merged to address specific challenges without going into the specific
details of the individual strategies.

This paper is organized as follows: After a brief introduction to the key quantities
considered for cloud microphysics research, the methods used to retrieve these cloud
properties from IR-only and MW-only satellite observations are reviewed in Section 2.
Section 3 is dedicated to methods developed to integrate MW and IR observations in
order to improve the accuracy of cloud products, and Section 4 summarizes the main
cloud parameter databases and retrieval methods. Section 5 discusses the main points and
presents conclusions, highlighting the gaps and new challenges found during this review,
and it finally suggests desirable future research work in this field.

2. Clouds Properties from Infrared and Microwave Satellite Observations
As already mentioned in the previous section, clouds influence many aspects of

atmospheric physics, and their study can reveal a lot about meteorological phenomena
and climate change. Clouds are essential to understanding the global hydrological cycle,
assessing the Earth’s radiation budgets, monitoring high-impact events, and forecasting
the spatial and temporal distribution of precipitation. As for climatological aspects, clouds
play a key role in the water cycle and the global energy balance, constituting one of the
most complex protagonists of atmospheric physics and the climate machine. Clouds are,
therefore, a very complex field of investigation, and each aspect constitutes a research
field in itself with specific techniques and algorithms. For this reason, the study of clouds
covers a very wide field, and there are many aspects related to clouds that are explored
in depth, both from an operational point of view and from a more strictly scientific one,
with the implementation of ad hoc techniques that allow for measuring the properties of
interest. Among these, we mention methodologies for cloud detection and classification [4],
precipitation estimation [5,6], and techniques for NWP assimilation [7,8]. For all these
topics, we refer to the specific literature and the references therein. In this review, we
limit our investigation to methodologies and algorithms for the study of the microphysical
properties of clouds. These can be explored by exploiting some key quantities that can
be retrieved from observations made via instruments operating in the MW, VIS, and IR
spectra. Among the cloud microphysics characteristics, the main ones we refer to are the
vertical profiles of cloud liquid water content (CLWC), cloud ice water content (CIWC) and
their column-integrated values, the cloud liquid water path (CLWP), the cloud ice water
path (CIWP), and, finally, the cloud drop and ice particle effective diameter (De; in this
review, we also refer to the effective radius, De/2).

2.1. Microwave Observations Only

Due to its long wavelength, microwave radiation can penetrate entire cloud layers and
is particularly responsive to large particles; consequently, observations are more sensitive
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to water vapor, clouds, and precipitation. Furthermore, given the different effects of
liquid/ice water clouds on the measured brightness temperature (BT), the peculiarities of
microwaves allow the detection of different types of clouds at different frequencies. For
example, observations in the 23.8 and 89 GHz channels are more influenced by liquid than
cirrus clouds. On the other hand, observations in frequencies close to the 157 and 183 GHz
channels are more influenced by the presence of ice clouds. In the literature, several works
exploit the knowledge acquired from MW radiometric applications consolidated since the
late 1980s, which have seen the development of various methods to retrieve meteorological
quantities based on physical and empirical methods.

The most used methods are reviewed below; they generally exploit different channels
(23.8, 31.4, 90, and 183 GHz) to find information on cloud liquid water and atmospheric
water vapor, and the 90 and 150 GHz and higher-frequency window channels to obtain
information on ice clouds and the rain rate.

Early attempts to retrieve cloud microphysical parameters from MW radiance were
mainly concerned with the knowledge of ocean surface winds [9], total precipitable water
(TPW) [10], CIWP, CLWP and precipitation [11], and CLWP and cloud frequency [12] using
the Special Sensor Microwave/Imager (SSM/I) measurements. Subsequently, various
algorithms have been developed to meet the specifications of increasingly new sensors. This
is, for example, the case for [13], where the development of a regression scheme to retrieve
TPW and CLWP over the ocean using the channels at 23.8 and 31.4 GHz of the multichannel
MW radiometer Advanced Microwave Sounding Unit (AMSU) is described. This algorithm,
although based on the same TPW and CLWP retrieval theoretical background from the
SSM/I, differs from the latter due to the geometric and spectral particularities of the two
instruments. Several comprehensive comparisons between TPW and CLWP retrievals from
AMSU and other satellite instruments (including SSM/I and Tropical Rainfall Measurement
Mission Microwave Imager—TMI) or ground-based radiometers [14] can be found in the
literature. Many works also demonstrate good agreement between AMSU TPW and
radiosonde measurements, showing root mean square differences (RMSDs) of less than
3 kg/m2 and biases of less than 1 kg/m2 in the range between 5 and 60 kg/m2. AMSU
radiances have also been used for CLWP retrieval, for which it has been shown that AMSU
time series and ground-based sensors follow each other in the range of 0–0.5 kg/m2. As
shown by [14], a comparison with other satellite measurements also yields good results
despite a bias between AMSU and TMI for CLWP greater than 0.5 kg/m2.

The measurements at the frequencies of 89 and 150 GHz of the microwave sounder
AMSU were also used by [15] to formulate an algorithm for the retrieval of CIWP and De

to exploit the ice particle scattering parameters. In the same work, a careful analysis of the
main sources of error that can influence the retrieval process and a screening procedure to
distinguish the scattering signatures between atmospheric clouds and surface materials
were performed. It was shown that the recovered De is mainly influenced by two error
terms, related to the particle bulk volume density (which, in this work, is assumed to be
constant and equal to 600 kg/m3) and the cloud base (BT) estimate at 89 and 150 GHz.
Overall, these two terms impact the De value by 10% (considering a 3% error in the BT
temperature) and between 5% and 20% (considering a 30% uncertainty in the bulk volume
density of the particles). A similar analysis was conducted for the retrieved values of CIWP,
noting that they are affected not only by uncertainties in the estimation of the BT and
particle volume density but also by the retrieved De itself. The authors estimated that a
30% error in the bulk volume alone would result in a 25% error in the retrieved CIWP.
Unfortunately, due to the lack of sensitivity at 89 GHz, this procedure seems to fail to
detect thin cirrus clouds surrounding precipitating areas. In these cases, using even higher
frequencies or measurements in the IR/VIS region may be effective.
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Again in reference to the AMSU radiometer, ref. [16] describes the application of the
algorithms in [13] for cloud and precipitation products and present a methodology to
examine the instrument performance after launch. In this work, the 23.8 and 31.4 GHz
AMSU channels are exploited to retrieve cloud liquid water and total precipitable water.
In this case, the results obtained via the algorithm are significantly improved by using
global analyses of surface wind and sea surface temperature from the NWP model. In a
similar way, the 89 GHz and 150 GHz channels are used to estimate the ice water path
associated with thick ice clouds. However, following this routine method, the uncertainty
in the retrieval of cloud ice water path and particle size remains high due to an unknown
particle bulk volume density.

Starting from the past experience with SSM/I and, subsequently, with the hydrological
products obtained from the operational algorithms based on the AMSU sensor series,
ref. [17] describes the operational Microwave Surface and Precipitation Products System
(MSPPS) product system, which represents an upgrade to the previous ones and provides
near real-time (only a few minutes of processing) hydrological products from AMSU. In
their paper, ref. [17] outline the retrieval algorithms’ status as of September 2004 and
present several comparisons with ground-based measurements and other satellite products.
In detail, CLWP and TPW are estimated using 50 and 23.31 GHz channels, primarily based
on the algorithms reported in [16], while the algorithm in [15] is used to simultaneously
derive CIWP and ice particle effective diameter De from 89 and 150 GHz. The formulas for
computing the TPW and CLWP use coefficients valid only for the sea surface, unlike the
calculation of CIWP, which is valid on both land and ocean with the background surface
free of ice/snow, as it is inferred from AMSU lower-frequency channels. Comparisons
between the AMSU-derived TPW and both the radiosonde-derived TPW for nine stations
and the radiometer-derived TPW for ARM sites representative of open ocean conditions
on Manus Island and Nauru are shown. A similar approach is applied to AMSU-derived
CLWP with respect to the ARM-derived CLWP. It is worth noting that, due to the poor
spatial homogeneity of the CLWP compared to the TPW, the former requires special
treatment to better use it for the validation of AMSU data, as described by [13]. As a
result, a correlation of about 0.6, an RMSD of about 0.05 kg/m2, and a small bias of less
than 0.01 kg/m2 was found for approximately 190 and 160 CLWP match-up points in
the case of NOAA-15 and NOAA-16, respectively. To reduce the non-uniformity of the
data distribution in the available range, a further analysis was conducted by binning
CLWP retrievals into 0.01 kg/m2 bins using the ground-based ARM data. The binned
analysis leads to the following main conclusions: (i) there is very little bias in the AMSU-
derived CLWP for values > 0.3 kg/m2, validating the reliability of CLWP retrieval from
31.4 GHz observations under non-precipitation conditions; and (ii) there is some angular
dependency on the retrievals, most likely attributed to the larger FOV (for this and other
abbreviations in the text, please see the List of Abbreviations and Acronyms at the end
of the document) of the AMSU-A sensor as the view angle increases. CLWP derived
from AMSU on NOAA-16 and CLWP generated from the Advanced Microwave Scanning
Radiometer for EOS (AMSR-E) were also compared, and good qualitative agreement but
significant divergences were found from a quantitative point of view, presumably due to
a difference in the acquisition spectral channels of the two instruments. Overall, global
mean differences of the order of 10% with spatial correlations on the order of 0.75 were
found. Following the same methodology, they also concluded that the CLWP affects the
agreement of AMSU TPW retrievals with radiosondes, with larger biases than relatively
higher CLWP values. Analogously, the TPW RMSD also increases, ranging from about 10%
for CLWP < 0.2 kg/m2 to over 15% for CLWP > 0.8 kg/m2.



Remote Sens. 2025, 17, 337 6 of 40

In the work of [18], the described estimation of the vertical distribution of liquid water
and its integrated amount on a water surface is the first step of a microwave geophys-
ical retrieval algorithm based on the application of a forward radiative transfer model
within the combined sounding suite exploiting the Atmospheric Infrared Sounder/AMSU-
A/Humidity Sounder for Brazil (AIRS/AMSU/HSB). The methodology implemented for
CLWC retrieval is based on a moisture condensation model that uses the relative humidity
retrieval for cloud formation, which makes the retrieval process more robust than usual
techniques because it is less sensitive to retrieved temperature profile errors and to the
humidity field within instrument footprint horizontal inhomogeneities. The results are
validated via comparisons with ground-based radiometric measurements with reference
to the retrieved CLWC and with relative humidity profiles from radio-sounding launches
dedicated during the Aqua satellite overpass with respect to the vertical distribution (mean
cloud pressure). The estimation of cloud liquid profiles and the integrated amount over a
water surface using the AMSU/HSB algorithm seems to offer some reliability. However,
it would be necessary to expand the comparison dataset with a wider range of cloud
heights and to incorporate infrared measurements into the process. Unfortunately, a careful
characterization of the cases in which the algorithm does not provide the expected results
is missing from this work.

An accurate and computationally not very expensive approach to atmospheric profile
retrieval is proposed by [19]. The purpose of their effort is to develop an iterative technique
based on the one-dimensional variational method (1D-Var) to simultaneously retrieve water
vapor and temperature profiles, as well as cloud water profiles. This purpose is reached by
combining both the AMSU window and sounding channels using a synergic method. The
1D-Var microwave principal module for retrieval is developed in sequential key steps; first,
it computes water vapor, temperature, and cloud liquid water profiles using only AMSU-A
data at frequencies less than 60 GHz. Then, rain and ice water are derived using AMSU-B
data at 89 and 150 GHz. Ultimately, temperature and water vapor profiles are more refined
by means of all AMSU-A/B sounding channels (50–60 and 183 GHz), while the profiles of
cloud, rain, and ice water contents are forced to those earlier derived. Validation work was
conducted on the 1D-var retrieval algorithm in terms of water contents. A comparison with
radiosonde data and collocated satellite measurements showed a relatively small bias (less
than 0.3 kg/m2) and RMSDs of 2.7, 2.3, and 2.5 kg/m2, evaluated against data on different
NOAA platforms (NOAA-15, -16, and -17, correspondingly). Comparisons were also made
over sea and land (but ignoring the data over high latitudes beyond 60◦ north and south)
between the AMSU-derived TPW and the GFS data assimilation system (GDAS). In this
case, the bias and RMSD values of the zonal means are 0.15 and 0.75 kg/m2, respectively.

Applications of the one-dimensional variational method to the problem of retrieving
the hydrological properties of the troposphere are also found in [20–22]. In these works,
the authors present a mini-satellite constellation design, implementing millimeter-wave
(MMW) scanning radiometers. The proposed mission objective is to retrieve the troposphere
thermal and hydrological properties, in particular temperature and water vapor profiles,
rain rates, and snowfall rates. The channels are selected following a ranking based on a
reduced entropy method between 90 and 230 GHz. The authors point out that the mission
was restricted to the feasibility study, so only simulated data are available. In particular,
in [20], the benefit of a 1D-Var scheme for deriving hydrometeor profiles from the proposed
set of MMW observations is quantitatively evaluated, and the results are shown for the
channel combination that achieved the best performance in the reduced entropy ranking
(10 channels from 89 to 229 GHz). Furthermore, the algorithm performance in terms of
the residual error between the measured profiles and the profiles retrieved from simulated
data using 1D-Var was examined, showing good agreement for the hydrometeor profiles
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retrieved over land and sea and for a summer/winter season at different latitudes. The
standard error statistics show a rather small contribution to the forecast, more significant
over the sea than over land, for both liquid and ice cloud content. The four selected
configurations of MMW radiometers’ overall accuracy were evaluated by [21], exploiting
two statistical inversion schemes, multiple regression and maximum likelihood. The
performances of the two schemes were similar, showing only slightly algorithm-dependent
retrieval uncertainty.

Using multiple regression with their best channel configuration (10 channels), the
authors report the following correlation coefficient (R), root mean square (RMS), and
uncertainty (σ):

• CLWP (0–1.4 kg/m2): R = 0.70; σ = 0.08 kg/m2 over land; R = 0.87; σ = 0.04 kg/m2

over the ocean.
• CIWP (0–0.25 kg/m2): R = 0.58; σ = 0.01 kg/m2 over land; R = 0.64; σ = 0.03 kg/m2

over the ocean.

The correlation increased considerably for rain-sized ice particles (i.e., graupel),
R = 0.97 over the ocean and 0.97 over land.

In these works, it is also shown that the CLWC profiles’ expected RMS uncertainty
is within 0.1 g/m3 over land and 0.04 g/m3 over the ocean; however the authors warn
that these results should be valid for the available dataset only. Overall, they report lower
performances for non-precipitating CLWC and CIWC profiles than for precipitating liquid
(rain) and ice (graupel) profiles, over both land and ocean.

A further impetus to the knowledge of cloud microphysical properties is provided
through the development of innovative processing techniques and advances in analytical
and computational capabilities. In recent years, the expanding field of artificial intelligence
has promised to provide a new opportunity for making cloud microphysical products
increasingly accurate and opening the way to a new understanding in this field.

An example of the application can be found in [23], where the retrieval of TPW and
CLWP from SSM/I and AMSR-E is addressed with a neural network (NN) algorithm. This
approach, which can be applied to high-latitude open water areas, has been shown to be a
better choice than the conventional regression techniques (validation against radiosonde
data from a polar station). The validation process shows that the resulting RMSD for
the retrieval products is 1.09 kg/m2 for SSM/I and 0.90 kg/m2 for AMSR-E, respectively.
Moreover, only for SSM/I, the TPW algorithm is compared with the global operational
algorithm described in [24], showing retrieval errors of 1.34 kg/m2 and 1.90 kg/m2 (about
40% worse) and demonstrating the advantages of the NN approach of [23].

Radiative transfer models can also be used to improve the quality of retrievals. For
example, in the case described by [25], the retrieval of CIWP and the effective ice particle
diameter, De, from SSMI/S are based on a simplified two-flux radiative transfer model
applied as a three-parameter equation model. The advantage of this procedure is that, due
to the conical scan geometry of Special Sensor Microwave Imager/Sounder (SSMI/S), the
retrieved CIWP is less dependent on the scan position. Furthermore, several important
sources of errors that may affect the quality of retrievals are identified and analyzed. In
particular, the authors identify the error in the cloud base temperature estimate and the
effective particle diameter as the main sources of uncertainty in the CIWP retrieval, as their
overestimation could lead to the underestimation of the CIWP for the smallest particles.

In [26], the Microwave Integrated Retrieval System (MIRS) algorithm, a 1D-Var scheme
developed at NOAA since 2007, is applied to data from the Advanced Technology Mi-
crowave Sounder (ATMS) onboard the Suomi National Polar-Orbiting Partnership (SNPP)
satellite. The approach followed is a simultaneous inversion obtained by coupling the
land–ocean–atmosphere–cryosphere process to ensure that all radiances are fitted simul-
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taneously and that geophysical reliability is also satisfied. The performance of the MIRS
was evaluated using both in situ measurements (radar, radiosondes, gauges, and surface
sensors) and analyses from the European Centre for Medium-Range Weather Forecasts
(ECMWF) and heritage algorithms (e.g., MSPPS). In fact, MIRS is expected to replace
MSPPS as the NOAA operational product through a gradual, multi-phase transition. The
results in [26] show a correlation of 0.99 and an RMSD of 3.1 kg/m2 for a one-day val-
idation of TPW against ECMWF. This daily validation is carried out operationally at
“https://www.star.nesdis.noaa.gov/mirs/geonwp.php (accessed on 18 January 2025)”.
However, the authors are aware of the difficulty of directly evaluating the hydrometeor
parameters due to the nonexistence of consistent ground truth, and therefore, given the
algorithm implemented in MIRS, they assume that the validation of the rain rate is a proxy
for the validation of all MIRS-based hydrometeors. Following this approach, the expected
values for bias and rms uncertainty are 1.5 and 2.5 kg/m2 over land and 1.7 and 2.2 kg/m2

over the ocean in the case of TPW, and 0.03 and 0.10 kg/m2 over the ocean in the case
of CLWP.

Ref. [27] proposes two algorithms to estimate TPW and CLWP over oceans by assimi-
lating microwave observations from sensors on board the FY-3D satellite. Both algorithms
combine two oxygen channels (52.80 and 118.75 ± 2.5 GHz) to address the lack of low-
frequency window channels’ (23.8 and 31.4 GHz) FY-3 sensor. A performance analysis
of the two algorithms was conducted using four groups of experiments and comparing
the results from FY-3C double oxygen absorption bandwidth with the retrievals using the
classical method of [13] applied to MetOp-B AMSU observations at 23.8 and 31.4 GHz.
The CLWP retrievals from the double oxygen band show correlation coefficients, bias, and
rms in agreement with those obtained through the traditional AMSU scheme. On the
contrary, the performance of TPW retrievals is significantly worse than the retrievals with
the traditional AMSU scheme.

Still with reference to FY-3C and strategies to overcome the lack of observations in the
two low-frequency channels, ref. [28] describe a technique based on machine learning to
generate BT at the two missing low-frequency channels from higher-frequency observations
with mean absolute errors between 3 and 4 K. The statistical inversion method used to
retrieve TPW and CLW over oceans also compares well in magnitude and distribution with
Suomi NPP ATMS estimates.

The article by [29] presents an assessment of the performance of MIRS CLWP retrievals.
The CLWP product is validated against both ground radiometric measurements (ARM
site in Azores, Portugal) and a satellite reference dataset (NASA GPROF). In this work,
the collocation method for the ground-based comparisons considers observations within
30 min from the satellite overpass and an FOV within a 3 km radius centered on the site.
The dataset includes data collected over 3 years (for a total of 1535 match-ups), and the
results show an overall all-season correlation coefficient, bias, and standard deviation of
0.59, −0.065 kg/m2, and 0.2 kg/m2, respectively. In detail, the seasonal analysis shows
good correlation coefficients (greater than 0.5 for all seasons), with a maximum value for
autumn (0.66) and a minimum for summer (0.51). Similarly, as regards the bias, the values
are between −0.052 kg/m2 (found in autumn) and −0.076 kg/m2 (found in summer).
Finally, the comparison with GPROF shows a correlation coefficient, bias, and standard
deviation equal to 0.71, 0.005 kg/m2, and 0.07 kg/m2, respectively.

Ref. [30] uses a neural network approach to retrieve the snow ice water path, liquid-
water path, and integrated water vapor from millimeter and submillimeter brightness
temperatures from airborne radiometers (ISMAR and MARSS). The database for training
neural networks was built with ICON-NWP atmospheric profiles and Atmospheric Ra-
diative Transfer Simulator (ARTS) simulations. Comparing the retrieved integrated water

https://www.star.nesdis.noaa.gov/mirs/geonwp.php
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vapor (IWV) values with those measured via the 12 dropsondes reveals a mean difference
between them of 0.5 kg/m2 and an RMSD of 0.8 kg/m2.

Recently, the progress of technology, combined with the advancement of MW ra-
diometry, has allowed the use of cm-sized mini-satellites (cubesat) for Earth observation.
Time-Resolved Observations of Precipitation Structure and Storm Intensity with a Con-
stellation of Smallsats (TROPICS) and the Temporal Experiment for Storms and Tropical
Systems Technology-Demonstration (TEMPEST-D) are two NASA-funded missions that
exploit MW radiometers on board the cubesat modules. The aim of TROPICS [31] is to
provide profiles of water vapor and temperature, as well as the liquid/ice rain rate, utilizing
seven channels near the oxygen absorption line at 118.75 GHz, three channels near the
line of the water vapor absorption at 183 GHz, and single channels near 90 and 205 GHz.
TEMPEST-D [32] aims to provide measurements of water vapor profiles, CLWP, and CIWP
with an accuracy of 0.1 kg/m2, exploiting frequencies between 89 and 183 GHz. Note
that some of these channels (e.g., the 118 GHz band and the 205 GHz channel) have never
been tested in space and could serve as proxies for channels foreseen for the MicroWave
Imager (MWI), 118.75 GHz, and MicroWave Sounder (MWS), 229 GHz. The TEMPEST-D
measurements appear to be of similar quality to the MHS measurements, as highlighted
in [33], both for the consistency between the TEMPEST-D and the Microwave Humidity
Sounder (MHS) brightness temperatures and for that of the atmospheric parameters re-
trieved from TEMPEST-D via the Colorado State University (CSU) 1D-VAR algorithm with
those retrieved from MHS. This applies to both MIRS retrievals and CSU 1D-VAR retrievals.

Table 1 summarizes the main information for each study reviewed in Section 2.1, the
sensors and channels used, and the products investigated.

Table 1. Microwave observations-only recap table.

Authors Year

Satellite

Main Features
Uncertainty or Accuracy of

the Method (When
Declared/Applicable)Sensor

Channel
Frequency

[GHz]

Goodberlet et al.
[9] 1989 SSM/I -

Retrieval
includes ocean
surface wind

ACC = ± 2 m/s

Alishouse et al.
[10] 1990 SSM/I - CLWC RMSD% = 30%

Bauer and
Schluessel [11] 1993 SSM/I - CLWP, CIWP,

TPW, RR RMSDWV < 0.78 g/cm2

Han and
Westwater [14] 1995 SSM/I,

AMSU, TMI - Several retrieval
comparisons -

Weng et al. [12] 1997 SSM/I - CLWP, cloud
frequency -

Wentz and
Spencer [24] 1998 SSM/I - TPW RMSDWV = 5 mm

Grody et al. [13] 2001 AMSU 23.8, 31.4 TPW, CLWP over
ocean RMSDTPW < 3 mm

Zhao and Weng
[15] 2002 AMSU 89, 150 CIWP, De, CB 5% < RMSEDe,% < 20%
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Table 1. Cont.

Authors Year

Satellite

Main Features
Uncertainty or Accuracy of

the Method (When
Declared/Applicable)Sensor

Channel
Frequency

[GHz]

Weng et al. [16] 2003 AMSU 23.8, 31.4

Evolution of [13]
G by using SST
and SW from
NWP models

-

Ferraro et al. [17] 2005 AMSU - MSPPS -
Liu and Weng

[19] 2005 AMSU-A/B 50–60, 89, 150,
183

1D-Var retrieval
algorithm RMSETPW = 2.5 mm

Rosenkranz [18] 2006 AIRS,
AMSU, HSB - CLWC profiles -

Marzano et al.
[20]

Marzano et al.
[22]

Marzano and
Cimini [21]

2009
2010
2010

MMW
scanning

radiometers
89–229 CLWC, CIWC

profiles -

Bobylev et al.
[23] 2010 SSM/I,

AMSR-E - TPW, CLWP RSMEVW = 1.34 kg/m2

Sun and Weng
[25] 2012 SSMI/S - CIWP, De -

Boukabara et al.
[26] 2013 ATMS -

NOAA MIRS
algorithm
outputs

13%< SD% < 24%

Dong et al. [27] 2017 FY-3D 52.8, 118.75 ± 2.5 TPW, CLWP RMSETPW = 3.19 kg/m2

Liu et al. [29] 2018 ATMS - CLWP SDCLWP = 0.2 mm

Brath et al. [30] 2018 ISMAR,
MARSS - SIWP, LWP, IWV MFEIWV,low = 2 kg/m2

Blackwell et al.
[31] 2018 TROPICS 90, 118.75, 183,

205
WV profiles, LP,

IP -

Reising et al. [32] 2018 TEMPEST-
D 89–183 WV profiles,

CLWP, CIWP -

Han et al. [28] 2021 FY-3D 52.8, 118.75 ± 2.5 TPW, CLWP -

2.2. Infrared Observations Only

Passive IR observations are mainly sensitive to atmospheric humidity, temperature,
liquid/ice clouds, and trace gases. Approaches to deriving cloud properties from infrared
observations were among the first methods developed in the satellite meteorology initial
years [34–36], while aspects of cloud microphysics, such as cloud optical thickness and
particle size [37–39], were developed later.

Inferring very good values for cloud optical thickness and the effective radius is the
aim of the statistical technique developed by [40], a new discrete ordinates radiative transfer
method, and asymptotic terms for thick layers reflection function were developed. A non-
absorbing visible wavelength (0.75 µm) and two absorbing wavelengths (2.16 and 3.7 µm)
are used for the effective radius and optical thickness of stratiform cloud retrievals. To
reduce ambiguity in deriving the effective radius for optically thin clouds, the two absorbing
near-infrared wavelengths are used. However, for optically thin clouds, the retrievals
become uncertain. Following [41], the optical thickness and the effective radius uncertainty
(5%) are analyzed as a function of errors in the measured reflection function, as well as in
the phase function surface albedo. Finally, their method’s performance using Advanced
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Very-High-Resolution Radiometer (AVHRR) observations over the ocean (channels at 0.64,
3.75, and 11.0 µm) was studied by [42], finding good agreement between satellite and in situ
products. The cloud retrieval schemes described in [40,42] have also been widely adopted
in the simultaneous estimation of cloud optical thickness and effective cloud particle radius
and in the generation of operational JAXA and NASA satellite products [43,44].

Another method based on a radiative transfer model to retrieve the radii of cloud
particles in liquid-water clouds using AVHRR data is described in [45]. This method shows
significant seasonal and diurnal variations in the effective radii of droplets, particularly at
lower latitudes.

An approach based on AVHRR observations at 0.63 and 1.6 µm for CLWP retrievals
is reported by [46]. A cloud analysis through the phase classification of cloud particles
and estimation of optical thickness and effective radius is described. The validation of the
retrieved CLWP is carried out against ground-based observations retrieved from microwave
radiometers during the campaigns of the Cloud Liquid Water Network project (CLIWA-
NET). It is important to remember that many aspects of atmospheric conditions (such as,
for example, the wind speed at cloud height and the structure of the cloud field) influence
the relationship between satellite observations and ground-based measurements, causing a
spatial and temporal discrepancy between the two observing strategies. On average, CLWP
derived from satellite and ground observations correlates with a 0.88 correlation coefficient
with the slope of the linear regression close to 1 and the intercept smaller than 10 gm2.
No systematic bias was found even though the CLWP from a satellite is generally higher
than that measured through a ground-based approach. The authors conclude that this is
an effect of the satellite effective radius, used to link optical thickness to CLWP, which is
representative of larger particles at the cloud-top. This may cause a CLWP overestimation
because of the particle-size overestimation [47].

Refs. [48,49] propose to partially solve this problem by making the parameterization
of the vertical droplet size distribution in radiative transfer calculations more realistic.
Ref. [50] shows that airborne multispectral Moderate Resolution Imaging Spectroradiometer
(MODIS) Airborne Simulator (MAS) data over the Arctic with the 1.62 µm and 2.13 µm
algorithm make the determination of the effective radius and the optical thickness of water
clouds more reliable over snow and sea ice surfaces. The explanation for this behavior lies
in the very low surface reflectance of snow and sea ice at these wavelengths. For these
reasons, the reflectance contrast of the liquid-water clouds compared to the underlying
dark surface is relatively strong. However, this algorithm is less reliable due to the ice
particles’ strong absorption in both bands for ice clouds.

Based on the work of [42], ref. [51] used cloud-reflected solar radiances for both visible
and near-infrared wavelengths to develop a retrieval algorithm capable of analyzing cloud
microphysical parameters on a global scale, with good agreement between the results and
in situ measurements.

The work of [52] falls under the framework of the European Organisation for the
Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on
Climate Monitoring (CM SAF) and reports a comparison between the Meteosat Second
Generation-Spinning Enhanced Visible and Infrared Imager (MSG-SEVIRI) and AVHRR
cloud optical thickness and cloud liquid path retrievals derived from the Cloud Physical
Properties (CPP) scheme. The retrieval of the physical properties of clouds is based on the
principle that the clouds’ reflectance at a non-absorbing wavelength in the visible region
(0.6 or 0.8 µm) is strongly related to the optical thickness, while it does not depend on
the particle size. In contrast, the clouds’ reflectance at an absorbing wavelength (1.6 or
3.8 µm) is mainly related to the particle size. Consequently, using operational calibrations,
SEVIRI and AVHRR cloud properties differ significantly; this recalibration improved the
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differences between the cloud properties retrieved via SEVIRI and AVHRR, bringing the
values below 5%.

Ref. [53] addresses the problem of retrieval of cloud properties (effective radius,
optical thickness, and cloud temperature) from MODIS infrared imagery using an NN
approach. The multilayer perceptron (MLP) architecture was trained with supervised
backpropagation with a momentum algorithm. To evaluate the robustness of the method,
several sources of uncertainties were analyzed, such as the measured radiance, cloud
temperature specifications, and lower boundary conditions. The total error lies between
0.25 and 0.45 µm for the effective radius and between 0.05 and 0.88 for the COT when
simultaneous uncertainties are considered. According to the authors, these uncertainties
dominate the uncertainty budget over the errors introduced via the NN inversion, estimated
within 1%.

Ref. [54] presents the Integrated Cloud Analysis System (ICAS) algorithm for retrieving
the macroscopic, physical, and optical properties of clouds. ICAS was developed based on
the optimal estimation approach, and it exploits MODIS observations in Thermal InfraRed
(TIR) bands. Four TIR bands centered at 8.6, 10.4, 11.2, and 12.4 µm are identified in the
atmospheric window to retrieve parameters such as cloud-top height (CTH), COT, and
the effective radius, De/2, which are sensitive to the properties of clouds. Performance is
tested using retrieval simulations, showing that ice cloud properties are inferred with high
accuracy for COT between 0.1 and 10. Cloud-top pressure is retrieved with an uncertainty
of less than 10% when COT is greater than 0.3. ICAS is also applied to the multiband
observations of the Himawari-8 instrument [55]. A sensitivity study is performed to
demonstrate that the addition of the single CO2 band of Himawari-8 is effective for CTH
estimation. For validation purposes, a systematic comparison is conducted between the
retrieved cloud properties and collocated active remote sensing counterparts with small
time delays. Reasonable agreement is found for single-layer clouds, while multilayer cloud
systems with optically thin upper clouds overlapping lower clouds are the main source of
error. The variance in measurement model differences within an area of (10 km)2 is used
to estimate measurement noise. Comparisons are performed between ICAS-derived data
and the raDAR/liDAR (DARDAR) cloud product to validate the retrievals. The DARDAR
project provides cloud mask vertical profiles and ice cloud properties, including the ice
water content, De, and extinction coefficient obtained from combined MODIS observations,
CloudSat radar, and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
(CALIPSO) lidar, as well as TIR measurements, with a vertical resolution of 60 m and a
horizontal spatial resolution of 1.1 km.

Data from high-spectral-resolution infrared sounders can provide consistent micro-
physical cloud properties, and the benefits of their use have been recognized since the
1970s [56]. Subsequently, applications to cloud properties were explored for data from both
aircraft (e.g., [57,58]) and satellites (e.g., [59,60]).

A technique for inferring the microphysical and radiative properties of water and
cirrus clouds is presented in [57]. This technique, validated using theoretical calculations,
is applied to ground-based and NASA aircraft-based Hyperspectral Imaging Sensor (HIS)
instrument observations, along with cloud lidar backscatter and in situ atmospheric tem-
perature and humidity observations. This study describes the cloud optical properties’
spectral variability within the window region.

A method for deducing semitransparent ice Clouds Optical Thickness (COT < 5) using
AIRS measurements is presented in [60]. In this work, the sensitivity of AIRS spectral
BT and Brightness Temperature Differences (BTD) values between wavenumber pairs for
COT is studied. The spectral BTs within the 1070–1135 cm−1 region (atmospheric window
channels) are sensitive to the ice COT and similarly for the BTD between 900.562 cm−1 (at-
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mospheric window) and 1558.692 cm−1 (strong water vapor absorption band). Analogously,
the BTD is sensitive to ice COT between the channels 1587.495 cm−1 and 1558.692 cm−1,
respectively, a moderate and a strong water absorption channel. The method performance
is evaluated by comparing the ice COT obtained from the AIRS observations with those
estimated from MODIS (1.38 and 0.645 µm bands), suitably collocated and degraded to
the AIRS spatial resolution. There is substantial agreement regarding the COT for thin to
moderately thick cirrus clouds (COT < 5). Instead, as COT increases, the COT retrieved via
AIRS tends to be lower than MODIS. This may be due to the saturation of the BTD signal
for large COT values.

The methodology described in [60] and based on two or more channels in the IR
window is sometimes known as the “split-window method”. In the literature, there are
many applications of this approach, which, although applicable to all clouds, is more
powerful in the case of high semitransparent ice clouds [61]. Some applications can be
found, for example, in [62] (for the retrieval of microphysical properties of semitransparent
cirrus clouds using 11 µm and 12 µm AVHRR data) and in [61] (to explore its usefulness for
the generation of a multidecadal climatology based on AVHRR data of cloud temperature,
emissivity, and a microphysical parameter). Split-window (11−12 µm) brightness tem-
perature differences are used by [63] to identify the cloud type, while the high sensitivity
to the predominance of small ice crystals of the BT difference between two bands in the
atmospheric IR window is exploited by [64] to develop a technique for the unambiguous
identification of thin cirrus clouds with effective radii smaller than 20 µm. Split-window
MODIS channels are also applied by [65] for the retrieval of the liquid-water fraction from
cold clouds in the case where the liquid fraction is less than 50% of the total condensate.

The theoretical basis for estimating the ice cloud microphysical properties fusing
high-spectral-resolution infrared observations was reviewed by [66]. From the simulations
developed in their work, it is possible to see how the slope of the IR BT spectrum between
790 and 960 cm−1 is sensitive to the effective particle size; furthermore, the infrared
brightness temperature appears to be highly sensitive to optical cloud thickness in the
1050–1250 cm−1 region. From these spectral features’ examination, the authors illustrate
a method to simultaneously retrieve the visible optical thickness and effective ice cloud
particle size from high spectral resolution infrared data. From the uncertainty analysis, it is
concluded that the retrieved COT and effective particle size uncertainties have a small range
of variation. Regarding the uncertainty of the particle size, a value lower than 15% is found
in the case of a cloud temperature uncertainty of 5 K or a surface temperature uncertainty
of 2.5 K. However, concerning the optical thickness, the corresponding uncertainty value is
between 5% and 20%, depending on the COT value.

Ref. [67] studies the advantages of a combined approach using the MODIS and AIRS
products to obtain the microphysical properties of clouds during both day and night.
MODIS can provide mask products (cloud mask, cloud phase detection, and cloud classifi-
cation) and cloud microphysical products, while AIRS radiance measurements are useful for
retrieving the COT and particle size of clouds. In detail, the cloudy condition (clear/cloudy,
ice/water, and single/multilayer) of the AIRS subpixel is characterized by the MODIS
cloud mask with a spatial resolution of 1 km during both day and night. Subsequently,
with the operational MODIS COT and cloud particle size as the background information,
1D-VAR can be used to retrieve the microphysical properties of clouds during the day,
while minimum residual (MR) is used both during the day and during the night. In both
approaches (1D-VAR and MR), the Cloud-Top Pressure (CTP) is derived from the radiances
acquired via AIRS at CO2 channels, while the cloud phase is inferred from the collocated
MODIS 1-km phase mask. The authors compared 1D-VAR results with the operational
MODIS products and MR cloud microphysical property retrievals for a case study and
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reported that 1D-VAR retrievals have a great correlation with both the operative MODIS
cloud products and MR cloud retrievals.

Ref. [68] presents a physical inversion scheme for clear/cloudy radiance observed
with ultra-spectral infrared sounders to simultaneously retrieve atmospheric thermody-
namic, surface parameters and cloud microphysical parameters. To improve an iterative
background state defined by an eigenvector regression retrieval, a 1D-VAR approach is
used. Cloud-top height can be estimated with quite high accuracy (the error is less than
1 km), for both optically thick and thin clouds. Finally, it is highlighted that using a more
realistic ice-cloud habit could improve the retrieval performances.

The paper by [69] aims to use all available Infrared Atmospheric Sounding Interferom-
eter (IASI) channels for the simultaneous retrieval of atmospheric temperature, humidity,
and cloud properties by applying an Empirical Orthogonal Function (EOF) transformation
to convert IASI channel radiance spectra into super-channels. Since it is shown that ap-
proximately 100 super-channels are sufficient to capture the information content of all the
spectra, the calculation of both super-channel magnitudes and derivatives with respect to
the atmospheric profiles and other properties can be performed via a Principal Component-
based Radiative Transfer Model (PCRTM). This super-channel retrieval algorithm is applied
to the IASI spectra acquired during the Joint Airborne IASI Validation Experiment (JAIVEx)
field campaign.

Ref. [70] also refers to the IASI spectrometer, describing the operational IASI L2 process-
ing chain (version 5) structure and counting the single retrieval modules, their algorithms,
and a summary of different performance evaluation validation studies. A wide range
of satellite products (including the Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP), the Advanced Along-Track Scanning Radiometer (AATSR), MODIS, AVHRR,
and SEVIRI), numerical weather prediction, chemistry models, and in situ measurements
(including radiosondes and buoys) are used to validate the retrieved geophysical parame-
ters. The cloud detection, cloud cover, height, and phase included in L2 products are also
evaluated. In detail, to assess cloud detection, an NN test is also added to the tests based
on NWP and AVHRR, which increases the overall cloud detection capacity by roughly
25% compared to the NWP test alone, allowing the achievement of an overall success
rate of over 90%. The different spectral emissivity that characterizes water and ice clouds
in the spectral region between 8 and 12 µm allows the retrieval of the cloud phase. Ice
clouds are identified through an additional test, applicable only in version 5, which takes
advantage of the fact that super-cooled water cannot exist at temperatures below −40 ◦C.
The validation of the cloud phase detection process was performed using a co-located and
globally distributed IASI and AVHRR dataset. The results confirm a good performance of
the tuned algorithm which, in its final version, correctly detects 84.5% of the cloud phases,
97.3% of the ice samples, and 84.6% of the liquid samples. Worse performance is obtained
for the detection of mixed-phase clouds; only 5.5% of this type is correctly identified, as
most of these are detected as ice clouds. CTP is retrieved with a bias between 30 hPa bias
and 50 hPa std compared to ground-based radars. The correlation coefficients with satellite
lidar observations from CALIOP are 0.9. Furthermore, for the IASI CTP, the validation
shows a bias of 15 hPa between 1000 and 550 hPa and std ≈ 90 hPa. Above 550 hPa, the
dispersion is less (std ≈ 60 hPa), although the bias is greater.

In preparation for the direct assimilation of CLWC and CIWC profiles into 3D-Var,
ref. [71] reports the evaluation of the feasibility of adding such profiles into the control vector
of a 1D-Var assimilation system. This approach avoids the usual use of cloud parameters
(effective cloud fraction and CTP), typically inferred from a CO2 slicing algorithm, and
cloud modeling using single-layer clouds [36]. CLWC, CIWC, and cloud fraction profiles
are included via the RTTOVCLD interface of Radiative Transfer for TOVS (RTTOV) 10.1
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(see [72], Section 2.6.1). RTTOVCLD allows multilayer mixed-phase clouds (two types
of clouds per layer). Results from the simulation experiments (OSSE) demonstrate that
1D-Var works reasonably, adding an ice or liquid-water cloud in the correct region of the
atmosphere. Furthermore, this study, which is limited to homogeneous cloud scenes with
small background offsets, demonstrates that CIWC information is obtained for high opaque
clouds, whereas little information is extracted for CLWC.

Using the identical 1D-Var framework, ref. [73] exploited a reduced number of IASI
channels for data assimilation in cloudy sky. Following the approach in [74], informa-
tion loss can be minimized through channel selection. This paper demonstrated that the
channel selections are practically independent of the air-mass type and can improve the
cloud variables’ retrieval by 8% rms compared to the operational dataset exploited at
NWP centers.

In a follow-up study, ref. [75] observed a meaningful reduction in the forecast error,
particularly for CIWC, but also for CLWC. On average, a CIWC error reduction of 15–20%
is achieved for semitransparent clouds versus 9% for opaque clouds, compared to 10% for
the CLWC of semitransparent clouds and 3% for opaque clouds. This is not surprising,
as the CLWC is known to be not well analyzed through 1D-Var, probably due to the
relatively small sensitivity of the IR data to liquid cloud. In any case, the persistence of
cloud information produced via a 1D-Var assimilation of cloudy IASI radiances into a
convective scale NWP is established. The authors suggest that CLWC analysis could be
better constrained using MW radiances.

Unlike the previous approaches, ref. [76] retrieve geophysical properties from the
single FOV spectral radiances acquired via IASI under any conditions, using a PCRTM-
based physical inversion approach. In their study, they show the excellent performance of
the PCRTM retrieval method in detecting thin clouds with a COT as low as 0.04, revealing
the extreme sensitivity of the developed algorithm to ultra-thin clouds. However, worse
results are found for COT > 4.

A different approach is used in the work of [77], where cloud property retrieval
through the use of the Clouds from Infrared Sounders, developed at LMD (CIRS-LMD), is
described. In this case, the channels around the 15 µm CO2 absorption band are considered.
These channels can provide the highest cloud layer in the case of multilayer clouds, as
well as the pressure and emissivity of the clouds in the case of a single cloud layer. This
scheme has been applied to AIRS and validated with CALIOP’s high-resolution cloud
vertical profiles, showing satisfactory results regarding the retrieved cloud height, which
corresponds well to the maximum backscatter measured via CALIOP for both high- and
low-level clouds.

A study of MODIS CLWP uncertainties at high latitudes for mixed-phase clouds is
presented by [78] with many instruments (i.e., AMSR-E, CloudSat, and CALIPSO). The
results of multisensor CLWP retrievals show a CIWP-related CLWP bias, reaching almost
15% with CIWP of 150 g/m2 and 40% or higher when CIWP is greater than 400 g/m2, in
the case of mixed-phase clouds like liquid clouds. Furthermore, the unresolved angle-
dependent bias of the solar zenith in MODIS CLWP, mainly caused by the variation
in the cloud-top height due to three-dimensional radiative interactions with cloud-top
inhomogeneity, is studied. It is possible to reduce the bias by 25 g/m2 with a solar zenith
angle of 80◦ and improve the agreement with AMSR-E CLWP trends by excluding only
0.5% of the data points that show significant errors.

It is possible to retrieve optical cloud properties and cloud height properties at the
pixel level using the MODIS Level-2 cloud product (MOD06/MYD06 for Terra and Aqua
MODIS, respectively); see [79]. Further information can be obtained with several product
updates introduced in Collection 6. However, since the computations are considered to
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yield baseline uncertainty due to sources of errors to the linear assumption inherent in
the calculations, uncertainties on the order of 50% are expected to be of little value for
science works. However, in single-layer cloud situations, ref. [80] find that the MODIS
cloud algorithm produces cloud-top pressures within 50 hPa of lidar determinations.

In the case of optically thick clouds, ref. [81] demonstrated that ice cloud retrieval
uncertainties in diurnal variation can be reduced by considering infrared measurements,
temperature dependence, and ice particle habits.

The properties of ice-over-water were characterized by using the algorithm developed
by [82]. The algorithm, which uses only the solar channels available on the MODIS and the
Visible Infrared Imaging Radiometer Suite (VIIRS) sensors, is available for the case of an
ice-over-water cloud with ice COT smaller than 7 and for an optically thicker liquid-water
cloud (water COT > 5).

The methodologies for retrieving the effective diameter size and cloud optical thickness
analyzed so far do not yield positive results for convective clouds with 3D morphology.
Ref. [83] dedicate a study to this problem using MODIS, which includes channels in the
shortwave IR with a single viewing angle, and the Multi-angle Imaging SpectroRadiometer
(MISR), which provides multi-angle imagery in the visible and near-IR, MODIS. The
combined use of both in the future should enable 3D retrievals of the effective size of cloud
particles and extinction fields.

A similar study was conducted by [84], regarding the retrieval of cloud-top pressure
and cloud-top height in the predominant multilayer regime of thin cirrus clouds above
low clouds. They attempted to remedy the significant overestimation of the CTP and of
cirrus emissivity via MODIS using the accuracy of low clouds’ CTH retrieval through MISR.
With this methodology, validated against Cloud-Aerosol Transport System (CATS) lidar
observations, the average upper cloud CTP bias and emissivity are reduced by 90% and
75%, respectively, compared to standard MODIS products.

The MISR-MODIS synergy was also exploited by [85]. Using a full year of data (2013)
and a variable ice particle roughness model, the authors investigated the retrieved ice cloud
optical thickness, De, and CIWP over oceans under different conditions. In evaluating the
annual cycles, this methodology provides a better understanding of the operational MODIS
Collection 6 retrieved products.

Based on the Aqua MODIS and VIIRS SNPP products, the CLouD PROPerties (CLD-
PROP) product algorithms follow a “continuity of approach” paradigm for recording cloud
properties. Given the strong scientific implications, ref. [79] illustrates details and impacts.

The problem with the lack of VIIRS IR absorption channels is discussed in the pa-
per [86], in which a method to construct a water vapor and CO2 IR channel for VIIRS
with a spatial resolution of 750 m is suggested. Using the CALIPSO/CALIOP V4-20 cloud
layer products and MODIS Collection 6.1 cloud-top products as a comparison, ref. [43]
evaluates the cloud mask, cloud thermodynamic phase, and cloud-top height based on
these constructed channels. The results indicate that each of the above cloud properties
shows an improvement with the use of the constructed channel radiances. In particular, the
value of the retrieved cloud-top height is comparable to the true cloud-top height measured
using CALIPSO/CALIOP. Furthermore, it has been shown that the greatest improvement
for the cloud mask occurs in the polar regions.

The potential for retrieving the cloud layer altitude, ice thickness, and frozen water
path using the IASI and its successor IASI-NG is studied by [87]. For this purpose, cloud
radiances were simulated with RTTOV and ECMWF profiles, and the amount and spectral
distribution of ice cloud properties were determined using an analysis based on Shannon
formalism. The results show a convergence rate of up to 95% for the requested products
and expected errors that decrease with cloud opacity until signal saturation is reached.
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The cloud retrieval algorithms analyzed so far generally provide reasonable estimates
of cloud microphysical parameters under most conditions; however sun-glint areas remain
a challenging problem. In the case where sunlight reflects off the water surface at the
same angle as a satellite sensor views it, the sun glint can introduce a high degree of
uncertainty in the retrieval of COT and CER [88]. Various approaches have been developed
to model the sun glint radiance reflected by the sea surface, such as, for example, the
Cox–Munk approach [89], which is based on statistical data [90]. The method described
in [91] is also based on this approach, which yields good results in calculating the direct
sun-glint radiance used in ocean color atmospheric correction. The problem of eliminating
contamination from sun glint was also addressed by [92] through the development of an
algorithm that uses the simultaneous determination of aerosols and wind speed.

A new frontier of innovation in the field of remote sensing has been provided by
deep learning techniques, improvements in computational resources, and the growing
quantity of satellite observations. Using convolutional neural networks, it is possible
to consider statistical relationships between input variables and targets, capture spatial
variations in input features, and reduce the computational load as well. Ref. [93] describes
the retrieval of cloud-top height from MODIS with a neural network approach. The
training database consists of cloud-top layer pressure data from the CALIOP dataset
and brightness temperatures at 11 and 12 µm. The results show a mean absolute error
(MAE) at least 32% (or 623 m) lower than the two operational cloud-top height reference
algorithms (the MODIS Collection 6 Level 2 height product and the cloud-top temperature
and height algorithm in the 2014 version of the NWC SAF—the EUMETSAT Satellite
Application Facility on Support to Nowcasting and Very Short Range Forecasting—PPS
(Polar Platform System). The validation, carried out against both CALIOP and Cloud
Profiling Radar (CPR, CloudSat), showed at least 32% (or 623 m) and 25% (or 430 m) MAE
reductions, respectively.

SEVIRI measurements are the reference for the work on cirrus cloud detection and
the retrieval of ice optical thickness, ice water path, and cloud-top height, developed
by [94]. This paper describes the Cirrus Properties from SEVIRI (CiPS) NN algorithm,
trained with SEVIRI infrared observations, CALIOP backscatter products, ECMWF surface
temperatures, and other auxiliary data. A performance analysis of CiPS shows that the
algorithm detects 71 and 95% of all cirrus clouds retrieved via CALIOP with an optical
thickness of 0.1 and 1.0, respectively, and correctly classifies 96% of cirrus-free pixels. The
cloud-top height retrieved via CiPS has a mean absolute percentage error of 10%, whereas,
for the ice optical thickness, the mean absolute percentage error is 50%. Similar results are
obtained for the ice water path.

An approach based on random forest (RF) machine learning techniques was tested
by [95] for cloud mask and cloud thermodynamic-phase detection. For this purpose,
two models were developed, using spectral observations from VIIRS on board the SNPP,
and trained based on CALIOP data. The RF daytime model was evaluated over all surface
types (TPR equal to 0.93 and higher, and FPR equal to 0.07 and lower), with the result that
it performs the best among all models considered, including VIIRS CLDMSK and MODIS
MYD35 products.

Machine learning-based techniques are applied to cloud CLWP retrieval in [96]. This
topic is addressed based on SEVIRI data. The developed model was trained with CloudNet
ground-based observation data and CLAAS-2 data as a high-quality reference. During the
validation, this model achieved a higher correlation coefficient than physics-based retrieval
in all situations.

Another aspect that can be addressed using machine learning algorithms is the es-
timation of CTH. This was done in the work of [97], where the combined use of active
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and passive remote sensing measurements (CALIPSO cloud products and AHI radiance of
Japanese GEO series) is proposed. Excellent results are obtained, with significant improve-
ments in CTH for the mean absolute error (1.54–2.72 km).

Also in this area, ref. [98] propose an XGBoost machine learning (ML)-based model
and describe a tool to retrieve cloud macrophysical parameters for Himawari-8 cloud
detection, cloud-top height, and cloud-top temperature. This model, which can be used
both day and night, provides more accurate results than the existing JAXA AHI cloud
results; however, the retrieval accuracy still needs to be improved.

A deep learning approach that does not require auxiliary atmospheric parameters is
developed by [99] to recover cloud properties, both day and night, from passive satellite
observations. This method simultaneously recovers several cloud parameters (cloud optical
thickness, cloud tops, cloud mask, the effective particle radius, and cloud height) involving
convolutional neural network (TIR-CNN) thermal infrared radiances, viewing geometry
and altitudes. The training database consists of MODIS products covering a full year, while
the validation database is built with passive and active products observed in independent
years. The cloud properties retrieved via TIR-CNN are found to be strongly consistent with
all MODIS products.

Using the thermal infrared spectral channels of Himawari-8 and combining the ma-
chine learning technique with the radiative transfer model, ref. [100] obtained cloud de-
tection and cloud microphysical properties with high spatio-temporal resolutions. The
authors observed that, regarding cloud retrieval, this model performs better in sun-glint
areas due to the overestimation of the official Himawari-8 products.

Creating coherent datasets on long-term cloud properties is the aim of ESA’s (Eu-
ropean Space Agency) Cloud Climate Change Initiative (Cloud_CCI) project based on
AVHRR measurements. The study of [101] is the first to validate Cloud_CCI data products
against ground instrument measurements from four high-latitude sites. The authors find
that, although the Cloud_ CCI CLWP retrievals are within ground-based instrument un-
certainties, the Cloud_CCI Cloud Optical Depth (COD) turns out to be underestimated
by about 3 optical depth (OD) units in the case of liquid-water clouds and by about 5 OD
units if ice clouds are included. In the case of CTH, the observed overestimation becomes
an underestimation of about 360–420 m for multilayer clouds.

A new version of the Pathfinder ATMOSpheres extended (PATMOS-x) multidecadal
Cloud Properties Climate Data Record (CDR) is available from NOAA National Centers for
Environmental Information (NCEI). Ref. [102] presents the new features introduced which
concern the introduction of the HIRS 7.3- and 13.3-µm bands, the update of the previous
values for the naive Bayesian detection scheme, and the improvement of cloud detection.
The effects of these changes result in greater consistency in cloud-top height and phase
distribution, as well as in polar cloud detection, when compared to MODIS EOS.

Table 2 summarizes the main information for each study reviewed in Section 2.2, the
sensors and channels used, and the products investigated.
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Table 2. Infrared observations-only recap table.

Authors Year

Satellite

Main features
Uncertainty or Accuracy

of the Method (When
Declared/Applicable)Sensor

Channel
Frequency

[GHz]

Fritz and
Winston [34] 1962 - - Cloud properties -

Smith and Platt
[35] 1978 - - Cloud properties -

Menzel et al. [36] 1983 - - Cloud properties -

Eyre and Menzel
[37] 1989 - -

Cloud
microphysics

(i.e., particle size,
COT)

-

Menzel et al. [38] 1990 - -

Cloud
microphysics

(i.e., particle size,
COT)

-

Minnis et al. [39] 1993 - -

Cloud
microphysics

(i.e., particle size,
COT)

ACCOD,% ∼= 25%

Nakajima and
King [40] 1990 - 2.16, 3.7 COT, Reff -

Nakajima and
Nakajima [42] 1995 AVHRR 3.75, 11 COT, Reff RMSECOT,Reff,% < 25%

Han et al. [45] 1994 AVHRR - Cloud particle
radii -

Jolivet and Feijt
[46] 2005 AVHRR 1.6 CLWP RMSECLWP = 28 g/m2

Brenguier et al.
[48] 2000 AVHRR 1.6 CLWP -

Schüller et al.
[49] 2003 AVHRR 1.6 Cloud properties RMSECDNC = 48.4 cm−3

King et al. [50] 2004 AVHRR 1.62, 2.13 COT, Reff, cloud
phase -

Kawamoto et al.
[51] 2001 - - Cloud

microphysics -

Roebeling et al.
[52] 2006 AVHRR,

SEVIRI 1.6, 3.8 COT, CLWP, CPP -

Pérez et al. [53] 2009 MODIS - Reff, COT, CT -
Iwabuchi et al.

[54] 2016 MODIS 8.6, 10.4, 11.2,
12.4

CTH, COT, Reff,
CTP RMSE% < 30%

Iwabuchi et al.
[55] 2018 AHI - CTH, COT, Reff,

CTP -

Hanel et al. [56] 1972 IR sounder -
Cloud

microphysical
properties

-

Smith et al. [57] 1993 IR sounder -

Cloud radiative
and

microphysical
properties

-

Kahn et al. [58] 2003 IR sounder - Cloud properties -
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Table 2. Cont.

Authors Year

Satellite

Main features
Uncertainty or Accuracy

of the Method (When
Declared/Applicable)Sensor

Channel
Frequency

[GHz]

Huang et al. [66] 2004 IR sounder - COT, effective
particle size 5% < RMSECOT,% < 20%

Wei et al. [60] 2004 AIRS - COT -

Li et al. [67] 2005 AIRS, MODIS -

Synergistic use
of MODIS and

AIRS cloud
products

-

Zhou et al. [68] 2007 Ultra-spectral
IR sounder -

Cloud
microphysical

parameters
-

Liu et al. [69] 2009 IASI - Cloud properties -

August et al. [70] 2012 IASI -

Cloud detection,
fractional

coverage, height
and phase

-

Martinet et al.
[71] 2013 - -

1D-Var
assimilation

system
-

Martinet et al.
[73] 2014 IASI -

1D-Var
assimilation

system
-

Wu et al. [76] 2017 IASI - Thin clouds ACCCPH,% > 97%
Feofilov and

Stubenrauch [77] 2017 AIRS 15 Cloud properties -

Khanal and
Wang [78] 2018

AMSR-E,
CloudSat,
CALIPSO,

MODIS

- Mixed-phase
clouds

BIASLWP,mixed clouds
∼=

5.7 g/m2

Platnick et al.
[79] 2017 MODIS -

Cloud-top and
optical

properties
-

Letu et al. [44] 2020 - -
Cloud

microphysical
parameters

-

Menzel et al. [80] 2008 MODIS -
Single-layer
cloud-top
pressure

-

Cox and Munk
[89] 1954 - - Sunglint in cloud

retrieval -

King et al. [88] 1997 - - Sunglint in cloud
retrieval -

Nakajima and
Tanaka [90] 1986 - - Sunglint in cloud

retrieval -

Wang and Bailey
[91] 2001 - - Sunglint in cloud

retrieval -

Shi and
Nakajima [92] 2018 - - Sunglint in cloud

retrieval -

Saito et al. [81] 2020 - - Optically thick
clouds -
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Table 2. Cont.

Authors Year

Satellite

Main features
Uncertainty or Accuracy

of the Method (When
Declared/Applicable)Sensor

Channel
Frequency

[GHz]

Teng et al. [82] 2020 MODIS,
VIIRS 0.4–0.7 Ice-over-water

cloud properties -

Forster et al. [83] 2021 MODIS,
MISR - Convective

clouds -

Mitra et al. [84] 2023 MODIS,
MISR -

CTP, CTH in
multilayer

clouds
-

Wang et al. [85] 2019 MODIS,
MISR - COT, Reff, CTT,

IWP -

Weisz et al. [86] 2017 VIIRS, CrIS - - -

Li et al. [43] 2022 VIIRS, CrIS -

Cloud mask,
cloud

thermodynamic
phase, CTH

-

Leonarsky et al.
[87] 2021 IASI,

IASI-NG -
Cloud layer

altitude, cloud
thickness of ice

RMSECBH > 30%

Håkansson et al.
[93] 2018 MODIS - CTH with neural

network -

Strandgren et al.
[94] 2017 SEVIRI -

Cirrus cloud
properties (CTH,

IOT, IWP)
-

Wang et al. [95] 2020 VIIRS -

Cloud mask and
thermodynamic-

phase with
random forest

-

Kim et al. [96] 2020 SEVIRI - CLWP with
machine learning BIAS% = 9%

Min et al. [97] 2020 AHI,
CALIPSO - CTH with

machine learning
1.54 km < MAECTH <

2.72 km

Yang et al. [98] 2022 AHI -

Cloud
macrophysical

parameters with
XGBoost

RMSECTH = 18.67%

Wang et al. [99] 2022 MODIS -

Cloud mask,
COT, Reff, CH,

CTH with
convolutional

neural network

-

Tana et al. [100] 2023 AHI -

Cloud
microphysical

properties
combining RT

model and
machine learning

-

Vinjamuri et al.
[101] 2023 AVHRR - Cloud products

evaluation -

Foster et al. [102] 2023 MODIS -
PATMOS-x
improved

version
-
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3. Combining Infrared and Microwave Observations
Exploiting the knowledge acquired so far, we can certainly state that IR and MW

radiation are complementary. First, spaceborne radiometers detect IR radiation coming
mainly from the top of the clouds, due to the strong absorption of IR wavelengths via
cloud-forming hydrometeors, unlike MW radiation, which is only slightly affected as it
passes through non-precipitating clouds. Furthermore, it is widely known that IR radiation
is more responsive to small particles and rather low CIWP cirrus clouds. On the other hand,
MW radiation is responsive to larger ice crystals and thicker cirrus cloud layers. These
peculiarities of MW and IR radiation are schematically summarized in Figure 2, and they
seem to suggest that a proper combination of MW and IR multispectral measurements
could help determine the vertical structure and composition of clouds, especially in the
case of multilayered clouds.

Remote Sens. 2025, 17, x FOR PEER REVIEW 22 of 40 
 

 

 

Figure 2. Sketches of the interaction between MW (top) and IR (bottom) radiation with thick 

convective cloud (left), low liquid cloud (middle), and cirrus cloud (right). Wave transparency 

indicates the radiation intensity after cloud interaction qualitatively. Also reported are the cloud 

phase and dominant cloud–radiation interaction (emission, absorption, and scattering). 

The potential for synergy between MW and IR is also clear in 1D-Var approaches, as 

in the paper of [106]. In this study, cloud-influenced observations are analyzed with a 1D-

Var approach including both IR and MW sensors (HIRS/3 and AMSU-A aboard NOAA-

15). A fast radiative transfer model, based on RTTOV 10.1 (see [72], Section 2.6.1), is 

presented, taking into account the specificities of both IR radiation (treating the cloud 

Figure 2. Sketches of the interaction between MW (top) and IR (bottom) radiation with thick
convective cloud (left), low liquid cloud (middle), and cirrus cloud (right). Wave transparency
indicates the radiation intensity after cloud interaction qualitatively. Also reported are the cloud
phase and dominant cloud–radiation interaction (emission, absorption, and scattering).
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In this context, ref. [103] proposed the new Microwave Visible and Infrared (MVI)
technique. MVI allows the estimation of the frequency of multilayered clouds and the
effective radius of droplets in water clouds, combining the possibility of deriving the CLWP
and the water cloud temperature (Tw) from MW observations. This allows validation with
radiosoundings and retrieval using a combined VIS and IR retrieval method. In [104],
the authors reported the results of a series of tests on the MVI technique using Meteosat
and SSM/I data collected in the framework of the Atlantic Stratocumulus Transition
Experiment. The combination of satellite and ground-based radar data demonstrates the
ability of the MVI technique to detect multilayered clouds, especially when low water
clouds underlie higher ice clouds. The CLWP resulting from this method was evaluated
against the corresponding product obtained from ground observation. The results show a
correlation coefficient of 0.54 and a mean difference ground-based versus SSM/I CLWP
estimation of 0.034 kg/m2 or approximately 30% of the mean value with a maximum in the
case of ground observations of locally high CLWP values (>0.2 kg/m2).

The benefits of the synergy between IR and MW are evident in the work of [105].
They address the cloud base height problem with a combination of MW observations from
SSM/I and Special Sensor Microwave Water Vapor Sounder (SSM/T-2) on the Defense
Meteorological Satellite Program (DMSP) satellite from a theoretical point of view. However,
they find that only across the ocean is the signal strong. Retrievability over a significant
range in CLWP improves significantly using the synergy of MW and IR data acquired from
the same satellite (AMSU and AVHRR on NOAA-K). This is due to the ability to satisfy IR
observations’ cloud-top temperature constraint.

The potential for synergy between MW and IR is also clear in 1D-Var approaches, as in
the paper of [106]. In this study, cloud-influenced observations are analyzed with a 1D-Var
approach including both IR and MW sensors (HIRS/3 and AMSU-A aboard NOAA-15). A
fast radiative transfer model, based on RTTOV 10.1 (see [72], Section 2.6.1), is presented,
taking into account the specificities of both IR radiation (treating the cloud cover as a single
semitransparent layer, defined by the cloud-top pressure and its effective amount) and MW
(computing the cloud absorption from the profiles of cloud cover and liquid/ice water on
any vertical pressure level). The developed scheme is tested with synthetic observations on
individual profiles and in the real case of cloud retrieval from observations on 15 March
2001. In detail, the 1D-Var scheme is based on Advanced TOVS (ATOVS) observations.
Consequently, IR radiances are always available when AMSU data are available; on the
contrary, rain-affected MW data, if present, are removed consistently from the radiation
model specifications, according to [107]. With respect to Clouds and the Earth’s Radiant
Energy System (CERES) Outgoing Longwave Radiation (OLR) observations, the 1D-Var
retrieval scheme proves to be able to extract the liquid/ice water information contained in
the radiances, showing clear improvements in the representation of the cloud ice model.
On the other hand, MW information also has a positive impact on the knowledge of low
clouds, while the representation of the vertical distribution of clouds needs to be improved
due to the limits in the sensitivity of the passive IR and MW radiation. Unfortunately,
as acknowledged by the authors themselves, the nonlinearity of cloud variation and
the intrinsic on/off nature of cloud layers make the evaluation of the background-error
covariance matrix rather problematic.

Combining near-IR, VIS, and MW observations from the Tropical Rainfall Measuring
Mission (TRMM) satellite allowed [108] to develop a technique for drizzle detection in
marine warm clouds. First, a near-IR/VIS algorithm is used to simultaneously identify
COT and the effective radius; then, CLWP is retrieved via a new algorithm developed
in MW. Simulations from radiative transfer models supported by the analysis of satellite
observations allowed the study of the relationship between OD, the effective radius, and
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CLWP, whereas radar observations of clouds in coincident areas constituted the validation
dataset of the described method.

Observations in the MODIS bands, combined with the AMSR-E frequencies, allow
for the estimation of CLWP and CIWP for double-layer clouds. This topic was addressed
by [109]. They developed a method to evaluate the CLWP of lower-layer water clouds
from AMSR-E observations and, subsequently, the properties of upper-level ice clouds
from MODIS by matching the radiances simulated by an RTM with a two-cloud layer. This
approach can achieve COT and CIWP retrievals with significantly improved accuracy and
reduced overestimation for ice-over-water cloud systems, as indicated by comparisons
with single-layer cirrus systems and surface-based radar retrievals.

The development of new techniques to improve the retrieval of cloud parameters,
especially in the presence of multilayered clouds, is also required, given the evidence that
methods that usually provide accurate results in the case of a single cloud layer (such
as, for example, the CO2 slicing technique for cloud-top retrieval or IR-only observations
for cloud properties retrieval) are not reliable in the case of thick clouds with multiple
layers. In these cases, the approach developed by [110], which uses multispectral satellite
data (AIRS and AMSU) to penetrate the cloud-top, can be useful to obtain reliable data
and a better agreement with ground-based observations. The validation work considered
40 ground observations collected at the Chilbolton Observatory Facilities (UK) during
spacecraft flybys and found an RMS agreement within 295, 905, 1094, and 1862 m for CTH
and CBH, and 0.62, 0.08, and 0.02 kg/m2 for TPW, CLWP, and CIWP, respectively. These
results lead to the conclusion of a better ability for HIRS to discriminate between ice/no-ice
clouds than AMSU-A or MHS.

The synergistic use of observed data from different sensors requires careful collocation
work. The development of a simpler collocation methodology between the MHS on board
NOAA-18 and the CPR on board CloudSat is the subject of the paper by [111]. In addition
to the description of this new collocation-finding method, the paper presents the results
and statistical analyses performed and a section dedicated to the practical implications. The
validation of the operational CIWP product from MHS measurements, the NOAA MSPPS,
against CloudSat CIWP highlights a low sensitivity found in many null values for the
MSPPS CIWP, probably due to thin clouds’ being rather transparent at MHS frequencies. To
overcome this, the authors also evaluate the addition of two HIRS channels (8 and 11) to the
CIWP retrieval from MHS. This, however, leads to only a small detectable improvement for
small values of CIWP due to modest improvements in the HIRS-MHS footprint difference
and beam-filling issues.

An interesting result regarding the synergy between IR and MW is obtained by [112],
which, for the case examined, does not agree with the most widespread conclusions
on this topic. In fact, by applying an approach based on the Support Vector Machine
(AID-SVM) methodology and on information ice/no-ice clouds acquired via the CloudSat
CPR, the paper highlights that this methodology offers very promising potential to obtain
information on ice clouds/no ice using passive satellite sensors, over both the ocean and
the land surface. However, in the cases studied, it appears that IR satellite sensors, such as
HIRS, are more efficient at detecting ice clouds than MW satellite sensors and that combined
measurements using MW/IR synergy do not perform better than IR measurements alone.
The method was applied and tested on data from various sensors (AMSU-A, MHS, and
HIRS instruments aboard NOAA-19 satellite) providing an ice cloud detection probability
of 0.37 for AMSU/A, 0.51 for MHS, 0.83 for HIRS, and 0.83 for the AMSU/A, MHS,
and HIRS combination over the ocean. Similarly, over land, the authors obtain 0.42 for
AMSU/A, 0.50 for MHS, 0.76 for HIRS, and 0.80 for AMSU/A + MHS + HIRS.



Remote Sens. 2025, 17, 337 25 of 40

Ref. [113] addresses the problem of atmospheric ice detection and the CIWP retrieval
completely based on passive operational sensors Synergistic Passive Atmospheric Retrieval
Experiment-ICE (SPARE-ICE). They develop a set of NN trained on an observation-based
dataset of AVHRR and MHS measurements on the one hand and joint radar–lidar CIWP
on the other hand, obtained by collocating NOAA-18 with the Cloudsat and CALIPSO
Ice Cloud Property Product (2C-ICE) CIWP product. The algorithm, which exploits
three AVHRR channels, three MHS channels, and auxiliary information such as satel-
lite angles, surface temperature, and surface elevation, reveals a very good correlation for
CIWP > 10 g/m2 between the reference dataset 2C-ICE and SPARE-ICE. For smaller values
of CIWP, SPARE-ICE shows the tendency to be larger than 2C-ICE, becoming stable at a
median of about 1–2 g/m2 for 2C-ICE CIWP < 1 g/m2. Furthermore, the paper indicates
that SPARE-ICE is not sensitive to small values of CIWP. Unfortunately, it was not possible
to provide a direct estimate of uncertainty for a single retrieval using NN. However, an
error estimate as a function of CIWP was provided based on the validation dataset, i.e., data
not used in the training phase. Based on the fractional error definition, the authors found a
value of about 2 between SPARE-ICE and CloudSat 2C-ICE for the median fractional error,
comparable to the random error between 2C-ICE and in situ CIWP measurements.

The advantages of combined retrieval are also addressed in the work of [114]. In this
study, the improvements to the AIRS/AMSU version 6 retrieval algorithm are explored.
Flying on the same satellite platform (Aqua), the AIRS and AMSU instruments lend
themselves very well to evaluating the trend of combined retrievals. This algorithm is
now operational at the NASA Goddard Data and Information Services Center (DISC).
Since September 2002, Level 2 and Level 3 products have been available, and, in particular,
AIRS Science Team version-6, level-2 products can be accessed in near real time on the
Goddard DISC. The initial state underlying the operation of the algorithm is generated from
the AMSU and AIRS observations, also providing the set of values of the variables that
characterize the clouds (radiatively effective cloud fraction and cloud-top pressure), as well
as supporting the actual physical retrieval procedure. In detail, compared to the previous
operational version, the improvements contained in the AIRS Science Team version-6
retrieval algorithm are many and significant, and they also include the methodology for
determining the cloud parameters, which are retrieved from up to two layers of gray clouds
in a given scene. Furthermore, in version 6, there is the possibility that the algorithm
can also work in AIRS-only (AO) mode. This processing mode uses exclusively AIRS
observations without benefiting from the contribution of AMSU observations in any phase,
including the generation of the version-6 AO initial state. The ability to operate in AO
mode is extremely important, as it provides a backup if AMSU information deteriorates
significantly. From a quality perspective, version-6 AO retrievals are generally only slightly
less accurate than those of the full version 6. The main differences between the results of the
two modes are mostly found over the ocean, as AO mode cannot benefit from observations
in the 22 and 31 GHz channels of AMSU-A.

Another algorithm based on AIRS-like sounding systems is the NOAA Unique Com-
bined Atmospheric Processing System (NUCAPS), which has its origin in the AIRS Sci-
ence Team approach [114]. This algorithm, designed at the NOAA National Environ-
mental Satellite, Data, and Information Service (centre) for Satellite Applications and
Research (NOAA/NESDIS/STAR), and the underlying spectroscopy are currently used
to process data from combined MW and IR channels of the AIRS/AMSU suite, the
IASI/AMSU/MHS suite (operational since 2008) and, more recently, the Cross-track In-
frared Sounder (CrIS)/ATMS suite, operational since 8 April 2014. It was designed with a
modular architecture, and the objective of some of the six modules (modules 2, 3, 5, and 6)
of which it is composed is precisely the retrieval of cloud properties, based on the synergy of
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data from MW and IR. In more detail, based on MW-only observations, cloud liquid-water
flags and surface emissivity uncertainty (module 2), as well as temperature and moisture
variables, are recovered via an all-sky eigenvector regression approach (module 3), a sec-
ond fast eigenvector regression retrieval for temperature and moisture for cloud cleared
radiances (module 5), and a final IR physical retrieval, with the previous regression retrieval
as the first guess (module 6). The remaining modules are dedicated to quality control for
the input, search tables, and acquisition of accessory products (module 1) and to obtaining
a cloud clearing module that combines a set of MW and IR channels (module 4). NUCAPS,
which came into operation in April 2018, has been the subject of numerous studies that
have validated its performance (i.e., [115]).

The synergy of ground-based, high-resolution IR and MW observations was studied
by [116] in the case of thin clouds of single-layer liquid water (CLWP < 0.1 kg/m2). In these
situations, MW observations have generally lower sensitivity than in other cases, unlike IR
observations, which show higher sensitivity. The developed methodology relies on an NN
scheme to estimate both CLWP and cloud-effective radius, based on a synthetic dataset of
MW observations and additional broadband and highly spectrally resolved IR observations.
The results show that the NNs can retrieve CLWP and De with a mean relative error of 9%
(for CLWP) and 17% (for De). Consistently with the sensitivity of MW observations in the
case of thin clouds, the retrieval is affected by a high relative error, using only MW data,
contrary to what is observed for IR retrievals (CLWP 40–60 g/m2). As a result, combined
(MW with broadband IR observations) retrievals are affected by less error than MW alone.
Furthermore, the addition of the high-resolution IR spectrometer further decreases the
relative error by 5% (CLWP) and 7% (De), compared to the results with the broadband
IR radiometer.

A methodology addressing the correction of cloud liquid water path (CLWP) mea-
surements provided via Geostationary Operational Environmental Satellites-R (Series)
(GOES-R) Advanced Baseline Imager (ABI) observations using microwave CLWP was
developed by [117]. The CLWP ABI duly corrected for errors due to the scattering geometry
and low cloud fraction showed significantly better reliability, especially at dawn and dusk
and in non-rainy conditions.

The problem of the combined use of Microwave Sounder (MWS) observations and
future infrared (IASI-NG) observations for cloud liquid and ice water path retrieval has
been addressed by [118]. The authors propose an NN approach that, while also considering
the impact of next-generation sensors, can lead to notable improvements (up to 20%).

Pairs of infrared and microwave instruments on Aqua, Suomi-NPP, and NOAA-
20 provide observations for the Community Long-term Infrared Microwave Combined
Atmospheric Product System (CLIMCAPS) products. Ref. [119] describes three-decade
research conducted by the NASA AIRS Science Team (NASA AST) to retrieve profiles of
atmospheric temperature, water vapor, ozone, and many other trace gases, as well as cloud
(cloud liquid water, cloud-top pressure, and cloud fraction) and surface properties.

A new application can be found in [120]. In this recent study, the authors developed a
highly performing retrieval technique for ice hydrometeors. This methodology, which is
based on neural network applications, exploits the sensitivity of submillimeter waves (in
synergy with IR spectra) to the scattering effects of ice crystals. The retrieval of CIWP and
De was evaluated through a sensitivity analysis using a simulated synthetic dataset. The
obtained results are very encouraging, and they demonstrate that a synergistic strategy can
improve the retrieval accuracy with mean square error values that are 68% (95%) and 10%
(24%) lower for CIWP and De, respectively, compared to the corresponding retrievals using
sub-mm only (IR-only).
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Table 3 summarizes the main information for each study reviewed in Section 3, the
sensors and channels used, and the products investigated.

Table 3. IR–MW-combined observations recap table.

Authors Year

Satellite

Main Features
Uncertainty or Accuracy

of the Method (When
Declared/Applicable)Sensor

Channel
Frequency

[GHz]

Lin et al. [103] 1998 SSM/I,
SEVIRI -

Multilayered CF
and Reff with MVI

technique
-

Albrecht et al.
[104] 1995 SSM/I,

SEVIRI -

Atlantic
Stratocumulus

Transition
Experiment

-

Wilheit and
Hutchison [105] 2000 AMSU,

AVHRR - CLWP -

Chevallier et al.
[106] 2002 AMSU-A,

HIRS/3 -
1D-Var approach
for cloud-affected

BT
-

Saunders et al.
[72] 2012 - - RTTOV -

Zhao et al. [107] 2000 - -
1D-Var scheme

with rain-affected
MW BT detection

-

Shao and Liu
[108] 2004 TRMM IR, VIS, MW

Drizzle in marine
warm clouds, COT,

Reff, CLWP
-

Huang et al.
[109] 2006 MODIS,

AMSR-E - upper-level ice
cloud properties RMSDIWV,% = 9%

Romano et al.
[110] 2007 AIRS, AMSU -

Retrieval of
multi-layer cloud

parameters
-

Holl et al. [111] 2010 MHS, CPR,
HIRS - CIWP -

Islam et al. [112] 2014 AMSU-A,
MHS, HIRS - Ice cloud detection 0.88 < ACC < 0.93

Holl et al. [113] 2014 AVHRR,
MHS - CIWP MFESPARE-ICE = 100%

Susskind et al.
[114] 2014 AIRS, AMSU - Cloud properties -

Marke et al. [116] 2016 - -

Liquid-water
cloud

microphysical
properties

2.4 g/m2 < RMSELWP <
9.1 g/m2

Nalli et al. [115] 2013
AIRS, AMSU,

IASI, MHS,
CrIS, ATMS

-
NUCAPS
algorithm
validation

-

Smalley and
Lebsock [117] 2023 ABI - LWP 20 g/m2 < RMSELWP <

40 g/m2

Cimini et al.
[118] 2023 IASI-NG,

MWS -
CLWP and CIWP

with neural
network

-

Smith and Barnet
[119] 2023

IR and MW
instruments

pairs

CLIMCAPS
products -



Remote Sens. 2025, 17, 337 28 of 40

4. Cloud Parameter Databases and Retrieval Methods
The retrieval of cloud parameters is a topic that has always interested the scientific

community working in the field of Earth science, and numerous projects have been ded-
icated to it since the 1980s. Among the first in chronological order, there is certainly the
International Satellite Cloud Climatology Project (ISCCP) described by [121]. This project
aimed to provide some data of interest for cloud (optical thickness and top pressure) from
1983 to 2009. PATMOS-x also deals with operational processed cloud retrieval by provid-
ing a complete suite of atmospheric and cloud products based on observations from the
AVHRR sensor flying on polar-orbiting weather satellites since the late 1970s. PATMOS-x
was developed at NOAA/NESDIS/STAR in collaboration with the University of Wisconsin
and Madison Cooperative Institute for Meteorological Satellite Studies (CIMSS) and is
described by [122].

AVHRR data recorded on board the PM satellites of the NOAA Polar Operational
Environmental Satellite (POES) missions are collected in the 35-year (1982–2016) climatolog-
ical Cloud_CCI Advanced Very High Resolution Radiometer post meridiem (AVHRR-PM)
dataset (version 3), containing global cloud and radiation properties on a grid with a
latitude–longitude resolution of 0.05◦ (details in [123]). The CM SAF cLoud, Albedo and
surface RAdiation dataset from AVHRR data (CLARA) dataset is a global dataset contain-
ing surface radiation products and data on surface albedo, as well as cloud properties,
generated via the EUMETSAT CM SAF. Its first version (CLARA-A1) is based on AVHRR
measurements recorded in polar orbit onboard the NOAA and MetOp satellites. The
data cover a 28-year period (1982–2009) and are arranged on a regular global grid with a
resolution of 0.25 degrees (latitude–longitude). More details can be found in [124].

The CLARA-A1 dataset has been updated to CLARA-A2, the second edition, described
in [125]. The reference time is extended to 34 years, reaching up to 2015.

As regards clouds, the averaged products are available with two temporal samples
(daily and monthly), while, as global products, a daily resampling is available for individual
satellites. The dataset contains the cloud mask, cloud-top temperature/pressure/height,
cloud thermodynamic phase, and cloud optical thickness, particle effective radius, and
cloud water path. Spatially, the monthly and daily averages are available on a global
0.25◦ × 0.25◦ grid. Furthermore, for the polar regions, cloud products are also provided in
two equal 25 km × 25 km grids.

The v.4 retrieval algorithms for CERES–MODIS products were implemented from
2012 until MODIS data were available at a resolution of 1◦ × 1◦ (latitude by longitude).
CERES aims to study Earth’s climate system to analyze the role of cloud and radiation
feedback [126]. During this study, the following cloud product retrievals were obtained:
ice water path, liquid-water path, cloud particle phase, cloud base pressure, cloud-top
pressure, ice particle effective diameter, water particle radius, and cloud visible optical
depth [127].

As mentioned above, the MOD06 and MYD06 databases for Terra and Aqua, based on
level 2 (L2) MODIS products, provide pixel-level retrievals of optical properties of clouds
(optical thickness, effective particle radius, CLWP, CIWP, and thermodynamic phases—
daytime only) and cloud-top properties (temperature, pressure, and height—both day and
night). An overview of the major updates contained in the latest reprocessing (MOD06 C6
of 2000 and MYD06 of 2002, respectively) is outlined in [79].

Although the methodologies underlying the cloud product dataset and ancillary data
may vary from case to case, clear sky reference data and cloud radiance simulations are
typically produced using radiative transfer models. The solution of the inverse problem
is another important aspect in these techniques that, in most of them, is addressed by
searching in a large look-up table (LUT) for the value/parameter that best fits the radiances
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observed in the different spectral bands. The most widespread approach in the inversion
procedure is based on the optimal estimation method (OEM) described by [74], in which
attempts are made to maximize the probability of the retrieved state, conditional on the
value of the measurements and any a priori knowledge. This is an iterative procedure in
which convergence is sought by varying the first guess at each interaction [128].

Statistical techniques such as NN, deep learning (DL), and CNN have been widely
applied to retrieve cloud parameters from satellite measurements [99,118,129,130], proving,
in some cases, to be an excellent alternative to variational retrieval, which is generally more
expensive from a computational point of view. While neural networks are well suited to
investigating the full nonlinearity of measurements, it is worth remembering that the NN
itself is a statistical model. This makes it susceptible to similar problems associated with
retrievals based on linear statistics. Estimating the error associated with network output
is a rather complicated task, which is why physical retrieval is typically preferred, since
it allows one to easily estimate the error by means of the covariance associated with the
output [74]. Regarding the assessment of errors associated with the output of an NN, these
are typically estimated on the basis of the total root mean square error (RMSE) evaluated
on the training dataset. However, although reasonable in a linear case, this approach is not
entirely satisfactory, as it does not allow for evaluating the error bars for the single output.
As a result, the performance of the algorithm is not represented correctly if the performance
is expected to degrade over a given range of input variables.

Potential synergies between two or more datasets from independent observations of
the same target offer important implications in the field of remote atmospheric sounding.
For this reason, more and more attention is being paid to the study of optimized or inno-
vative methods to combine two or more measured datasets. For example, a synergistic
approach can be developed by applying an appropriate retrieval scheme that involves feed-
ing multi-wavelength observations into a single input and then performing a simultaneous
inversion of all observations, or via an a posteriori combination of stand-alone retrieval
products from individual measurements. Ref. [131] compared these two strategies for data
fusion in the case of multi-wavelength remote sensing observations and demonstrated
the better performance of the synergistic inversion scheme. Applications for retrieving
atmospheric profiles from IASI, MHS on MetOp-A, and AMSU-A are shown.

The cloud masking problem has been addressed with several approaches, such as naive
Bayes in PATMOS-x, threshold test sequences in MODIS C6 or some dynamic thresholding
in CLARA. Cloud phase retrieval has also been addressed in the literature with several
techniques. For example, it is determined as a function of a combined test between different
channels and the cloud-top temperature in CLARA, whereas [132] describe a threshold
algorithm in PATMOS-x. Refs. [133,134] use a combination of four CTT-based tests, three
infrared channels, 1.38 µm, and cloud-effective data in MODIS C6. The cloud-effective data
considered in [133,134] include the cloud-effective radius, the effective temperature and
the effective cloud amount defined as cloud fraction multiplied by cloud emissivity. The
method developed by [40], however, is usually used to calculate the cloud-effective radius
and cloud optical thickness.

Furthermore, many retrieval algorithms have been evaluated/validated in several
studies. Ref. [135] estimated the deviation between the collocated MYD06 product and
the MODIS-based PATMOS-x microphysical retrievals. In this case, good results were
obtained, with output within the retrieval uncertainty. Instead, for CLARA-A2, the global
CTH is underestimated by 840 m compared to the measurement of the active sensor Cloud-
Aerosol Lidar with Orthogonal Polarization (CALIOP). Ref. [125] compared CLARA-A2
with PATMOS-x and MODIS C6 products and found that the cloud-top pressure of CLARA-
A2 is 4–90 hPa lower and quantified the absolute cloud phase bias as lower than 9%. Finally,
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the bias of MODIS C6 CTH compared to CALIOP for low-level boundary layer water
clouds is +197 m.

5. Summary and Conclusions
Currently, most attempts to derive cloud microphysical properties from satellite ob-

servations involve the disjointed use of MW and IR measurements, which are only subse-
quently integrated. In this review, we have addressed the problem of developing algorithms
that simultaneously/hierarchically combine all the complementary information obtained
from different spectral ranges. As described, the importance of strategies for integrating
data acquired at MW, IR and VIS wavelengths has emerged as a powerful resource for
improving microphysical cloud-parameter retrieval products. The development of method-
ologies and algorithms to fully exploit the synergistic content of the information carried
via the different bands creates exciting opportunities to improve our understanding of
cloud-scale microphysical variables, the hydrogeological cycle, and moisture redistribution.
This review paper has covered the fundamental aspects of cloud interaction with MW and
IR radiation and provided a comprehensive overview of the current state of retrieval algo-
rithms, considering methodologies that derive cloud properties from IR and MW satellite
observations separately and in synergy. The review raised the following considerations.

5.1. Importance of Understanding Cloud Microphysical Properties at Different
Spatial/Temporal/Scales

Clouds constitute the largest uncertainty in current general circulation models. There
are reliable observation methods that accurately measure their main parameters at the
microphysical scale. However, the representation of clouds can be further improved by
better understanding the microphysical processes. In this perspective, a largely unexploited
potential for the retrieval of cloud properties, such as the cloud drop effective radius, the
cloud liquid, and ice water contents and their column-integrated values, is represented by
the synergy of infrared and microwave observations. The results reviewed in this paper
show that this synergy reduces the error in cloud microphysical parameters retrieved from
satellite measurements.

5.2. IR and MW Peculiarities

Infrared and microwave observations exhibit numerous differences in spectroscopic
properties, propagation through clouds, and surface emission characteristics, providing
highly complementary information to each other. In general, from the perspective of
measuring the microphysical cloud properties, the algorithms based on MW observations
exploit frequencies at 23.8, 31.4, 90, and 183 GHz to obtain information on atmospheric
water vapor and liquid water contained in a cloud, while the 88–90 and 150–205 GHz
channels are mainly used in approaches to study ice clouds and precipitation. On the other
hand, passive infrared observations show sensitivity to liquid and ice particles closer to the
top of the clouds within the observed volume. The strategies in the case of infrared channels
are mainly based on radiance measurements, which also allow the retrieval of the cloud
optical thickness and effective cloud particle diameter. The results reviewed in this paper
quantifiably show that, although microwaves are less sensitive to clouds than infrared,
higher sensitivity to cloud microphysical properties is achievable using higher frequencies.

5.3. Evolution of Observing Technology and Data Analysis Techniques

The increase in spatial/spectral/temporal resolution of sensors planned for the com-
ing years promises significant improvements in the performance of retrieval algorithms.
However, apart from sensor technology, other aspects are becoming increasingly important
for cloud observations. This is the case for the evolution of time series analysis techniques
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and approaches based on new methodologies, such as artificial intelligence and machine
learning, that can now count on consolidated multi-year datasets and increasingly high-
performance computing power. In compiling this review, we found an increasing number
of approaches based on these new methodologies. The reviewed results indicate significant
improvement in accuracy, paving the road for more accurate cloud microphysics products
and new knowledge in the future.

To further highlight the benefits of synergistic over IR/MW-only approaches, we have
summarized the results from the ComboCloud project (funded by EUMETSAT), which
aimed to retrieve essential cloud parameters by exploiting the combination of innovative
features offered via upcoming satellite sensors, along with the synergy between IR and MW
measurements. The improvements that can be expected concern both CLWP and CIWP
and are about 2–14% and 4–8%, respectively, for correlation. Similarly, a gain of a factor of
1.4–2.4 and 1.7–2.1, respectively, is certified in the case of RMSE.
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Abbreviations

Abbreviation Meaning
2C-ICE Cloudsat and CALIPSO Ice Cloud Property Product
AATSR Advanced Along-Track Scanning Radiometer
ABI Advanced Baseline Imager
AHI Advanced Himawari Imager
AIRS AtmoSphericAtmospheric InfraRed Sounder
AMSR-E Advanced Microwave Scanning Radiometer for EOS
AMSU Advanced Microwave Sounding Unit
AO AIRS-Only

ARM
(US Department of Energy) Atmospheric Radiation Measurement (user
facility)

ARTS Atmospheric Radiative Transfer Simulator
ATMS Advanced Technology Microwave Sounder
ATOVS Advanced TOVS
AVHRR Advanced Very High Resolution Radiometer
AVHRR-PM AVHRR-Post Meridiem
BT Brightness Temperature
BTD Brightness Temperature Differences
CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization

www.eumetsat.int/combocloud, EUM/CO/19/4600002352/THH
www.eumetsat.int/combocloud, EUM/CO/19/4600002352/THH
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CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
CATS Cloud-Aerosol Transport System
CBH Cloud Base Height
CDR Climate Data Record
CERES Clouds and the Earth’s Radiant Energy System
CIMSS Cooperative Institute for Meteorological Satellite Studies
CiPS Cirrus Properties from SEVIRI
CIRS-LMD Clouds from InfraRed Sounders, developed at LMD
CIWC Cloud Ice Water Content
CIWP Cloud Ice Water Path
CLAAS-2 CM SAF Cloud Property Dataset using SEVIRI-Edition 2
CLDMSK CLouD MaSK
CLDPROP CLouD PROPerties

CLIMCAPS
Community Long-term Infrared Microwave Combined Atmospheric
Product System

CLIWA-NET Cloud LIquid WAter NETwork (project)
Cloud_CCI Cloud Climate Change Initiative
CLWC Cloud Liquid Water Content
CLWP Cloud Liquid Water Path
CM SAF Satellite Application Facility on Climate Monitoring
CNRS Centre National de la Recherche Scientifique
COD Cloud Optical Depth
COT Cloud Optical Thickness
CPP Cloud Physical Properties
CPR Cloud Profiling Radar
CrIS Cross-track Infrared Sounder
CSU Colorado State University
CTH Cloud-Top Height
CTP Cloud-Top Pressure
CTT Cloud-Top Temperature
DARDAR raDAR/liDAR
De (cloud) Drop effective diameter
DISC Data and Information Services Center
DL Deep Learning
DMSP Defense Meteorological Satellite Program
ECMWF European Centre for Medium-Range Weather Forecasts
EOF Empirical Orthogonal Function
EOS Earth Observing System
ESA European Space Agency
EUMETSAT EUropean organisation for the exploitation of METeorological SATellites
FOV Field Of View
FPR False Positive Rate
FY-3 FengYun-3
GDAS Global Data Assimilation System
GEO GEOstationary (orbit satellite)
GFS Global Forecasting System
GOES-R Geostationary Operational Environmental Satellites-R (Series)
HIRS/3 High-resolution Infra Red Sounder/3
HIS Hyperspectral Imaging Sensor
HSB Humidity Sounder for Brazil
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IASI Infrared Atmospheric Sounding Interferometer
IASI-NG IASI-Next Generation
ICAS Integrated Cloud Analysis System
ICON-NWP ICOsahedral Nonhydrostatic NWP
IPCC AR6 Intergovernmental Panel on Climate Change—Sixth Assessment Report
IR InfraRed
ISCCP International Satellite Cloud Climatology Project
IWV Integrated Water Vapour
JAIVEx Joint Airborne IASI Validation EXperiment
JAXA Japan Aerospace Exploration Agency
LMD Laboratoire de Meteorologie Dynamique (CNRS, Paris)
LUT Look Up Table
MAE Mean Absolute Error
MAS MODIS Airbone Simulator
MHS Microwave Humidity Sounder
MIRS Microwave Integrated Retrieval System
MISR Multi-angle Imaging SpectroRadiometer
ML Machine Learning
MLP MultiLayer Perceptron
MMW MilliMeter-Wave scanning radiometers
MODIS MODerate resolution Imaging Spectroradiometer
MR Minimum Residual
MSG Meteosat Second Generation
MSPPS Microwave Surface and Precipitation Products System
MVI Microwave Visible and Infrared
MW MicroWave
MWI MicroWave Imager
NASA National Aeronautics and Space Administration
NASA AST NASA AIRS Science Team
NASA GPROF NASA Goddard Profiling Algorithm
NCEI National Centers for Environmental Information
NN Neural Network
NOAA National Oceanic and Atmospheric Administration

NOAA/NESDIS/STAR
NOAA National Environmental Satellite, Data, and Information Service
(centre) for SaTellite Applications and Research

NUCAPS NOAA Unique Combined Atmospheric Processing System

NWC SAF
Satellite Application Facility on support to NoWCasting and Very Short
Range Forecasting

NWP Numerical Weather Prediction
OD Optical Depth
OEM Optimal Estimation Method
OLR Outgoing Longwave Radiation
OSSE Observing-System Simulation Experiments
PATMOS-x Pathfinder ATMOSpheres extended
PCRTM Principal Component-based Radiative Transfer Model
POES Polar Operational Environmental Satellite
PPS Polar Platform System
R Correlation coefficient
RF Random Forest
RMS Root Mean Square
RMSD Root Mean Square Differences
RMSE Root Mean Square Error
RTTOV Radiative Transfer for TOVS
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RTTOVCLD RTTOV ClouD (interface)
SEVIRI Spinning Enhanced Visible and InfraRed Imager
SNPP Suomi National Polar-orbiting Partnership
SPARE-ICE Synergistic Passive Atmospheric Retrieval Experiment-ICE
SSM/I Special Sensor Microwave/Imager
SSMI/S Special Sensor Microwave Imager/Sounder
SVM Support Vector Machine

TEMPEST-D
Temporal Experiment for Storms and Tropical Systems
Technology-Demonstration

TIR Thermal InfraRed
TIR-CNN Convolutional Neural Network Thermal Infra
TIROS Television InfraRed Observation Satellite
TMI Tropical Rainfall Measurement Mission Microwave Imager
TOVS TIROS Operational Vertical Sounder
TPR True Positive Rate
TPW Total Precipitable Water
TRMM Tropical Rainfall Measuring Mission

TROPICS
Time-Resolved Observations of Precipitation structure and storm
Intensity with a Constellation of Smallsats

Tw Temperature of cloud water
VIIRS Visible Infrared Imaging Radiometer Suite
VIS Visible
σ Uncertainty
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