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Abstract: In the scenario of limited labeled remote-sensing datasets, the model’s perfor-
mance is constrained by the insufficient availability of data. Generative model-based data
augmentation has emerged as a promising solution to this limitation. While existing gen-
erative models perform well in natural scene domains (e.g., faces and street scenes), their
performance in remote sensing is hindered by severe data imbalance and the semantic
similarity among land-cover classes. To tackle these challenges, we propose the Multi-Class
Guided GAN (MCGGAN), a novel network for generating remote-sensing images from
semantic labels. Our model features a dual-branch architecture with a global generator
that captures the overall image structure and a multi-class generator that improves the
quality and differentiation of land-cover types. To integrate these generators, we design
a shared-parameter encoder for consistent feature encoding across two branches, and a
spatial decoder that synthesizes outputs from the class generators, preventing overlap and
confusion. Additionally, we employ perceptual loss (LVGG) to assess perceptual similarity
between generated and real images, and texture matching loss (LT) to capture fine texture
details. To evaluate the quality of image generation, we tested multiple models on two cus-
tom datasets (one from Chongzhou, Sichuan Province, and another from Wuzhen, Zhejiang
Province, China) and a public dataset LoveDA. The results show that MCGGAN achieves
improvements of 52.86 in FID, 0.0821 in SSIM, and 0.0297 in LPIPS compared to the Pix2Pix
baseline. We also conducted comparative experiments to assess the semantic segmentation
accuracy of the U-Net before and after incorporating the generated images. The results
show that data augmentation with the generated images leads to an improvement of 4.47%
in FWIoU and 3.23% in OA across the Chongzhou and Wuzhen datasets. Experiments
show that MCGGAN can be effectively used as a data augmentation approach to improve
the performance of downstream remote-sensing image segmentation tasks.

Keywords: remote-sensing images; generative adversarial networks; image synthesis;
data augmentation

1. Introduction
Currently, deep-learning technology is rapidly advancing and achieving significant

results across various fields through data-driven methods. High-quality training samples
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are fundamental to achieving outstanding performance of network models, thus the de-
mand for sufficient and high-quality datasets is becoming increasingly urgent. However,
objects in remote-sensing images can exhibit variations in color, texture, and size across
different regions, even within the same class. Consequently, samples from one region may
not be effective in improving the network’s performance for other regions. Unlike tasks
in computer vision, many remote-sensing tasks, such as image segmentation [1], hyper-
spectral image classification [2], and disaster detection and assessment [3], suffer from a
lack of diverse training samples due to regional differences, satellite sensor limitations,
and other factors [4,5]. Using data augmentation to generate remote-sensing images can
address this [6,7].

Transformation-based augmentation includes color space transformations that modify
pixel intensity values (e.g., brightness and contrast adjustment) and geometric transfor-
mations that update the spatial locations of pixels (e.g., affine transformations), while
synthetic-based augmentation resorts to generative methods (e.g., neural style transfer [8])
and mixing augmentations (e.g., MixUp [9] and CutMix [10]) [11]. Although these ap-
proaches increase the dataset size, they primarily focus on individual images or image
pairs, utilizing only intrinsic image information or the mutual information between pairs.
As a result, the augmented data introduce limited prior knowledge, producing new sam-
ples that closely mimic existing patterns with minimal informational novelty. This lack of
diversity in the generated data reduces the effectiveness of these methods in enhancing
model performance [12].

In recent years, methods based on generative models have introduced innovative
approaches to data augmentation. These models generate new images by learning the
overall distribution of the data. The mainstream generative models currently include
GANs and diffusion models [13,14]. As an emerging method, diffusion has already been
applied to various remote-sensing image-generation tasks, such as cloud removal [15],
image super-resolution [16], and the conversion between SAR and optical images [17].
However, training diffusion models often requires large datasets. When paired remote-
sensing and semantic-label datasets are scarce, training such models becomes challenging.
Additionally, since diffusion models require iterative denoising at each timestep during
prediction, generating a single image can take several seconds or even longer, making them
less suitable for large-scale data augmentation [4,5]. In contrast, GAN-based methods offer
a more efficient solution for data augmentation, as they can generate large amounts of data
with relatively smaller training datasets [1].

Our research aims to generate remote-sensing images from semantic labels to enhance
deep learning datasets. Currently, GAN-based label-to-image methods have achieved
outstanding results on scene datasets such as COCO-Stuff [18], Cityscapes [19], and ADE-
20K [20]. However, they are still limited in remote-sensing datasets. X. Pan et al. proposed
a CGAN-TSIM model for generating remote-sensing images from semantic label, which
improves the spatial diversity of the original sample set and enhances the accuracy of
semantic segmentation networks [1]. CSEBGAN [21] generates realistic remote-sensing
images by decoupling different semantic classes into independent embeddings, achieving
finer-grained diversity. Zhang et al. introduced a BnGLGAN [22] translating image to image
based on noise reconstruction, which has shown excellent performance in several image
generation tasks, including generating remote-sensing images from label maps. However,
generating remote-sensing images from semantic labels still faces several challenges.

Existing methods often rely on datasets with simple image forms and low data com-
plexity. These methods may not be suitable when confronted with challenges such as high
data imbalance and high semantic similarity among land-cover classes in remote-sensing
images. As a result, a single generator structure struggles to effectively capture and gener-
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ate the diverse characteristics of these land-cover types. Some methods have attempted to
address this by designing dual-branch structures to separately focus on global and local
information. However, existing dual-branch architectures still face challenges in effectively
balancing the generation of samples for different land-cover types. This imbalance often
leads to significant interference between generators, resulting in issues such as distorted
building structures and unrealistic texture details in the generated images.

To address these challenges, we employ the Multi-Class Guided GAN (MCGGAN)
to augment the dataset of remote-sensing images, specifically focusing on five typical
land-cover classes: water, buildings, vegetation, roads, and background. The contributions
of this paper are summarized as follows:

1. Our model features a dual-branch generator architecture that combines multi-scale
features from both multi-class and global generators using a Pixel-Level Fusion Net-
work. This design overcomes the global generator’s limitation in capturing detailed
features across different land-cover types.

2. We propose the shared-parameter encoder that ensures consistent feature encoding
across both the global and multi-class branches. Additionally, we introduce a spatial
decoder that effectively synthesizes outputs from the multi-class generator, preventing
overlap and confusion. This design reduces the mutual influence among generators,
ensuring more consistent outputs.

3. We employ perceptual loss (LVGG) to compute the perceptual similarity of images
and use texture matching loss (LT) to assess the differences in texture details between
generated and real images via the Gram matrix. By combining these two loss functions,
we enhance the color, texture, and perceptual authenticity of the generated images,
ensuring higher output quality.

4. The effectiveness of the generated images is assessed by analyzing how varying
quantities of generated data impact the accuracy of the U-Net segmentation network
across datasets of different sizes.

2. Related Work
2.1. GAN-Based Data Augmentation

Numerous studies have utilized GANs to generate remote-sensing samples for data
augmentation. Kuang et al. proposes a semantic-layout-guided collaborative framework
for SAR sample generation to enhance sample diversity and improve detection perfor-
mance [23]. Remusati et al. explores the use of GANs to enhance the explainability
and performance of SAR Automatic Target Recognition (ATR) and classification models,
ad-dressing both the generation of synthetic data and the development of methods for
better understanding model decisions [24]. Fu et al. presents a novel denoising GAN
for colorizing remote-sensing grayscale images, which outperforms existing techniques
and im-proves building detection performance [25]. Rui et al. introduces DisasterGAN to
synthesize diverse remote-sensing disaster images with multiple types of disasters and
varying building damage, addressing the challenges of class imbalance and limited train-
ing data in existing datasets [3]. Simonyan and Zisserman enhanced the WGAN [26] to
generate remote-sensing images of construction waste, ensuring realistic edge and texture
representation [27]. Kong et al. utilized Pix2Pix [28] and PS-GAN [29] to generate pedes-
trian samples along railroad perimeters [30], improving safety monitoring by providing
additional training data for detection algorithms. Similarly, Yang applied GANs to create
water flow images across natural and artificial environments, augmenting datasets and
improving the accuracy of flow rate estimation for classification networks [31]. Wang et al.
refined a conditional GAN (cGAN) by incorporating perceptual loss and structural similar-
ity metrics with masks, enhancing the quality of aircraft region generation and resolving
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sample scarcity in aircraft recognition tasks [32]. Jiang Y et al. improved StyleGAN2 [33]
and integrated the generated images into the YOLOv3 [34] training dataset, ultimately
boosting the accuracy of object detection and recognition [35].

2.2. Label-to-Image Generative Models

Initially, Generative Adversarial Networks (GANs) could only generate samples from
noise. With the rapid development of GANs, the emergence of Conditional Generative
Adversarial Networks (cGANs) has enabled the generation of images using category labels,
text descriptions, and other images as conditions. Based on this, numerous advancements
in GAN-based label-to-image translation techniques have emerged, providing strong tech-
nical support for generating remote-sensing images from labels. Pix2Pix [19] employs
the U-Net [36] architecture for the generator and the PatchGAN discriminator, improv-
ing the quality of image synthesis. Pix2PixHD [37] further refines Pix2Pix by optimizing
the model structure, loss function, and semantic processing, enabling the generation of
high-resolution images. GauGAN overcomes the limitations of traditional methods, where
semantic label maps are processed through convolution, normalization, and nonlinear
layers [38], resulting in information loss. It achieves this by introducing Spatially Adaptive
Normalization (SPADE), which preserves semantic information and enhances image qual-
ity. DAGAN [39] and DPGAN [40] enhance image-level synthesis by adding functional
modules. SEAN [41] and CLADE [42] improve image synthesis by designing normalization
methods that leverage semantic constraints, enhancing both image quality and model
performance. DP-SIMS [43] integrates a pretrained backbone network as the encoder in
the discriminator and employs cross-attention mechanisms for noise injection, significantly
enhancing image quality and consistency while reducing computational costs. But these
methods still struggle to capture category-specific characteristics, limiting the generation of
detailed remote-sensing images.

Diffusion models are used in label-to-image tasks due to their powerful generative
capabilities. Wang et al. proposed a DDPM-based semantic image synthesis method [44],
where noise images are input into the encoder of a U-Net architecture, and semantic lay-
outs are fed into the decoder through multi-layer spatial adaptive normalization. Stable
diffusion [14] improves training and inference speed by introducing latent space, where
noise is added and denoised, and labels are concatenated with noise images as inputs to
the U-Net for label-to-image generation. BBDM [45] models use image-to-image transla-
tion as a random Brownian bridge process, directly learning the transformation between
domains through a bidirectional diffusion process, rather than relying on a conditional-
generation approach. However, diffusion models generally require large datasets for
training to achieve high-quality results, limiting their application in remote-sensing tasks
with smaller datasets.

2.3. Dual Branch GANs

The use of dual-branch structures for modeling both global and local information
has been widely applied in various generation tasks. In face-related tasks, Huang et al.
propose TPGAN [46] for frontal view synthesis, which simultaneously captures global
structures and local details. Gu et al. introduce MaskGAN [47]. The framework learns
feature embeddings for every face component (e.g., mouth, hair, and eye), separately,
contributing to better correspondences for image translation, and local face editing. Li
et al. propose GLCA-GAN [48] for age synthesis, where a global network learns the
overall facial structure and simulates the aging trend of the entire face. Meanwhile, three
local networks focus on three key facial patches, either progressing or regressing them to
capture subtle changes in crucial facial subregions. However, these methods are primarily
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designed for face-related tasks, such as face rotation or editing, where domains exhibit
significant overlap and similarity. In semantic-guided scene generation tasks, LGGAN [46]
and CollageGAN [49] set up a separate generator for each category. However, LGGAN’s l
generators, which are based on simple convolutional layers, struggle to generate complex
geographic objects. On the other hand, CollageGAN is not well-suited for remote-sensing
images, as it assumes clear foreground–background segmentation, which is often not
present in remote-sensing images.

These methods have demonstrated the unique advantages of dual-branch architecture
in specific domains, achieving better generation results by integrating both global and
local information. However, in the remote-sensing field, there is still a lack of specialized
generators designed to address high data imbalance and high semantic similarity among
land-cover classes.

3. Methods
3.1. MCGGAN Generator

The MCGGAN generator adopts a dual-branch architecture. The global generator
captures global context to produce coherent results, while the multi-class generator uses
class generators to handle different features. The global generator result, IG

g , and the
multi-class generator result, Il

g, are combined through a fusion network to produce the final
generated image Ig.

Notably, we designed the shared-parameter encoder to extract feature maps, which
are then fed into three modules: the global generator, the multi-class generator, and the
pixel-level fusion network. The gradients from these modules jointly update the encoder’s
parameters. This approach allows the model to learn two branches of information, provid-
ing richer features for the generators and more effective fusion for the pixel-level network.

As shown in Figure 1, the MCGGAN generator consists of four main parts: the shared-
parameter encoder, E; the global generator, Gg; the multi-class generator, Gl ; and the fusion
network, Gw.
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3.1.1. Shared-Parameter Encoder

The shared-parameter encoder, E, serves two critical functions in this framework. First,
it maintains the balance between the global and the multi-class generator during training.
Second, it extracts comprehensive semantic information from the semantic label, ensuring
optimal utilization of semantic information. The structure of encoder E is illustrated in
Figure 2, comprising three core sub-modules: the convolutional module, residual module,
and inverse convolutional module.
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Figure 2. The structure of shared-parameter encoder.

The convolutional module contains three convolutional layers. The spatial dimensions
of the feature maps are halved, while the channel dimensions are progressively doubled
through the layers. The features processed by the convolutional module are then passed
into the residual module, which consists of six ResNet blocks. Notably, the size and channel
dimensions of the features remain unchanged throughout the residual module. Following
this, the processed features are fed into the inverse convolutional module. With each
inverse convolution, the spatial dimensions of the feature maps are doubled.

3.1.2. Multi-Class Generator

Considering that the diverse spatial patterns and distributions of land-cover types,
along with the high semantic similarity observed in certain categories. A single generator
may result in the generated samples being of poor quality and may make it difficult to
distinguish between types with high semantic similarity.

The structure of the multi-class generator is shown in Figure 3. It consists of multiple
class generators and the spatial decoder. The class generators target specific land-cover
types, improving both the quality and differentiation of these types. The spatial decoder
synthesizes outputs from the class generators, minimizing overlap and confusion.

Remote Sens. 2025, 17, x FOR PEER REVIEW 7 of 29 
 

 

module. Following this, the processed features are fed into the inverse convolutional mod-
ule. With each inverse convolution, the spatial dimensions of the feature maps are dou-
bled. 

3.1.2. Multi-Class Generator 

Considering that the diverse spatial patterns and distributions of land-cover types, 
along with the high semantic similarity observed in certain categories. A single generator 
may result in the generated samples being of poor quality and may make it difficult to 
distinguish between types with high semantic similarity. 

The structure of the multi-class generator is shown in Figure 3. It consists of multiple 
class generators and the spatial decoder. The class generators target specific land-cover 
types, improving both the quality and differentiation of these types. The spatial decoder 
synthesizes outputs from the class generators, minimizing overlap and confusion. 

 

Figure 3. The module structure of the multi-class generator. 

In the MCGGAN framework, five dedicated class generators are designed for key 
feature classes: the background generator, 𝐺భ; the water generator, 𝐺మ; the vegetation 
generator, 𝐺య; the road generator, 𝐺ర; and the building generator, 𝐺ఱ. Each class gener-
ator, 𝐺 , 𝑖 ∈ ሼ1,2,3,4,5ሽ, targets the generation of its corresponding feature class, enhanc-
ing the synthesis quality of those classes and improving the overall generation. 

Each class generator is optimized using an L1 loss to ensure the generated images 
resemble their corresponding real class images. The L1 loss is defined as follows: 𝐿ଵ ൌ 𝔼ூೝ ,ூ  ∥ 𝐼 − 𝐼 ∥ଵହଵ   (1)

Since the class generators follow an encoder–decoder architecture, some extracted 
information is inevitably lost during the decoding process. Combined with the shallow 
depth of these generators, the capacity to effectively capture and utilize class semantic 
information is weakened. To address these, intermediate features from each class genera-
tor are incorporated into the multi-class generator result synthesis. This strategy strength-
ens the multi-class generator’s capability to better capture characteristics, ultimately en-
hancing the quality of both the individual class images and the final composite output. 

The specific network structure of the multi-class generator, 𝐺, in the MCGGAN is 
illustrated in Figure 3. The multi-class generation result, 𝐼 , is synthesized using interme-
diate features from each class generator. Specifically, intermediate features, 𝑓 , i ∈ሼ1,2,3,4,5ሽ, are extracted and concatenated along the channel dimension. These concate-
nated features are then processed through the spatial decoder, ultimately producing the 
multi-class generation result, 𝐼  . Extracting these intermediate features is essential, as 
they originate from the deeper layers of the encoder and encapsulate the richest semantic 

Figure 3. The module structure of the multi-class generator.



Remote Sens. 2025, 17, 344 7 of 28

In the MCGGAN framework, five dedicated class generators are designed for key
feature classes: the background generator, Gl1 ; the water generator, Gl2 ; the vegetation
generator, Gl3 ; the road generator, Gl4 ; and the building generator, Gl5 . Each class generator,
Gli , i ∈ {1, 2, 3, 4, 5}, targets the generation of its corresponding feature class, enhancing the
synthesis quality of those classes and improving the overall generation.

Each class generator is optimized using an L1 loss to ensure the generated images
resemble their corresponding real class images. The L1 loss is defined as follows:

Ll
1 = EIri ,Ili ∑

5
1 ∥ Iri − Ili ∥1 (1)

Since the class generators follow an encoder–decoder architecture, some extracted
information is inevitably lost during the decoding process. Combined with the shallow
depth of these generators, the capacity to effectively capture and utilize class semantic
information is weakened. To address these, intermediate features from each class generator
are incorporated into the multi-class generator result synthesis. This strategy strengthens
the multi-class generator’s capability to better capture characteristics, ultimately enhancing
the quality of both the individual class images and the final composite output.

The specific network structure of the multi-class generator, Gl , in the MCGGAN is il-
lustrated in Figure 3. The multi-class generation result, Il

g, is synthesized using intermediate
features from each class generator. Specifically, intermediate features, fli , i ∈ {1, 2, 3, 4, 5},
are extracted and concatenated along the channel dimension. These concatenated fea-
tures are then processed through the spatial decoder, ultimately producing the multi-class
generation result, Il

g. Extracting these intermediate features is essential, as they originate
from the deeper layers of the encoder and encapsulate the richest semantic information.
In the spatial decoder, the features are first upsampled to recover spatial resolution. The
upsampling module comprises three inverse convolutional layers. This computational
process can be succinctly expressed as Equation (2):

fl = UpSample
(
Concat

(
fl1 , fl2 , . . . , fl5

))
(2)

where UpSample(·) denotes the upsampling operation.
The upsampled features are further refined using a spatial attention module. The

feature fl is computed by applying both average pooling and maximum pooling to obtain
the feature maps PA and PM. PA and PM are spliced in channel dimension to obtain a
feature map called PAM. The spatial attention map, AS, is generated by passing PAM

through a convolutional layer with a 3 × 3 kernel and the sigmoid activation function. The
resulting spatial attention map, AS, is then matrix-multiplied with the feature fl to produce
the processed feature, fl

′.

fl
′ = As ⊗ fl = σ(Conv(Concat(PA, PM)))⊗ fl (3)

The introduction of the spatial decoder not only aims to extract features from the
intermediate layers of each class generator to enhance generation quality but also serves
to balance the differences in generation capacity between various class generators. This
unified approach prevents interference between generators, ensuring that features from
different categories are harmoniously integrated, thus avoiding confusion or overlapping
in the generated images.

3.1.3. Pixel-Level Fusion Network

Both the global generation result (IG
g ) and the multi-class generation result (Il

g) are
passed through the fusion network (Gw) to obtain the final image, Ig. The pixel-level fusion
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network consists of a fusion map generator. The outputs of the fusion map generator are
computed using the Softmax function to generate the pixel-level weight maps, wg and wl ,
as shown in Equation (4):

wg, wl = Gw
(

fg
)

(4)

The final fusion process is expressed in Equation (5):

Ig = Conv
(

Concat
(

wg ∗ IG
g , wl ∗ Il

g

))
(5)

3.2. MCGGAN Discriminator

MCGGAN employs PatchGAN as its discriminator. PatchGAN divides the input
image into N × N blocks and performing real or fake classification on each block, producing
an N × N matrix of probabilities. The overall classification probability of the image is
then obtained by averaging the values in this matrix. This block-based approach enables
PatchGAN to focus more on local details, enhancing image quality while also improving
computational efficiency compared to the original GAN.

3.3. Loss Function

During the training process of the Generative Adversarial Network, the generator,
G, aims to produce images that closely resemble real images, while the discriminator, D,
strives to accurately distinguish whether the output image originates from the generator
or the real dataset. The optimization objective for the adversarial loss in MCGGAN is
grounded in the CGAN architecture, with the adversarial loss function defined as shown
in Equation (6):

Ladv = ESg ,Ir

[
logD

(
Sg, Ir

)]
+ESg ,Ig

[
log

(
1 − D

(
Sg, Ig

))]
(6)

To recover the low-frequency components of the image and minimize the influence of
outliers, the L1 loss is employed to constrain the global generation result, as expressed in
Equation (7):

Lg
1 = EIr ,Ig∥ Ir − Ig ∥1 (7)

In this study, image features are extracted using a deep neural network based on
the ImageNet-pretrained VGG19 architecture. The distance between real images (Ir) and
generated images (Ig) is measured in the image feature space as a loss function. Both images
are sequentially input into the VGG19 network, and the output features Φj(Ir) and Φj

(
Ig
)

are selected after the ReLU layers from different modules of the network. To enhance
perceptual similarity between generated images, features from the 2nd, 4th, 8th, 12th, and
16th convolutional modules of the VGG19 network are chosen. The distances between
these selected features are then calculated as part of the VGG loss. This relationship is
expressed in Equation (8):

LVGG = ∑ j∈V∥ Φj(Ir)− Φj
(

Ig
)
∥2

2 (8)

where j represents the module serial number, and V = {2, 4, 8, 12, 16} represents the
selected set of VGG19 module serial number.

Additionally, the Gram matrix serves as a texture synthesis method, constructed from
feature vectors extracted from the input image features. It enables the measurement of
correlations between features while disregarding spatial information within the feature
maps. By comparing the differences between the features of generated images and real
images, it aids the model in learning how to effectively generate image textures. We
select the output features after the ReLU layers following the 2nd and 16th convolutional
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modules of the VGG19 network to compute the Gram matrix. The difference in Gram
matrices between real and generated images is then used to optimize the training process
of the generator. The texture matching loss function is defined in Equation (9):

LT = ∑ j=2,16∥ G
(
Φj(Ir)

)
− G

(
Φj

(
Ig
))

∥2
2 (9)

To summarize, the loss function of MCGGAN includes the adversarial loss (Ladv), the
L1 loss (Lg

1) of the generated image (Ig), the L1 loss (Ll
1) of the category-generated image

(Ili ), the perceptual loss (LVGG) of the generated image (Ig), and the texture-matching loss
(LT). The synthesized expression is shown in Equation (10):

LMCGGAN = Ladv + λ1Lg
1 + λ2Ll

1 + λ3LVGG + λ4LT (10)

λ1, λ2, λ3, and λ4 are the weight coefficients.

4. Results
4.1. Experimental Dataset

We build two remote-sensing image datasets with distinct styles: the Chongzhou area
in Sichuan Province of China, covering longitudes 103◦37′ to 103◦45′ E and latitudes 30◦35′

to 30◦40′ N, and the Wuzhen area in Zhejiang Province of China, covering longitudes
120◦26′ to 120◦33′ E and latitudes 30◦43′ to 30◦47′ N. The original images are satellite
optical orthorectified images captured over two time periods, with each image measuring
5826 × 3884 pixels and a spatial resolution of 0.51 m. The Chongzhou dataset features
complex land characteristics, including large factories, intricate residential structures,
and rural clusters. In contrast, the Wuzhen dataset primarily consists of water bodies
surrounded by villages, with a landscape dominated by vegetation and rural buildings.

Both datasets exhibit data imbalance, each with its own characteristics. The
Chongzhou dataset features complex and diverse buildings, posing a challenge for the
model to generate these underrepresented classes, especially for buildings. The Wuzhen
dataset contains water and vegetation with high semantic similarity, requiring the model to
have strong distinguishing capability.

We also conducted comparative experiments on the publicly available LoveDA [50]
dataset to further validate the advantages of MCGGAN across different geographic loca-
tions and satellite sensors. The LoveDA dataset covers three cities—Nanjing, Changzhou,
and Wuhan. It features inconsistent sample distributions between urban and rural areas,
posing significant challenges for generative models.

In total, as shown in Figure 4, we utilized two custom datasets and one public dataset,
covering multiple cities in China and different satellite sensors. We focus on generating
five typical remote-sensing land features: background, water, vegetation, buildings, and
roads. To facilitate this, we annotated the Chongzhou and Wuzhen dataset with the
corresponding categories to create semantic labels. For the LoveDA dataset, we merged
forest and agriculture into vegetation, and barren areas into background, resulting in five
label categories.

The images are cropped into 512 × 512. Following cropping, both datasets are ran-
domly divided into training and testing sets in a 4:1 ratio. The final Chongzhou dataset
comprises 845 training samples and 211 testing samples, while the Wuzhen dataset contains
704 training samples and 176 testing samples. To maintain consistency in dataset size, we
randomly selected 1000 512 × 512 images from the LoveDA dataset and then split them at
a 4:1 ratio to obtain 800 training samples and 200 testing samples.
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Figure 4 illustrates the percentage of each feature in the Chongzhou, Wuzhen, and
LoveDA datasets. In Chongzhou, buildings occupy a large proportion, predominantly
representing urban scenes. In contrast, Wuzhen features abundant vegetation and water
bodies, has fewer buildings, and is predominantly characterized by rural farmland. The
LoveDA dataset contains a higher proportion of background and includes both urban and
rural sample distributions. It features a diverse range of buildings, thus posing a greater
challenge for generative models.

4.2. Evaluation Metrics

To assess the perceptual similarity between generated images and real images, we
employ three representative metrics: Fre’chet Inception Distance (FID) [51,52], Learned
Perceptual Image Patch Similarity (LPIPS) [53], and Structural Similarity (SSIM) tailored to
the characteristics of remote-sensing images.

FID is used to measure the distribution differences between generated images and
real images in feature space. The process begins by extracting features using the Inception
network, followed by modeling the feature space with a Gaussian model, and finally
calculating the distance between the two feature distributions. A lower FID indicates
higher image quality and diversity. The formula is as follows:

FID(x, y)2 = ∥µx− µy
∥∥2

2 + Tr(Cx + Cy − 2
(
CxCy

) 1
2 ) (11)

where x denotes the generated image; y denotes the original image; µx, µy, Cx, and Cy

represent the mean and covariance matrices of the image features; and Tr(·) represents the
trace of a matrix.
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LPIPS is a metric used to assess the perceptual similarity between images. Unlike
traditional metrics such as PSNR and SSIM, which primarily focus on pixel-level differences,
LPIPS aligns more closely with human visual perception. The formula is as follows:

LPIPS(I1, I2) = ∑l
1
Nl

∥∥∥Fl
1− Fl

2

∥∥∥2

2
(12)

where l denotes different layers in the network (e.g., convolutional layers); Fl
1 and Fl

2 are
the feature maps of images I1 and I2 at layer l; Nl is the number of elements in the feature
map at layer l; and ∥·∥2 represents the L2 norm (Euclidean distance).

SSIM is an index that estimates the resemblance of two images. One is the undistorted,
uncompressed image, and the other is the distorted image of the two images used in SSIM.
The specific calculation is as follows:

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (13)

where the mean, µ, represents the estimate of lightness; the standard deviation, σ, represents
the estimate of contrast; and the covariance, C, represents the evaluation of the degree of
structural correspondence.

The ultimate goal of generating these images is to augment the dataset for deep
learning tasks. To evaluate the quality of the generated images, we utilize a U-Net network
trained on the three datasets for semantic segmentation. The model’s accuracy is quantified
using two metrics: Frequency-Weighted Intersection over Union (FWIoU) and Overall
Accuracy (OA). If the generated images are highly realistic and closely resemble real
images, a segmentation network trained on real images should accurately segment the
generated outputs.

4.3. Implementation Details

We train and test the model using PyTorch 1.13.0 on the Chongzhou, Wuzhen, and
LoveDA datasets, respectively, employing an NVIDIA RTX 4090 GPU (NVIDIA, Santa
Clara, CA, USA) as the training tool. For model training parameters, the batch size is
set to 4, with a total of 200 epochs. The learning rate is initially set to 0.0002 for the first
100 epochs and decays linearly to 0 over the subsequent 100 epochs. The optimization
algorithm used for network parameters is Adam.

4.4. Hyperparameter Settings

The loss function used in MCGGAN is defined as LMCGGAN = Ladv + λ1Lg
1 + λ2Ll

1 +

λ3LVGG + λ4LT , where Ladv, Lg
1 , Ll

1 are the basic losses in the dual-branch network. For λ1

and λ2, we refer to the empirical values used in LGGAN [54], setting λ1 = 1 and λ2 = 1.
The terms LVGG and LT correspond to the perceptual loss and texture matching loss used in
MCGGAN. We perform ablation studies and sensitivity analysis to investigate the impact
of the perceptual loss and texture matching loss on the generation quality.

The experimental results are shown in Table 1. The first three rows present the ablation
study of the losses. As observed, introducing the losses leads to improvements in all metrics,
indicating that both the perceptual loss and texture matching loss positively contribute to
model training.
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Table 1. The sensitivity analysis of LVGG and LT .

λ3 λ4 LPIPS↓ FID↓ SSIM↑ FWIoU(%)↑ PA(%)↑
0 0 0.6104 166.25 0.2201 55.79 68.17
0 10 0.5791 148.08 0.2247 56.77 69.97

10 0 0.5922 159.31 0.2257 57.36 69.83

10 0.5 0.5810 157.05 0.2180 57.36 71.57
10 1 0.5783 123.42 0.2324 60.80 72.88
10 2 0.5840 135.27 0.2283 59.69 71.35
10 10 0.5897 145.63 0.2121 58.03 70.74
2 10 0.5844 147.42 0.2129 58.43 70.80
1 10 0.5807 140.18 0.2242 58.38 70.57

0.5 10 0.5813 152.41 0.2171 58.54 71.06

After introducing the two losses, we conducted a sensitivity analysis. By fixing λ3

and gradually increasing λ4, we observed that the metrics initially improved and then
gradually declined, with significant fluctuations. When λ4 was fixed and λ3 was gradually
decreased, the metrics followed a similar trend. But the sensitivity to λ3 was lower, as the
fluctuations were less pronounced. Based on the experimental results, we ultimately chose
λ3 = 10 and λ4 = 1.

4.5. Ablation Experiments

Ablation experiments are conducted to decompose the generator model and evaluate
how various structures influence image quality. This approach allows us to verify the
contribution of each functional module within the MCGGAN generator to the enhancement
of generated image quality.

The ablation experiments are structured around five schemes as shown in Table 2 and
Figure 5: Pix2Pix serves as the baseline model. Pix2Pix++ incorporates perceptual loss
(LVGG) and texture-matching loss (LT) into Pix2Pix, resulting in the loss function LMCGGAN .
DBGAN employs Pix2Pix as the global generator and includes the multi-class generator
for different features within the dual-branch generative model. DBGAN++ builds upon
DBGAN by introducing the shared-parameter encoder, thereby balancing the training
process. MCGGAN enhances the class generators by introducing the spatial decoder to
form the final proposed model. In this context, the loss functions for DBGAN, DBGAN++,
and MCGGAN are all defined as LMCGGAN .

Table 2. The ablation experiment plan.

Model Description

Pix2Pix Baseline model
Pix2Pix++ LVGG and LT are added on Pix2Pix model
DBGAN Dual-branch generative model

DBGAN++ A shared-parameter encoder is added on DBGAN
MCGGAN A spatial decoder is added on DBGAN++

Ablation experiments are conducted on the Chongzhou and Wuzhen datasets. Table 3
presents the evaluation metrics for each program on the respective datasets.
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Table 3. The results of ablation experiment on the Chongzhou and Wuzhen datasets.

Methods
Chongzhou Wuzhen

LPIPS FID SSIM FWIoU (%) OA (%) LPIPS FID SSIM FWIoU (%) OA (%)

Pix2Pix 0.6080 176.28 0.1603 49.56 62.50 0.6270 225.25 0.2462 57.22 71.18
Pix2Pix++ 0.6008 159.23 0.2210 53.26 66.02 0.6087 213.08 0.2602 59.34 72.57
DBGAN 0.6132 169.66 0.2174 54.86 67.69 0.6273 236.80 0.2497 61.63 74.20

DBGAN++ 0.5961 154.27 0.2309 54.50 67.59 0.5983 179.22 0.2744 59.63 73.47
MCGGAN 0.5783 123.42 0.2324 60.80 72.88 0.5551 137.96 0.2793 65.98 77.35

Table 3 indicates that compared to the baseline model Pix2Pix, Pix2Pix++ shows
significant improvements in the Chongzhou dataset, achieving a 3.61% improvement in
FWIoU, a 3.52% improvement in OA, a 0.0072 improvement in LPIPS, a 0.0607 improvement
in SSIM and a remarkable 17.05% improvement in FID. Similarly, for the Wuzhen dataset,
FWIoU and OA improvement by 2.12% and 1.39%, with LPIPS improves by 0.0183, SSIM by
0.014 and FID by 12.27. Figure 6b,c and Figure 7c illustrate that the incorporation of VGG
loss and texture matching loss effectively mitigates issues in water generation. Additionally,
this enhancement improves the model’s capacity to learn color textures, particularly evident
in the extraction of urban building colors in the Wuzhen dataset.
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When comparing the DBGAN model to Pix2Pix++ on the Chongzhou dataset, DBGAN
demonstrates improvements with a 1.60% increase in FWIoU and a 1.67% increase in OA.
However, LPIPS decreases by 0.0124, SSIM decreases by 0.0036 and FID decreases by 10.43.
Figure 6c,d visually illustrate that DBGAN produces architecture with clearer outlines
compared to Pix2Pix++. Moreover, DBGAN’s road generation results feature contours
and textures that more closely resemble real road characteristics. On the Wuzhen dataset,
DBGAN outperforms Pix2Pix++ with a 2.29% increase in FWIoU and a 1.63% increase in
OA. Conversely, LPIPS decreases by 0.0186, SSIM decreases by 0.0105 and FID decreases
by 23.72. Figure 7c,d show that DBGAN enhances the generation of colors and contours
for small-scale buildings in the Wuzhen dataset. The above illustrates that the use of a
dual-branch structure, along with the introduction of multi-class generator, can effectively
enhance the model’s ability to generate objects for underrepresented land-cover classes.

Table 4 shows the complexity of different modules. With the introduction of the
shared-parameter encoder, DBGAN++ successfully addresses the issues present in DBGAN.
Although introducing the shared-parameter encoder increases computational cost, DB-
GAN++ achieves a lower overall loss compared to DBGAN and demonstrates significantly
faster convergence. This indicates that the shared-parameter encoder successfully bal-
ances the training of the two generators, effectively accelerating convergence and reducing
training difficulty. In terms of image quality, DBGAN++ has also achieved significant
improvements. As indicated by the metrics in Table 3, DBGAN++ shows improvements
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in LPIPS, SSIM and FID by 0.0178, 0.0235, and 30.85 on the Chongzhou dataset, and by
0.0290, 0.0247, and 57.58 on the Wuzhen dataset, respectively. Visual comparisons in
Figures 6d and 7d demonstrate that DBGAN++ effectively mitigates the pattern collapse
and noise issues found in DBGAN, resulting in images that closely resemble real ones.
However, there is a slight decrease in FWIoU and OA metrics with the introduction of the
shared-parameter encoder. Specifically, on the Chongzhou dataset, FWIoU and OA de-
creased by 0.36% and 0.1%, while on the Wuzhen dataset, they decreased by 2% and 0.73%.
This reduction can be attributed to the interference introduced during the convolution
process of the shared-parameter encoder, which complicates the multi-class generator’s
ability to generate specific categories.
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Table 4. Module complexity.

Model Shared-Parameter
Encoder

Spatial
Decoder

#Params
(M)

Inference
Time (ms)

DBGAN 89.98 25.6
DBGAN++ ✔ 96.88 34.2
MCGGAN ✔ ✔ 101.74 38.1

MCGGAN leverages the spatial decoder to balance the influences among the class
generators. This approach significantly enhances the performance of the multi-class gen-
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erator. As shown in Figure 8, DBGAN++ converges faster but exhibits some fluctuations
in the later stages of training, suggesting potential instability. MCGGAN shows the best
stability, with the loss steadily decreasing and minimal fluctuations. Stable training leads to
higher generation quality, MCGGAN achieves the best overall metrics. On the Chongzhou
dataset, compared to DBGAN++, MCGGAN’s FWIoU and OA improve by 6.3% and 5.29%,
respectively; LPIPS improves by 0.0178, SSIM improves by 0.0015, and FID improves by
30.85. When compared to the baseline model Pix2Pix, MCGGAN demonstrates improve-
ments of 11.24% and 10.38% in FWIoU and OA, respectively; LPIPS improves by 0.0297,
SSIM improves by 0.0821, and FID improves by 52.86. On the Wuzhen dataset, MCGGAN
outperforms DBGAN++ with improvements of 6.35% and 3.88% in FWIoU and OA, respec-
tively; LPIPS improves by 0.0432, SSIM improves by 0.0049, and FID improves by 41.26.
Compared to the baseline model Pix2Pix, MCGGAN shows improvements of 8.76% and
6.17% in FWIoU and OA, respectively; LPIPS improves by 0.0719, SSIM improves by 0.0331,
and FID improves by 87.29.
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Visually, MCGGAN demonstrates significant enhancements in generating building
outlines on the Chongzhou dataset. As illustrated in the first row of Figure 6, the model
produces more realistic representations of complex residential buildings, while the fourth
row shows improved generation of factory buildings. Additionally, MCGGAN effectively
captures vegetation textures and rural buildings that closely resemble real remote-sensing
images, as seen in the fifth row of Figure 6. The model also excels in generating roads and
complex backgrounds, aligning better with the inherent characteristics of these features,
highlighted in the second and third rows of Figure 6.

In summary, the improvements provided by MCGGAN not only ensure network
stability but also enhance the generation of fine details across various land-cover categories.
This results in a higher quality of generated samples for underrepresented land-cover
classes. Moreover, MCGGAN strengthens the depiction of complex features like building
outlines, leading to samples that more closely match real remote-sensing images.

On the Wuzhen dataset, MCGGAN’s superior understanding of global context enables
it to generate diverse remote-sensing images, reflecting both lush spring/summer scenes
and darker autumn/winter tones based on the layout features of the semantic image.

However, DBGAN exhibits certain shortcomings, as evidenced by the generated
images depicted in Figure 9. Specifically, the red dashed box in Figure 9a highlights a
texture replication issue in the Chongzhou generated image, while the white dashed box in
Figure 9b indicates the presence of noise in the Wuzhen generated image. These problems
primarily arise from the challenges in maintaining a balance between the global generator
and the multi-class generator during the training process.
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4.6. Comparison Experiments

In order to further verify the effectiveness of MCGGAN model, we respectively com-
pare Pix2PixHD [37], DAGAN [39], DPGAN [40], stable diffusion model [14], LGGAN [54],
and Lab2Pix-V2 [55] on the dataset of Chongzhou, Wuzhe ann and LoveDA. The evaluation
indexes of the experimental results are shown in Tables 5–7. To visualize the generating
effect of different models, some of the experimental result images are given in this paper,
as shown in Figures 10–12.

Table 5. The comparison of experimental results of six models on the Chongzhou dataset.

Methods LPIPS↓ FID↓ SSIM↑ FWIoU (%)↑ OA (%)↑
Pix2PixHD [37] 0.6007 145.44 0.1922 57.60 69.10

DAGAN [39] 0.5901 170.19 0.2225 57.85 69.52
DPGAN [40] 0.6147 167.84 0.2257 56.12 69.50

Lab2Pix-V2 [55] 0.5844 137.88 0.2209 57.51 69.90
SDM [14] 0.5851 183.37 0.2008 56.14 70.39

LGGAN [54] 0.5874 192.85 0.1829 57.99 70.30
MCGGAN [ours] 0.5783 123.42 0.2324 60.80 72.88

Table 6. The comparison of experimental results of six models on the Wuzhen dataset.

Methods LPIPS↓ FID↓ SSIM↑ FWIoU (%)↑ OA (%)↑
Pix2PixHD [37] 0.5707 173.17 0.2418 62.03 74.55

DAGAN [39] 0.5670 150.34 0.2208 62.29 74.75
DPGAN [40] 0.5917 153.51 0.2551 57.60 70.72

Lab2Pix-V2 [55] 0.5590 148.15 0.2548 63.43 75.91
SDM [14] 0.5613 169.61 0.2422 62.35 75.20

LGGAN [54] 0.5611 193.68 0.2247 62.89 75.43
MCGGAN [ours] 0.5551 137.96 0.2793 65.98 77.35

Table 7. The comparison of experimental results of six models on the LoveDA dataset.

Methods LPIPS↓ FID↓ SSIM↑ FWIoU (%)↑ OA (%)↑
Pix2PixHD [37] 0.6651 199.79 0.2747 60.71 70.75

DAGAN [39] 0.6708 186.24 0.2563 60.26 70.58
DPGAN [40] 0.6862 188.28 0.2648 56.34 67.67

Lab2Pix-V2 [55] 0.6610 192.65 0.2906 63.74 73.79
SDM [14] 0.6877 199.77 0.2463 64.74 74.20

LGGAN [54] 0.6608 228.59 0.2201 60.48 70.62
MCGGAN [ours] 0.6551 184.63 0.2837 64.84 75.51
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The experimental results demonstrate that MCGGAN achieves the highest accuracy
on the Chongzhou dataset, with FWIoU and OA metrics consistently outperforming those
of existing models. This suggests that MCGGAN’s generated images are more realistic
and reliable, contributing to enhanced segmentation performance. Additionally, the FID,
LPIPS and SSIM scores for MCGGAN-generated images show significant improvements,
indicating that these images align more closely with real remote-sensing data in both overall
distribution and individual characteristics.

As shown in Figure 10, for the complex buildings in Chongzhou, MCGGAN generates
images with clearer, more defined contours compared to other models, while maintaining
better consistency in intra-class information for the same semantic label. Furthermore,
MCGGAN excels in generating realistic textures for less common features, such as water
bodies and roads. In terms of background and vegetation, MCGGAN offers richer color and
texture details, resulting in generated images that are both more realistic and trustworthy.

In the Wuzhen dataset, land-cover types like water and vegetation, which have high
semantic similarity, are often confused by other models. However, MCCGAN excels
at accurately distinguishing between them. Table 6 indicates that images generated by
MCGGAN significantly surpass existing methods across various metrics. The generation
metrics reveal that MCGGAN-generated images closely mimic real data in terms of style
and distribution. Moreover, the superior FWIoU and OA metrics suggest that the generated
images offer more relevant information for the U-Net segmentation network. MCGGAN’s
advantage lies in its ability to produce vegetation with rich color and texture details, while
also excelling in generating features with smaller sample sizes, such as buildings (6.50% of
the sample) and roads (2.51% of the sample).

Despite the significant land-cover style differences and sensor inconsistencies in the
LoveDA dataset, MCGGAN still achieves superior performance. This is due to the dual-
branch architecture, where the multi-class generator focuses on targeted generation for
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individual categories, compensating for the global generator’s limited learning capability
on complex datasets. As shown in Figure 12, MCGGAN excels at generating vegetation,
background, and other extensive land-cover types. Its advantages are particularly evident
in generating buildings. The LoveDA dataset includes both urban and rural scenarios,
featuring diverse architectural styles ranging from low-rise houses in rural areas to high-
rise buildings in urban settings. Other models fail to effectively generate buildings, with
building contours blending into the background and internal details appearing chaotic. In
contrast, MCGGAN successfully captures the structure and style of buildings, accurately
delineating contours and preserving internal features.

Comparison experimental results across three datasets demonstrate that MCGGAN
exhibits significant advantages over other GAN networks. Compared to the advanced
dual-branch network LGGAN, MCGGAN improves the FID metric by 28% and the SSIM
metric by 19%. In terms of generated image quality, the multi-class generator equipped
in MCGGAN not only produces high-quality images for underrepresented classes (e.g.,
buildings and roads) but also effectively distinguishes land-cover types with high semantic
similarity (e.g., vegetation and water bodies).

Compared to diffusion models, MCGGAN also shows strong performance in scenar-
ios with limited sample sizes. For instance, MCGGAN outperforms the stable diffusion
model with a 19% improvement in FID and a 15% improvement in SSIM. Diffusion models,
constrained by their complex noise addition and removal processes, face increased com-
putational costs during training and inference, making it difficult to fully leverage their
strengths when only a few hundred training samples are available.

5. Discussion
5.1. Analysis of the Interpretability of Generated Images in Segmentation Models

Class Activation Mapping (CAM) [56] is a visualization method that generates a
heatmap to visualize the contribution distribution of the original image to the predicted
output by applying linear weighting to the feature maps. The CAM method proposed by
Zhou et al. involves performing Global Average Pooling (GAP) on convolutional feature
maps before the final output layer (softmax layer), using the pooled features as input to
a fully connected layer to obtain classification results. By projecting the weights of the
output layer back onto the convolutional feature maps, the importance of different image
regions can be determined. Selvaraju et al. introduced Grad-CAM [57] as an improvement
to the CAM method, using the gradient information of the class output at the last convolu-
tional layer as an importance assessment of the activation units, facilitating understandable
visualizations of the model output. Grad-CAM can be applied to multi-class classifica-
tion problems, allowing each class to have independent explanations, while traditional
CAM is limited to binary classification. Additionally, SEG-GRAD-CAM [58], proposed by
Vinogradova et al., extends Grad-CAM for use in the semantic segmentation domain.

We utilize the principles of SEG-GRAD-CAM to visualize the CAM for five land-
cover types, namely vegetation, water, buildings, roads, and background, across multiple
feature layers of the U-Net segmentation network. The feature layers examined include
the output features of the second downsampling module, the bottleneck layer between the
encoder and decoder, and the output features of the last upsampling module. The second
downsampling module of the U-Net segmentation network is the initial convolutional
layer, which primarily extracts low-level features such as edges and textures. Consequently,
the generated heatmap highlights some edge-like structures in the image as shown in
Figure 13. As the convolutional network deepens, it learns higher-level features, such as the
shapes of objects, their components, and more abstract and complex spatial relationships.
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Thus, the heatmaps from the bottleneck layer and the final layer increasingly resemble the
output segmentation masks.
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We first input the real images into the segmentation network, as shown in Figure 13.
Rows one to three of Figure 13 visualize the building class, with the first row representing
factory buildings, the second row representing complex residential buildings, and the third
row representing rural buildings. From the visualization results, it is evident that the seg-
mentation contours of factory and residential buildings play a decisive role. Regardless of
whether the heatmaps are generated from the initial convolutional features, the bottleneck
layer, or the final layer, the contour areas of the buildings are highlighted. This indicates
that the U-Net segmentation network focuses on the contour information of the buildings.
Therefore, to improve the segmentation accuracy of the generated images, enhancing the
generation of building contours is essential. For rural buildings, the contour information is
relatively weak. The heatmaps generated from the second downsampling module and the
bottleneck layer show that the segmentation of rural buildings is significantly influenced
by the surrounding environment. Thus, the generated images should enhance the color
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differentiation between buildings and vegetation to improve the segmentation accuracy of
rural buildings.

The fourth row of Figure 13 presents the visualization results for the background,
where the heatmaps generated from the bottleneck layer and the final layer primar-
ily highlight pixels that differ significantly from vegetation. Based on the background
distribution in the dataset, some background data exhibit similarities to vegetation fea-
tures. Therefore, to ensure high segmentation accuracy for the background, the generated
physical characteristics of the background should maintain a difference from vegetation,
minimizing confusion.

Rows five and six of Figure 13 show the visualization results for water and roads,
respectively. The results indicate that the textural features of these land-cover types are the
main factors affecting their segmentation. These two classes have relatively low represen-
tation in the dataset, particularly water bodies, which are easily influenced by vegetation
during the generation process, leading to artifacts that can impact the segmentation accu-
racy of U-Net. The seventh row displays the visualization results for vegetation, where
the main factors affecting the segmentation accuracy are, similarly, the color and texture of
the vegetation.

MCGGAN’s generated results achieved high FWIoU and OA overall, primarily due to
its network model design principle of assigning a corresponding class generator for each
type of land cover. During the generation process, MCGGAN is able to focus on the details
of each land-cover type while also considering global contextual information, thereby
enhancing the generation quality for each category. Specifically, MCGGAN improved the
contour details of buildings, reduced artifacts caused by interference from other samples
during water-body generation, and enhanced the generation quality of roads, which occupy
a smaller proportion of the samples, thus improving the overall quality of the generated
remote-sensing images.

Figure 14 shows some CAM visualization results of the generated images and the
final segmentation results. The first to third rows in the figure display the segmentation
results represented by factory buildings, complex residential buildings, and rural buildings.
Since MCGGAN can generate images with well-defined contours, the buildings exhibit
good segmentation performance. The fourth row of Figure 14 shows the segmentation
results of the generated image background, where the color and texture features of the
background are more aligned with actual ground features, reducing confusion with veg-
etation characteristics. Furthermore, the segmentation results and visualization of water
bodies, roads, and vegetation from the fifth to seventh rows of the generated images demon-
strate that MCGGAN not only ensures the quality of generation for land covers with a
large sample proportion but also enhances the generation quality of those with a smaller
sample proportion.

5.2. The Effect of Adding Generated Samples on Segmentation Accuracy

The primary objective of this paper is to augment the sample dataset to enhance seman-
tic segmentation tasks in typical land-cover remote-sensing images. We propose the MCG-
GAN generative model, which demonstrates superior results compared to existing models.

To determine the optimal dataset size and the number of generated images for max-
imizing segmentation accuracy, we designed the following experiment. First, we cre-
ated training datasets of different sizes by randomly selecting images from the original
Chongzhou training dataset at 80%, 60%, and 40% sizes, and from the Wuzhen training
dataset at 90%, 70%, and 50% sizes. This resulted in datasets of varying sizes, as detailed
in Table 8. Next, synthetic samples were generated using the trained MCGGAN on these
datasets of different sizes and added to the corresponding real datasets for training the
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U-Net network. Segmentation accuracy, assessed by FWIoU and OA, was then measured
to evaluate improvements in these metrics.
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Table 8. The size of the experimental dataset divided proportionally.

Dataset Training Set Test Set

Chongzhou

Dataset 1.0 845 211
Dataset 0.8 676 211
Dataset 0.6 507 211
Dataset 0.4 338 211

Wuzhen

Dataset 1.0 706 176
Dataset 0.9 634 176
Dataset 0.7 483 176
Dataset 0.5 352 176
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For the Chongzhou dataset, 2000 semantic images were created. Samples generated
by the MCGGAN model were progressively added to the original training sets, resulting in
a total of 500, 1000, and 2000 generated samples. The U-Net segmentation network was
then retrained with these augmented datasets. In the case of the Wuzhen dataset, a similar
approach was applied. However, due to its simpler image distribution, only 500 samples
were incrementally added, totaling 500, 1000, and 1500 generated samples in the training
set. The U-Net segmentation network was retrained accordingly. In summary, the training
processes were consistent across all datasets. After training, the segmentation performance
(FWIoU and OA) of U-Net on the respective test sets was assessed to analyze the impact of
the different amounts of generated samples on segmentation accuracy. Table 9 summarizes
the FWIoU and OA metrics for the different-sized Chongzhou datasets, both before and
after the incremental addition of generated samples.

Table 9. The analysis of the impact of Chongzhou’s generated images on the accuracy of the U-Net
Network.

Dataset
+0 +500 +1000 +2000

FWIoU (%) OA (%) FWIoU (%) OA (%) FWIoU (%) OA (%) FWIoU (%) OA (%)

Dataset 1.0 66.99 78.30 68.76 79.29 69.32 79.65 68.16 78.63
Dataset 0.8 67.15 78.04 69.43 79.66 69.32 79.55 67.52 78.22
Dataset 0.6 63.66 75.07 67.44 78.20 67.77 78.17 67.28 77.63
Dataset 0.4 64.68 76.24 65.20 76.22 66.21 77.13 65.43 76.44

Incorporating generated samples into the training set improves the metrics on the test
sets across all Chongzhou datasets. The most significant enhancement in segmentation
metrics occurs with the addition of 500 generated samples. However, as more samples are
included, the improvement becomes less pronounced and may even decline in some cases.
As shown in Table 9, a substantial increase in segmentation metrics is observed after adding
500 generated samples, but the improvement diminishes with the addition of 1000 samples,
and the metrics decrease when 2000 samples are added.

The statistics of segmentation metrics, including FWIoU and OA, on the test set for
different-sized Wuzhen datasets are summarized in Table 10. This table includes results
both before and after the addition of 500, 1000, and 1500 generated samples.

Table 10. The analysis of the impact of Wuzhen’s generated images on the accuracy of the U-Net
Network.

Dataset
+0 +500 +1000 +1500

FWIoU (%) OA (%) FWIoU (%) OA (%) FWIoU (%) OA (%) FWIoU (%) OA (%)

Dataset 1.0 70.76 80.84 73.57 83.05 73.60 83.23 73.36 82.91
Dataset 0.9 70.21 79.82 72.37 82.25 72.53 82.21 72.08 82.13
Dataset 0.7 68.38 78. 05 72.52 82.25 71.26 81.92 71.85 81.81
Dataset 0.5 67.87 77.40 70.39 80.98 71.25 81.41 71.01 81.32

The trend observed with the different-sized Wuzhen datasets indicates that adding
generated samples improves segmentation metrics on the test set. Specifically, the addition
of 500 samples yields the most significant improvement, while adding larger numbers of
samples does not result in further gains.

Overall, including MCGGAN-generated images enhances U-Net’s effectiveness in an-
alyzing remote-sensing images, improving segmentation metrics. However, excessive gen-
erated samples can introduce noise and reduce performance, highlighting the need for an
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optimal balance. The results suggest that for U-Net training, adding around 500 generated
samples achieves a good balance between enhancing segmentation accuracy and maintain-
ing a manageable training process, especially when the training set contains approximately
500 samples.

6. Conclusions
We propose a Multi-Class Guided Generative Adversarial Network (MCGGAN) to

generate high-fidelity remote-sensing images from semantic labels. MCGGAN uses a
dual-branch architecture, with a global generator capturing the overall image structure
and multi-class generator improving land-cover differentiation. To ensure consistent
output from two branches, we introduce the shared-parameter encoder and spatial decoder.
Additionally, the use of perceptual loss (LVGG) and texture matching loss (LT) enhances the
texture details of the generated images, resulting in more realistic outputs.

To evaluate MCGGAN’s image-generation quality, we conducted comparative and
ablation experiments on three datasets: two custom datasets (Chongzhou and Wuzhen) and
a public dataset (LoveDA). MCGGAN outperforms the comparative methods across all five
metrics: FID, LPIPS, SSIM, FWIoU, and OA. With its unique multi-class generator design,
MCGGAN outperforms existing methods by generating high-quality images for under-
represented land-cover types despite data imbalance. MCGGAN effectively distinguishes
between land-cover types with high semantic similarity, producing images with greater
clarity and recognizability. MCGGAN demonstrates better generative quality compared to
diffusion models when trained with only a few hundred samples.

Additionally, to assess the impact of generated images on semantic segmentation, we
performed segmentation comparisons on datasets of varying sizes from Chongzhou and
Wuzhen. Our results show that incorporating generated images boosts UNet segmentation
performance, with FWIoU and OA increases of 3.89% and 3.07% on Chongzhou, and 4.47%
and 3.23% on Wuzhen, respectively. MCGGAN effectively enhances segmentation accuracy
by generating high-quality remote-sensing images, thus achieving data augmentation.

In summary, to address the challenges of severe data imbalance and semantic simi-
larity among land-cover classes in remote sensing, MCGGAN introduces several targeted
improvements to the generative model, yielding promising results. However, there is still
room for improvement in this paper. The current generative model can only generate
a single style of image from a semantic label. Future work will focus on developing a
multimodal generation network that enables a semantic label to produce images in multiple
styles. By incorporating CLIP for text encoding, we can control the generated image styles
based on textual descriptions, such as land-cover types, seasonal changes, or scenarios
affected by noise and extreme weather.
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