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Abstract: Landslide susceptibility evaluation is an indispensable part of disaster prevention
and mitigation work. Selecting effective evaluation methods and models for landslide
susceptibility assessment is of significant importance. This study focuses on selected ar-
eas in Yunyang County, Chongqing City. By interpreting high-resolution satellite remote
sensing images from before and after heavy rainfall on 31 August 2014, the distribution of
rainfall-induced accumulation landslides was obtained. To evaluate the susceptibility of
accumulation landslides, we have equated evaluation factors to accumulation distribution
prediction factors. Eight evaluation factors were extracted using multi-source data, includ-
ing lithology, elevation, slope, remote sensing image texture features, and the normalized
difference vegetation index (NDVI). Various machine learning models, such as Random
Forest (RF), Support Vector Machine (SVM), and BP Neural Network models, were em-
ployed to assess the susceptibility of rainfall-induced accumulation landslides in the study
area. Subsequently, the accuracy of the evaluation models was compared and verified
using the Receiver Operating Characteristic (ROC) curve, and the evaluation results were
analyzed. Finally, the developed Random Forest model was applied to Gongping Town in
Fengjie County to verify its applicability in other regions. The findings indicate that the
complex geological conditions and the unique tectonic erosion landform patterns in the
northeastern region of Chongqing not only make this area a center of heavy rainfall but
also lead to frequent and recurrent rainfall-induced landslides. The Random Forest model
effectively reflects the development characteristics of accumulation landslides in the study
area. High and very high susceptibility zones are concentrated in the northern and central
regions of the study area, while low and moderate susceptibility zones predominantly
occupy the mountainous and riverside areas. Landslide susceptibility mapping in the study
area shows that the Random Forest model yields reasonably graded results. Elevation,
remote sensing image texture features, and lithology are highly significant factors in the
evaluation system, indicating that the development factors of slope geological disasters
in the study area are mainly related to topography, geomorphology, and lithology. The
landslide susceptibility evaluation results in Gongping Town, Fengjie County, validate the
applicability of the Random Forest model developed in this study to other regions.

Keywords: landslide susceptibility evaluation; accumulation landslide; random forest;
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1. Introduction
The northeastern area of Chongqing is highly prone to geological disasters, with

accumulation landslides being particularly prominent. Rainfall is the primary triggering
factor for landslides, inducing deformation and even failure of old landslides, as well as
generating numerous shallow to intermediate-depth accumulation landslides. The north-
eastern area of Chongqing experiences high annual rainfall and frequent extreme weather
events. Under the influence of these extreme conditions, rainfall-induced geological disas-
ters are common and frequent, primarily including landslides, collapses, and debris flows.
During the extreme rainfall event on 31 August 2014, NASA’s global rainfall observation
data recorded a maximum daily rainfall of 214 mm. Severely affected areas included five
districts and counties: Yunyang, Fengjie, Wushan, Wuxi, and Kaixian, where a total of
2340 geological disaster incidents occurred, primarily involving medium- to small-scale
accumulation landslides. Approximately 90% of these landslides were newly formed and
not within the scope of the monitoring and early warning system for geological disasters,
leading to a high risk of mass casualties.

Remote sensing images, characterized by multi-source, multi-temporal, multi-spatial
resolutions and extensive coverage, are highly suitable for conducting geological disaster
investigations. Optical remote sensing interpretation identifies geological environment
information of landslides through the features of remote sensing images, obtaining their lo-
cation, morphology, boundary extent, and other characteristic information [1]. Yang et al. [2]
identified the Qianjiangping landslide in the Three Gorges Reservoir area using digital land-
slide and human–computer interaction interpretation techniques, and comprehensively
analyzed the landslide processes and sedimentary characteristics. Cao et al. [3] applied the
integration of remote sensing images and Digital Elevation Model (DEM) technology to
create and interpret three-dimensional images of the study area for landslide analysis. Pang
et al. [4] established a convolutional neural network model with landslide characteristics
for automatic identification of landslides in satellite remote sensing images. Optical remote
sensing interpretation methods are particularly effective in identifying landslides with
prominent geomorphological features, especially those that have recently occurred.

Conducting geological disaster susceptibility evaluations helps to understand the
impact of geological environmental conditions on the occurrence of geological disasters [5].
By assessing the susceptibility of geological disasters in specific areas, it is possible to
identify key protection targets and necessary preventive measures. This, in turn, aids in the
coordinated development of resources, the environment, and the economy.

Current research methods for geological disaster susceptibility evaluation can be mainly
categorized into empirical models (e.g., expert scoring method, analytic hierarchy process),
statistical models (e.g., information value method, certainty factor method), and machine
learning models (e.g., Support Vector Machines, Random Forest model, Artificial Neural
Network model) [6–10]. Wati et al. [11] utilized a weighted scoring method with six parameters
to evaluate landslide susceptibility, assigning weights to the parameters based on expert
judgment. Fan et al. [12] proposed a new method that combines the Certainty Factor (CF) and
Analytic Hierarchy Process (AHP) to assess landslide susceptibility in Ziyang County, located
in the Qinba Mountains of China. Panchal et al. [13] used the Analytic Hierarchy Process
(AHP) model with Weighted Linear Combination (WLC) techniques to create a landslide
hazard map along National Highway 5. Afungang et al. [14] employed GIS and Information
Value models to quantitatively assess the spatial probability of landslides.

There are several methods for evaluating geological hazard susceptibility using machine
learning models. These include improvement of machine learning algorithms and model
establishment based on specific data processing methods (Min et al., Phong et al.) [15,16];
selection of geological hazard susceptibility evaluation factors using different methods and
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approaches, such as weighting and superimposing the deterministic coefficient values for each
evaluation factor (Zhang et al.) [17]; extraction of novel influence factors for geological hazard
susceptibility evaluation using conversion approaches (Wu et al.) [18]; comparative analysis
of various methods used in landslide susceptibility mapping (empirical models, statistical
models, and machine learning models including Support Vector Machine, Random Forest,
Artificial Neural Network models, etc.) combined with different technical approaches to select
the optimal model (Chen et al., Huang et al., Liu et al., Wu Runze et al., Wu et al.) [19–23]; and
comparison of non-traditional sampling methods for geological hazard sample data required
for modeling and the performance of various models based on these sampling methods (Song
et al., Xu et al.) [24,25].

Among the aforementioned three models, empirical models simplify the impact mech-
anisms of geological disaster causal factors. They mainly determine the weights artificially
to express their contribution to disaster occurrence, which limits their widespread appli-
cability. The main process of statistical models involves first selecting evaluation factors,
then classifying these factors and calculating the area of each classification interval and the
density of disaster points. Finally, relevant indices are computed to assess susceptibility.
Such models overlook the specificity of the evaluation factors themselves, and the choice of
different evaluation factors can also affect the accuracy of the assessment results. Machine
learning models perform susceptibility assessment through mathematical theories. This
method has strong generalization capabilities for high-dimensional data and exhibits ro-
bust resistance to overfitting. However, the selection of specific model parameters can be
challenging, and the prediction accuracy is lower when sample data is insufficient [26–31].
In summary, the geological conditions and climatic factors of different study areas vary, and
the applicability of models also differs under research at different scales of precision. There-
fore, selecting effective evaluation methods and models for geological hazard susceptibility
assessment is of significant importance.

In summary, the evaluation of geological hazard susceptibility is a diversified and
complex task. This study focuses on a specific area in Yunyang County, northeastern
Chongqing, utilizing high-resolution satellite remote sensing image interpretation to obtain
the distribution of rainfall-induced accumulation landslides before and after the heavy
rainfall event on 31 August 2014. In contrast to the current research status, this study
focuses on evaluating the susceptibility of accumulation landslides by using susceptibility
evaluation factors equivalent to accumulation thickness and distribution evaluation factors.
Geological maps, topographic maps, and remote sensing images were used to extract eight
evaluation factors, such as lithology, elevation, slope, remote sensing image texture features,
and normalized difference vegetation index, to assess the accumulation thickness and its
thickness evaluation factors. Various machine learning models, including Random Forest
(RF), Support Vector Machine (SVM), and BP Neural Network, were employed to evaluate
the susceptibility of rainfall-induced accumulation landslides in the study area. Finally, the
same methods and model establishment are applied to Gongping Town in Fengjie County,
Chongqing, to demonstrate that the model has certain applicability in the susceptibility
evaluation of accumulation landslides. This provides technological support and practical
experience for susceptibility assessment and zoning prevention and control of landslide
hazards in other areas of northeastern Chongqing.

2. Research Methods
2.1. Remote Sensing Interpretation

By analyzing satellite remote sensing images before and after the heavy rainfall on
31 August 2014, in the northeastern Chongqing area, we interpreted the landslides induced
by this rainfall event. Remote sensing interpretation was conducted using historical remote
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sensing images in Google Earth Pro (7.3.6.9796 (64-bit)), focusing on the characteristics of
landslides in slope areas. The remote sensing images provided by this software have a
maximum resolution of 0.26 m. The high-resolution post-rainfall remote sensing images
clearly show significant landslide features in the large-scale sliding slope areas. In the
satellite images of the landslide areas, the color tones appear lighter, indicating damage to
vegetation, houses, and roads. Various types of cracks on the landslide body are clearly
visible, such as tensile cracks at the rear edge, chair-shaped cracks, or landslide back walls
formed by the dislocation of rock and soil masses. The front edge extends towards the river
valley, blocking it and even forming a landslide dam lake. Some parts of the landslide’s
front edge have turned into landslide debris flows. By comparing satellite remote sensing
images before and after the heavy rainfall on 31 August, it is possible to eliminate the
interference of human engineering activities on landslide interpretation, thereby further
enhancing the accuracy of the interpretation.

2.2. Machine Learning Models and Technical Route

(1) Random Forest

Random Forest (RF) is an ensemble machine learning method primarily used for
classification and regression tasks [32]. It improves model accuracy and robustness by
constructing multiple decision trees and combining their prediction results. It can be
divided into the following 4 steps:

• Using the bootstrap sampling method, T samples are randomly and repeatedly drawn
with replacement from the overall sample, generating N training subsets;

• In each training subset (Nk), m features are randomly selected without replacement as
the basis for node splitting in the decision tree. After training, a complete decision tree
is generated without the need for pruning;

• Repeat the above steps to construct multiple decision trees, forming a random forest;
• Input the out-of-bag data that was not used for training, allowing each decision tree to

make a prediction; repeat the previous step until all test data have been processed.

(2) Support Vector Machine and BP Neural Network

Support Vector Machine (SVM) models are widely used for various complex classi-
fication and regression problems because they can effectively address issues related to
limited samples and nonlinear high-dimensional pattern recognition [33]. To separate
data points of different categories, the optimal decision boundary (or hyperplane) in a
multidimensional space is sought. The kernel functions (such as polynomial kernels and
radial basis function kernels) are employed to map the data into a higher-dimensional
space, thereby reducing classification errors and maximizing the generalization ability of
the classifier.

The BP (back propagation) neural network is a type of multilayer feedforward neural
network, where the neurons are fully connected between layers, but there are no connec-
tions between neurons within the same layer. It is currently one of the most widely used
machine learning algorithms [34]. The BP neural network is a typical representative of
the artificial neural network [35]. The learning rule of the BP neural network utilizes the
steepest descent method, continuously adjusting the network’s weights and thresholds
through back propagation to minimize the classification error rate. The neural network is
trained until it reaches a user-defined number of training iterations or an acceptable level
of performance, resulting in a BP neural network trained on sample data.

(3) Technical route

Under heavy rainfall conditions, the distribution and thickness of the slope accumula-
tion layers are important factors affecting slope stability. For the susceptibility assessment
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of medium to shallow accumulation landslides, the primary and crucial issue is to spatially
locate the positions of accumulation landslides occurring under heavy rainfall conditions.
This study is based on the analysis of satellite remote sensing images before and after the
heavy rainfall on 31 August 2014, in northeastern Chongqing. We interpreted the landslides
induced by this rainfall event and extracted the distribution of accumulation landslide
locations in the study area. Subsequently, an equal number of non-hazard points were
selected to extract the evaluation factors for the distribution and thickness of accumulation.
Various machine learning classification methods were used to construct the susceptibility
evaluation model for accumulation landslides. A spatial distribution map of accumulation
landslide susceptibility in the study area was then created to delineate potential hazard
locations where rainfall might induce accumulation landslides.

The technical route of the susceptibility assessment method for rainfall-induced ac-
cumulation landslides based on remote sensing interpretation is shown in Figure 1. The
research process is as follows:

• Collect remote sensing image data, landslide field investigation and survey data,
topographic maps, geological maps, and historical rainfall data for the study area;

• Organize and analyze data, obtain sample accumulation landslide location informa-
tion through remote sensing interpretation and field investigation validation. Use
stratigraphic lithology, elevation, slope, aspect, profile curvature, the normalized dif-
ference vegetation index (NDVI), distance to roads, and contrast from the gray-level
co-occurrence matrix (GLCM contrast) of image texture features as evaluation factors;

• Establish a susceptibility assessment model for accumulation landslides and generate
a spatial distribution map of accumulation landslide susceptibility for the study area;

• Calculate the susceptible area and disaster point density for the statistical model, plot
the ROC curve, and compute the AUC value.

Remote Sens. 2025, 17, x FOR PEER REVIEW 5 of 22 
 

 

until it reaches a user-defined number of training iterations or an acceptable level of per-
formance, resulting in a BP neural network trained on sample data. 

(3) Technical route 

Under heavy rainfall conditions, the distribution and thickness of the slope accumu-
lation layers are important factors affecting slope stability. For the susceptibility assess-
ment of medium to shallow accumulation landslides, the primary and crucial issue is to 
spatially locate the positions of accumulation landslides occurring under heavy rainfall 
conditions. This study is based on the analysis of satellite remote sensing images before 
and after the heavy rainfall on 31 August 2014, in northeastern Chongqing. We interpreted 
the landslides induced by this rainfall event and extracted the distribution of accumula-
tion landslide locations in the study area. Subsequently, an equal number of non-hazard 
points were selected to extract the evaluation factors for the distribution and thickness of 
accumulation. Various machine learning classification methods were used to construct the 
susceptibility evaluation model for accumulation landslides. A spatial distribution map 
of accumulation landslide susceptibility in the study area was then created to delineate 
potential hazard locations where rainfall might induce accumulation landslides. 

The technical route of the susceptibility assessment method for rainfall-induced ac-
cumulation landslides based on remote sensing interpretation is shown in Figure 1. The 
research process is as follows: 

 

Figure 1. Technical flowchart. 

• Collect remote sensing image data, landslide field investigation and survey data, 
topographic maps, geological maps, and historical rainfall data for the study area; 

Figure 1. Technical flowchart.



Remote Sens. 2025, 17, 339 6 of 20

3. Remote Sensing Interpretation of Landslides
3.1. Study Area

This study selects one part of Yunyang County in northeastern Chongqing as an
example. The study area is located in the suburban counties of Chongqing, situated in the
transitional zone from the second to the third step of China’s topography. It is the confluence
area of the Sichuan-East Fold and the Western Hubei Mountains, characterized by mid- to
low-mountain erosion canyon landforms [36]. The study area primarily develops Permian,
Triassic, and Jurassic strata. The lithology within the area is diverse, and the structure is
complex, providing conditions conducive to geological hazards. Certain strata, such as the
Badong Formation and Jurassic strata, are referred to as easily sliding layers [37,38]. Under
the extreme rainfall conditions of 31 August 2014, the study area experienced multiple
geological hazard incidents, primarily medium- to small-sized accumulation landslides,
resulting in casualties and economic losses. The study area is predominantly exposed to
Jurassic strata, mainly consisting of clastic rocks such as sandstone, siltstone, and shale.
There are also minor exposures of Triassic strata with lithology comprising limestone and
sandstone. The specific geographical location is shown in Figure 2.
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3.2. Landslide Remote Sensing Interpretation

Remote sensing interpretation was conducted using Google Earth Pro software, lever-
aging the historical remote sensing data displayed in the software from different periods.
This approach allows for accurate and efficient interpretation of the accumulation landslide
disasters induced by the 31 August heavy rainfall in northeastern Chongqing. The tools
provided by the software were used to measure basic characteristics of the landslides, such
as length, width, and area, and these measurements were utilized as sample accumulation
landslide location information.

Through remote sensing image interpretation, 316 landslides were identified in the
region, mainly concentrated in the northern area of Yunyang County (Figure 3). Figure 4
shows two typical landslide areas. In terms of scale, the landslides are primarily medium-
to small-sized accumulation landslides, with newly formed landslides accounting for 71.9%
of the total. Some older landslides also exhibited significant deformation or even large-scale
sliding under the influence of heavy rainfall.
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4. Susceptibility Assessment
Under heavy rainfall conditions, the distribution and thickness of slope accumulation

layers are important factors affecting slope stability. For the susceptibility assessment of
accumulation landslides, this can be equivalently evaluated as the spatial distribution
assessment of unstable accumulation layers on slopes. Therefore, this paper uses the
evaluation method of slope accumulation thickness and distribution information to extract
the susceptibility evaluation factors of accumulation landslides. Based on the theory
proposed by Johnson et al. (2005) [39], the accumulation thickness is generalized as a
function of deepening processes, upbuilding, and removals. Using multi-source data such
as geological maps, topographic maps, and remote sensing images, the susceptibility factors
influencing accumulation landslides in the study area were extracted.

Different lithologic strata exhibit varying weathering characteristics, which control the
rate of deepening of slope accumulation layers. In the study area, landslides mainly occur
in clastic rock strata, especially in the interbedded sandstone and shale units of the Jurassic
system. These rocks have low strength and weak weathering resistance, leading to the forma-
tion of relatively thick accumulation cover layers. Secondly, the topography of mountainous
slopes controls the transportation and accumulation process of slope debris. Gentle slope
areas facilitate the accumulation of weathered rock debris, forming relatively thick loose
accumulation layers. Generally, weathered materials are transported downhill along the slope.
Therefore, the rear edge of the slope is primarily dominated by weathering and erosion, result-
ing in thinner accumulation layers, while the front edge has relatively thicker accumulation
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layers. Additionally, steep slopes are mainly characterized by erosion, with thin surface cover
layers, while gentle slopes are dominated by accumulation, resulting in thicker accumulation
layers. Land use types or human engineering activities also affect the transportation and
accumulation processes of debris. Remote sensing images effectively record surface land use
types and characteristics of human activities. Therefore, this paper obtains the zoning factors
for the distribution of slope accumulation layers from geological maps, topographic maps,
and remote sensing images. A total of eight major factors controlling and influencing the
susceptibility of accumulation landslides were extracted. Combined with high-resolution
remote sensing interpretation, samples of accumulation landslides were acquired for machine
learning and model construction. Generally, spatial prediction of landslides can be viewed as
a binary classification process (Bennett et al., 2016) [40]. For accumulation landslides, suscepti-
bility assessment corresponds to predicting the distribution of unstable accumulation layers.
This process involves selecting evaluation factors that control and influence the distribution of
these layers. In the modeling process, it is necessary to prepare an equal number of negative
(non-landslide) and positive (landslide) datasets (Kornejady et al., 2017) [41]. The negative
dataset is randomly generated using ArcGIS10.8 software.

(1) Geological factor map

Lithology is one of the controlling factors of the distribution characteristics of slope
accumulation layers. In the study area, the main exposed strata are Jurassic, primarily
consisting of clastic rocks such as sandstone, siltstone, and shale. These rocks have low
strength and weak weathering resistance, resulting in relatively thick accumulation cover
layers. Additionally, there are minor exposures of Triassic strata, with lithology including
limestone and sandstone. These rocks have high strength and strong weathering resistance,
leading to thin soil cover layers or even exposed bedrock. Different regional lithologies
have varying weathering resistance, which in turn affects the location and thickness of the
accumulation layers formed. Therefore, this study selects engineering geological lithology
as an evaluation factor.

(2) Topographic factor map

The transportation and accumulation of debris are influenced by the slope gradient.
Gentle slopes facilitate the accumulation of weathered rock debris, leading to the formation
of thicker cover layers. In contrast, steep slopes are dominated by erosion, resulting in thin
surface cover layers, and steep banks or cliffs typically expose bedrock. The accumulation
layers in the study area are mainly distributed on slopes with gradients below 35◦, primarily
on medium and gentle slopes. When the gradient exceeds 60◦, the bedrock is usually
exposed. Soil thickness values exhibit an inverse proportionality with slope gradient. This
principle is widely accepted (Saulnier et al. 1997; Blesius et al. 2009) [42,43]. Changes in
elevation correspond to vertical zonation of climate and surface cover, indirectly affecting
the weathering of bedrock and the distribution of slope accumulation. Soil thickness values
are inversely proportional to the elevation (Saulnier et al. 1997) [42]. Slopes with different
aspects receive varying intensities and durations of sunlight, which leads to differences in
water evaporation, vegetation cover, and the weathering degree of the rock on the slopes,
thereby influencing the distribution of accumulation layers. Profile curvature refers to
the rate of slope change at any point on the ground. A high-profile curvature indicates a
large rate of elevation change on the surface, meaning the terrain changes rapidly, making
it difficult for debris to accumulate and remain. Since profile curvature correlates with
the distribution of accumulation layers, it is considered an important evaluation factor.
Road construction often requires slope excavation, which disrupts geological structures
and reduces slope stability. Based on the GIS platform, buffer zones are constructed around
major roads (national and provincial roads).
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Combining the analysis of topographic factors influencing and controlling the trans-
portation and accumulation of debris, topographic maps in ArcGIS were used to extract
elevation, slope, aspect, profile curvature, and distance to roads. Five thematic maps
representing these topographic factors were produced.

(3) Remote sensing factor map

Features and their combinations can reflect the distribution and thickness of slope ac-
cumulation layers. In the study area, rocky areas are usually covered with dense vegetation,
whereas farmlands, bare lands, and residential areas, which have sparse or no vegetation,
are accumulation layer regions. The thickness of the Quaternary cover generally decreases
as the NDVI value increases (Yang Ke et al., 2020) [44]. There is a positive correlation
between the degree of landslide development and changes in land use intensity, with the
intensity of land use in landslide areas being higher than in non-landslide areas (Ye Runqing
et al., 2021) [45]. Areas with high land use intensity also have thicker accumulation layers.
The normalized difference vegetation index (NDVI) can represent regional vegetation cover.
Using the near-infrared band (Band 5) and red band (Band 4) data of the Landsat 8 imagery
(8 April 2013) with a resolution of 30 m, the NDVI data of the study area was extracted
through band calculations.

In remote sensing images, combinations of different feature types such as farmlands, bare
lands, and residential areas have specific spectral and textural characteristics corresponding
to surface cover types. Through the multi-scale segmentation algorithm, spatial relationships
in image neighborhoods are reflected by clustering pixels with similar texture features into
objects. The gray-level co-occurrence matrix contrast (GLCM contrast) of the texture features
of the segmented objects is selected and calculated as a susceptibility evaluation factor for
accumulation landslides. Correlation analysis was conducted on the eight determined suscep-
tibility evaluation factors to prevent issues such as overfitting or frequent misclassification in
machine learning. The correlation heatmap is shown in Figure 5.
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relation. However, the correlation coefficient only reflects linear relationships, and corre-
lation does not imply causation. The correlation analysis of the identified eight suscepti-
bility evaluation factors revealed that the correlations between them are weak, indicating 
no need for removal. Each factor provides independent and significant information, and 
the low correlation implies that these factors capture different landslide influence ele-
ments. As a result, they collectively contribute to the predictive capability of the model. A 
diversified combination of factors can better address different types of landslide risks. 

The classification method for each factor is the Jenks natural breaks classification 
method, which identifies classification intervals to optimally group similar values and 
maximize differences between classes. The evaluation factors and the reclassification re-
sults are shown in Figure 6. 
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On a heatmap, the colors typically represent the strength and direction of the cor-
relation. The color scale ranges from −1 to 1, indicating a transition from a completely
negative correlation to a completely positive correlation. The closer the absolute value of
the correlation coefficient is to 1, the stronger the correlation between the two variables. In
statistics, an absolute value of the correlation coefficient between 0.1 and 0.3 indicates a
weak correlation between two variables. An absolute value between 0.3 and 0.5 indicates a
moderate correlation, while an absolute value between 0.5 and 1 indicates a strong correla-
tion. However, the correlation coefficient only reflects linear relationships, and correlation
does not imply causation. The correlation analysis of the identified eight susceptibility
evaluation factors revealed that the correlations between them are weak, indicating no
need for removal. Each factor provides independent and significant information, and the
low correlation implies that these factors capture different landslide influence elements. As
a result, they collectively contribute to the predictive capability of the model. A diversified
combination of factors can better address different types of landslide risks.

The classification method for each factor is the Jenks natural breaks classification
method, which identifies classification intervals to optimally group similar values and
maximize differences between classes. The evaluation factors and the reclassification results
are shown in Figure 6.
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5. Susceptibility Evaluation Results and Validation
5.1. Susceptibility Evaluation Results of Multiple Models

Using the samples and the eight susceptibility evaluation factors for accumulation
landslides obtained from the previous analysis, various machine learning classification
algorithms were employed to divide the positive and negative datasets into training and
testing sample sets in a 7:3 ratio. The training set was used to train the model parameters,
which were then tested on the testing set. The evaluation results of the prediction accuracy
of multiple models are shown in Table 1.

Table 1. Model evaluation results.

Model Datasets Accuracy Recall Precision F1

RF Training set 0.868 0.956 0.827 0.887
Test set 0.861 0.953 0.826 0.885

SVM Training set 0.847 0.891 0.838 0.863
Test set 0.838 0.883 0.837 0.859

BP neural network Training set 0.761 0.837 0.75 0.791
Test set 0.753 0.825 0.756 0.789
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The susceptibility indices calculated by various machine learning models were im-
ported into ArcGIS. Using the geometric interval method in ArcGIS, the susceptibility
indices were classified into five levels (very low, low, moderate, high, very high) to create a
susceptibility evaluation map of the study area (Figure 7).
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The evaluation results of the Random Forest classification model are validated using
the Receiver Operating Characteristic (ROC) curve, which effectively measures the reliabil-
ity of the evaluation results. The closer the ROC curve is to the top left corner, the closer
the Area Under the Curve (AUC) value is to 1, indicating higher accuracy of the evaluation
model. Figure 8 shows the ROC curves and AUC values corresponding to the three models.
An AUC value greater than 0.75 indicates high accuracy of the evaluation models. To
further analyze the zoning results, it is necessary to study the distribution of hazard points
and the area of susceptibility zones in the study area. Therefore, Table 2 presents the
statistics of the areas and hazard point densities in high and very high susceptibility zones
for the three models.
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Table 2. Susceptibility zoning statistics.

Model Susceptibility Area/km2 Interpreted Number of
Landslides

Proportion of Total
Landslide Area/%

RF
High 59.54 133 0.421

Very high 47.62 106 0.335

SVM
High 53.11 96 0.303

Very high 67.7 108 0.342

BP neural network
High 76.8 90 0.284

Very high 42.49 69 0.218

The following is a comparative analysis of landslide susceptibility zoning maps and
susceptibility zoning statistics of the three machine learning models:

• The F1 score and accuracy of the Random Forest (RF) and Support Vector Machine
(SVM) models are higher than those of the BP neural network model. Comparing the
landslide susceptibility zoning maps, it is evident that the BP neural network model
has lower prediction accuracy and its results differ significantly from those of the
Random Forest and Support Vector Machine models, making it not useful for reference.
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The susceptibility evaluation results predicted by the Random Forest and Support
Vector Machine models are consistent with the remote sensing interpretation results.

• Both the Random Forest and Support Vector Machine models correctly reflect the
development characteristics of slope geological hazards in the study area. The high
and very high susceptibility zones are concentrated in the northern and central village
regions of the study area and the central mountainous regions with thicker accumu-
lation layers. Low susceptibility zones, which account for the majority, are mainly
distributed along the Yangtze River and in most high mountain areas.

• The proportion of landslides interpreted from remote sensing in high and very high
susceptibility areas predicted by the Random Forest model is higher than that of
the Support Vector Machine model. Therefore, this paper selects the zoning map
generated by the Random Forest model prediction as the susceptibility evaluation
result for accumulation landslides in the study area. The same method of selecting
influencing factors and establishing the model is applied to other areas to verify the
model’s applicability.

The landslide locations interpreted from remote sensing were used to verify the
accumulation landslide susceptibility zoning map generated by the Random Forest model.
Typical landslides at different locations were selected for verification and comparison, and
the results are shown in Figure 9.
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Landslide susceptibility mapping can be applied in urban planning and disaster
management response plans. In the northeastern Chongqing area discussed in this paper,
the main high susceptibility zones are concentrated in the local mountainous village
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areas. The susceptibility evaluation map for accumulation landslides should be used
to optimize land use, avoiding unreasonable construction in high susceptibility zones, and
ensuring protective design for infrastructure development. Local disaster management
plans should utilize landslide susceptibility evaluation maps to develop more effective
disaster emergency plans in advance, improve response speed and effectiveness, allocate
rescue resources reasonably, and ensure rapid post-disaster recovery. While landslide
susceptibility evaluation maps serve as important reference data, the key factor is the
disaster preparedness awareness of local community residents and their readiness to face
extreme rainfall events. Local disaster management and response departments should
integrate multi-source data and implement a community-based monitoring and prevention
policy, establishing efficient disaster emergency plans to ensure the safety of residents’ lives
and property.

5.2. Study on the Applicability of Accumulation Landslide Susceptibility Evaluation

To validate the regional applicability of the accumulation landslide susceptibility
evaluation methods and model establishment mentioned in this paper, Gongping Town,
Fengjie County, Chongqing, was selected as the validation area. Using the same modeling
methods and multi-source data, susceptibility evaluation factors for accumulation land-
slides were extracted. The Random Forest model accumulation landslide susceptibility
evaluation results and remote sensing interpreted landslide locations in the area are shown
in Figure 10. Figure 11 shows the interpreted image of the Guiba landslide caused by the
heavy rain on 31 August and a comparison with the Random Forest model accumulation
landslide susceptibility evaluation results. The results indicate that the accumulation land-
slide susceptibility evaluation methods and model establishment proposed in this paper
have certain regional applicability.
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6. Conclusions
Based on multi-source data, remote sensing interpretation, and data mining techniques,

this paper uses parts of Yunyang County in Northeast Chongqing as the study area. By
selecting eight factors, including elevation, to establish a landslide susceptibility evaluation
model, the simulation results showed that the Random Forest model achieved better
prediction results. The generated susceptibility evaluation map corresponds well with the
actual situation. The study on the applicability of the landslide susceptibility evaluation
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model indicates that the factor extraction method and model establishment proposed in
this study have certain regional adaptability.

• The complex geological structure and the resulting erosional landforms in Northeast
Chongqing are the main reasons for it becoming a heavy rain center. The heavy rainfall
event on 31 August triggered primarily new small- and medium-sized accumulation
landslides. The slopes in the landslide areas are relatively steep, mostly around 25◦,
with landslides still occurring on slopes between 30◦ and 45◦. Landslides induced by
heavy rain are more likely to occur on windward slopes facing west and south.

• In selecting evaluation factors for the susceptibility of accumulation landslides, this
study equates them with factors influencing the distribution and thickness of slope
accumulation layers. Important factors such as elevation, slope, and remote sensing
image characteristics were selected. Landslide susceptibility evaluation models were
established using various machine learning models. By comparing the ROC curves,
AUC values, and susceptibility zoning statistics of three machine learning models, it
was found that the accumulation landslide susceptibility zoning map generated by
the Random Forest model more accurately reflects the development characteristics of
slope geological hazards in the study area.

• The landslide susceptibility mapping in the study area shows that the Random Forest
model achieved reasonable classification results, with the very low, low, moderate,
high, and very high susceptibility levels accounting for 4.4%, 5.8%, 14.2%, 42.1%, and
33.5% of the total interpreted landslide area, respectively. Among these, 75.6% of the
interpreted landslides are distributed in the very high and high susceptibility zones.
The high susceptibility zones shown in the model prediction results are larger than
the actual landslide distribution areas. The main reason is the inability to accurately
evaluate landslide regions, which leads to similar areas also being zoned as high
susceptibility zones, resulting in a patchy phenomenon. Some actual landslides are
not in high susceptibility zones, possibly because the characteristic factors are not
prominent, and the model predicts a low probability of these areas being landslide
prone. The performance evaluation and susceptibility statistics both indicate that the
Random Forest is an excellent algorithm suitable for landslide susceptibility analysis.
The final susceptibility zoning also indicates that the northern and southeastern regions
of the study area require focused precautions, and disaster prevention and mitigation
planning should be conducted in advance under heavy rainfall conditions.

• Gongping Town in Fengjie County was selected as the validation area for model appli-
cability. By using the same extraction of landslide susceptibility evaluation factors and
modeling process, the landslide susceptibility mapping in the study area achieved rel-
atively reasonable results. This indicates that the equivalent factor extraction method
and model establishment proposed in this paper have high regional applicability.
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