
Academic Editor: Konstantinos X.

Soulis

Received: 18 December 2024

Revised: 14 January 2025

Accepted: 17 January 2025

Published: 20 January 2025

Citation: Lee, S.; Kong, Y.; Lee, T.

Development of Deep Intelligence for

Automatic River Detection (RivDet).

Remote Sens. 2025, 17, 346. https://

doi.org/10.3390/rs17020346

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Development of Deep Intelligence for Automatic River
Detection (RivDet)
Sejeong Lee, Yejin Kong and Taesam Lee *

Department of Civil Engineering, Gyeongsang National University, 501 Jinju-daero,
Jinju 52828, Republic of Korea; dltpwjd312@gnu.ac.kr (S.L.); 2021080114@gnu.ac.kr (Y.K.)
* Correspondence: tae3lee@gnu.ac.kr; Tel.: +82-55-772-1797

Abstract: Recently, the impact of climate change has led to an increase in the scale and
frequency of extreme rainfall and flash floods. Due to this, the occurrence of floods and
various river disasters has increased, necessitating the acquisition of technologies to pre-
vent river disasters. Owing to the nature of rivers, areas with poor accessibility exist, and
obtaining information over a wide area can be time-consuming. Artificial intelligence
technology, which has the potential to overcome these limits, has not been broadly adopted
for river detection. Therefore, the current study conducted a performance analysis of artifi-
cial intelligence for automatic river path setting via the YOLOv8 model, which is widely
applied in various fields. Through the augmentation feature in the Roboflow platform,
many river images were employed to train and analyze the river spatial information of each
applied image. The overall results revealed that the models with augmentation performed
better than the basic models without augmentation. In particular, the flip and crop and
shear model showed the highest performance with a score of 0.058. When applied to rivers,
the Wosucheon stream showed the highest average confidence across all models, with a
value of 0.842. Additionally, the max confidence for each river was extracted, and it was
found that models including crop exhibited higher reliability. The results show that the aug-
mentation models better generalize new data and can improve performance in real-world
environments. Additionally, the RivDet artificial intelligence model for automatic river
path configuration developed in the current study is expected to solve various problems,
such as automatic flow rate estimation for river disaster prevention, setting early flood
warnings, and calculating the range of flood inundation damage.

Keywords: river; artificial intelligence; Roboflow; YOLOv8; augmentation

1. Introduction
Owing to the impact of recent climate change, the scale and frequency of extreme

rainfall events and sudden downpours have increased, resulting in the development of
floods [1–3]. As a result, extreme floods and various river disasters have intensified, so it is
crucial to develop technologies to mitigate such extremes. Recent technical developments
in the Fourth Industrial Revolution, such as unmanned aerial vehicles (UAVs), big data,
and artificial intelligence, are being applied in various fields [4,5].

In particular, artificial intelligence has overcome various limits by implementing
deep learning techniques on the basis of extensive amounts of data. Although there have
been various attempts to apply artificial intelligence for river management, difficulties in
applying technologies such as artificial intelligence exist due to the limited data available
for rivers [6]. Additionally, river basins with steep slopes or dense vegetation are difficult
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for people to access, and it is difficult to document a wide range of river survey information,
as it takes a long time to obtain information from a broad area with conventional surveying
approaches. Until now, river surveying has been conducted manually using GPS equipment.
Various accidents have occurred during manual surveys, leading to injuries. Using UAVs
could reduce the risk of human accidents. Additionally, by employing AI in UAV surveys,
extensive river information and locations that are difficult to access can be obtained in a
relatively short time using optimal routes, minimizing drone battery consumption and
time wastage. Through this river detection artificial intelligence method (RivDet-AI),
automatic flight can be adopted, and river surveying can be made much easier and faster.
Therefore, we aimed to develop a RivDet artificial intelligence model in the current study
to automatically detect river areas.

Several studies have investigated the application of machine learning (ML) and deep
learning (DL) for identifying rivers and detecting floods, highlighting their potential to
enhance flood modeling, hazard mapping, and real-time monitoring. A review of re-
cent literature shows that DL techniques, in particular, have demonstrated significant
improvements in flood modeling accuracy compared to traditional methods. In [7], hydro-
geomorphic metrics were used for high-resolution fluvial landscape analysis to perform
efficient feature extraction and interpretation. In [8], U-Net neural network models were
utilized to extract hydrographic features and provide significant implications for hydrologic
modeling. Furthermore, In [9], a 2D analysis was employed to unravel the spatial hetero-
geneity of inundation pattern domains, while in [10], transfer learning with convolutional
neural networks was applied to delineate hydrological streamlines.

These methods are increasingly used to predict flood inundation and assess flood-
prone areas by leveraging remote sensing data such as satellite imagery and unmanned
aerial systems (UAS) to enhance flood detection accuracy. For instance, [11] investigated the
use of transfer learning and water segmentation in river-level monitoring, demonstrating
that these approaches enable automated and more accurate flood mapping and showed
that incorporating remote sensing data from SAR (Synthetic Aperture Radar) and optical
satellite imagery significantly enhances the detection of flood extent and water levels. Simi-
larly, ref. [12] highlighted that when these techniques are integrated with hydrodynamic
models, they offer promising tools for real-time flood forecasting by efficiently handling
large datasets and complex flood dynamics.

In this study, the YOLO model, a type of deep learning algorithm within the realm
of machine learning, is intended to be used. Research on detection technologies using the
YOLO model has been conducted in various fields. In [13,14], they studied waste detection
via UAV-based systems by modifying the loss function of YOLOv3 using Darknet-53 as the
backbone network for stronger feature extraction. In [15], a monitoring system that detects
waste in real time on beaches and at sea via UAVs was proposed by dividing images into
multiple grid cells through a single neural network pass, predicting the likelihood of each
cell containing an object. Additionally, a technology for detecting illegal logging sites in
river basins via YOLOv5 was developed in [16], which includes techniques such as Mosaic
Augmentation and Auto-Learning Bounding Box Anchors from its previous versions, and
DeepLabv3+, a deep learning-based image segmentation model that classifies each pixel of
an image.

A YOLO model capable of performing object detection in real time at high speed is a
single unified model that performs image segmentation, object boundary box extraction,
and object classification at once, and since it does not go through multiple steps like other
models, its implementation is simple and efficient, providing a solution to these problems.
Moreover, by integrating data augmentation techniques, we can improve the diversity of
training data, resulting in a more robust and accurate river detection model. However, river
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detection technology using the YOLO model has not been widely studied because of the
limited aerial images of rivers. Although various machine learning (ML) and deep learning
(DL) methods have been applied for object detection, river environments face limitations
such as insufficient data for training, challenges in accessing complex river environments,
and issues related to seasonal changes, variations in water volume, and vegetation growth.
However, river detection technology using the YOLO model has not been widely studied
because of the limited aerial images of rivers. The river environment presents various
complex variables, such as seasonal changes, variations in water volume, and vegetation
growth. Therefore, simply applying waste detection or illegal logging detection models to
river detection is limited. To apply these systems to river detection, specialized data and
models tailored to river environments are required.

Automated detection of UAV flight paths is particularly valuable for river surveying
using aerial photogrammetry. If automated detection of river paths in UAV-based aerial
surveys becomes feasible, it could prove highly beneficial for river engineers. However,
this application has not been fully explored due to limited data and a lack of comprehen-
sive studies in this specialized field. Therefore, an artificial intelligence model (RivDet)
was developed in the current study via the YOLOv8 model, the latest standard version
developed by Ultralytics in January 2023, which includes anchor-free detection and various
upgraded features and is widely adopted in several fields [17,18]. Machine learning-based
models are strongly influenced by the characteristics of the images used as input data for
training, and securing high-quality images for training is vital. Aerial high-quality images
from UAVs addressing river basins might not be enough to train the target AI model (i.e.,
RivDet). To overcome these limitations, the application of data augmentation techniques
has been proposed as a method for generating new images. This approach aims to increase
the diversity of training data, thereby facilitating the development of more robust artificial
intelligence models.

2. Study Area
In the present study, susceptible locations where flood disaster prevention research

has been conducted due to typhoons or guerrilla rainfall caused by climate change [19–21]
across South Korea were selected as research sites. The river network in South Korea
consist of 73 national rivers spanning 3602 km and 3842 local rivers covering 25,972 km
(http://nationalatlas.ngii.go.kr/pages/page_1273.php), accessed on 14 August 2024. A
total of 13 rivers were set as research sites, as described in Figure 1. The latitudes
and longitudes of the nine rivers in Gyeongsangnam-do, as well as the two rivers in
Gyeongsangbuk-do at the Andong River Experimental Center (Andong Kict), Poricheon
Stream, and the two rivers in the Bophwacheon Stream and Chogangcheon Stream in
Chungcheongbuk-do are presented. From these research sites, a total of 4177 UAV aerial
survey photographs with 5472 × 3648 resolution and 1070 × 580 resolution were acquired
using the Autel’s evo2 Enterprise RTK drone and DJI’s Phantom 4 Pro Version 2 drone
from 2021.06 to 2024.04.

http://nationalatlas.ngii.go.kr/pages/page_1273.php
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Figure 1. Map of the study area with each river name and its geological information, including
latitude and longitude.

3. Development of River Detection Artificial Intelligence
In the present study, the YOLOv8 model on the Roboflow [22,23] platform was utilized

for training the target UAV images for rivers and evaluating their performance. The
procedure is illustrated in Figure 2. Its procedure is separated into three steps.
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YOLOv8 is a neural network model for object detection, used for applications such as
license plate recognition and airplane detection. It consists of three sections: the backbone,
the neck, and the head. The backbone is a deep learning architecture that extracts features
from the input image, while the neck combines the layer’s features obtained from the
backbone. Additionally, the head predicts the classes and bounding boxes of objects
generated by the object detection model. The operation process of YOLOv8 is illustrated in
Figure 3, based on materials provided by Ultralytics (https://blog.roboflow.com/what-is-
yolov8/) (accessed on 2 January 2025).
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three sections: backbone, neck, and head.

Conv (convolutional) layers are fundamental building blocks in neural networks. They
apply a filter (or kernel) to the input image to create feature maps, capturing spatial hi-
erarchies in the data. In YOLOv8, convolutional layers are used extensively in the back-
bone and head of the network. The c2f module is a variation in the CSP (cross stage
partial) bottleneck. It consists of two convolutional layers and is designed to reduce
computational complexity while maintaining performance. The c2f module helps in fea-
ture extraction and fusion. The concat operation combines multiple feature maps along
the channel dimension. This is useful for merging information from different layers or
branches of the network, allowing the model to learn more complex features. The upsam-
ple feature is the process of increasing the spatial resolution of feature maps. It is used
in YOLOv8 to restore the original image size after downscaling during feature extraction.
This helps in precise localization of objects in the final output. The detection module is
responsible for the final object detection. It takes the processed feature maps and pre-
dicts bounding boxes, class probabilities, and other relevant information for each detected
object (https://abintimilsina.medium.com/yolov8-architecture-explained-a5e90a560ce5)
(accessed on 2 January 2025).

When an image is inputted into the network, it is first processed through the backbone.
Features are extracted at multiple scales through convolutional layers and c2f modules.

https://blog.roboflow.com/what-is-yolov8/
https://blog.roboflow.com/what-is-yolov8/
https://abintimilsina.medium.com/yolov8-architecture-explained-a5e90a560ce5
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Here, the sppf block is used after the last convolutional layer of the backbone to generate
fixed feature representations of objects in various sizes without resizing the image or
causing spatial information loss. The extracted features are then processed through the neck
section, where concat and upsample operations combine the feature maps. The upsample
feature maps are processed by the neck section, where the detection module generates the
final output. The detection module includes the bounding boxes and class probabilities of
the objects. Each block contains three detection blocks specialized in detecting different
object sizes. The first detection block handles small objects from the c2f block. The second
detection block handles medium-sized objects from the c2f block. The third detection block
handles small objects from the c2f block again. This structure allows YOLOv8 to efficiently
detect and predict objects.

3.1. Image Data Preparation

To conduct training on the Roboflow platform, first, a new project must be created
in the workspace, and the images to be used must be subsequently uploaded. In the
present study, a total of 4177 photographs of actual river sites were adopted, which can be
categorized into artificial and natural rivers [24]. The ‘River’ class is then injected into the
image as a bounding box via the Annotation Editor [25] in Figure 4. Here, the bounding
box is a tool for displaying specific objects in an image. In this mode, crosshairs help to
determine where to start drawing. A new annotation is created by clicking and dragging
across an image; then, the class selector is employed to choose its label. Once this process is
complete, dataset preparation for machine learning is complete.
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3.2. AI Model (RivDet) Creation and Training

A new river detection AI (RivDet) model can be created on the basis of the prepared
image dataset. The dataset is divided into train set, valid set, and test set. The dataset
is classified into three categories using Roboflow’s random sampling feature. By default,
Roboflow allocates 70% of the data to the train set, 20% to the validation set, and 10% to
the test set. In this process, the images require adjustment and normalization before being
inputted into the YOLOv8 model [26]. This involves applying a 640 × 640 transformation
of all images in the dataset to reduce training time and improve performance [27]. It is
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essential to unify and downsize all the UAV images into one resolution for training the AI
model. Images with different resolutions should be unified to combine all the photographs
for training an AI model, and the training speed can be accelerated by downsizing the
images with respect to the river feature.

Furthermore, training a RivDet AI model requires a large amount of data to obtain
satisfactory results, although more than 4000 images have been adopted in the current
study. The augmentation features of the Roboflow platform can be highly adoptable, and
its usage has improved model performance [14,28–31]. Therefore, a data augmentation
procedure was applied in the current study, and we analyzed its relative performance
thoroughly. Roboflow offers numerous image-level augmentation operations, including
flip, rotate, crop, shear, grayscale, hue, saturation, brightness, exposure, blur, noise, cutout,
and mosaic operations.

Horizontal or vertical flipping inverts the river image while allowing the model to
recognize objects in the mirror image of the data, as shown in Figure 5a. This is particularly
useful in cases where the object may appear in the opposite direction [28]. River images
from UAV aerial surveying often cannot be obtained from both sides. Therefore, this flip
feature can be useful when rivers are perceived in the opposite direction. The 90◦ rotate
operation turns the image by 90◦, enabling the model to recognize objects from various
angles (see Figure 5b). This is important for aerial or satellite images where the river
direction can vary at right angles [32].
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The crop operation removes arbitrary parts of the river image, focusing the model
on different parts of the object and allowing it to detect objects that are partially visible or
obscured, as shown in Figure 5c. Additionally, the cutout operation randomly removes
some parts of the river image, enabling the model to recognize objects despite missing
information [33]. The shear operation tilts the river image to simulate cases where an object
appears distorted owing to changes in perspective, as shown in Figure 5d. Through this
approach, the model is trained to recognize distorted rivers as well [34].

A comprehensive set of transformations was provided to mimic various scenarios in
which objects appear with different directions, sizes, and perspectives in real-world settings.
To this end, a group of augmentation operations—flip, 90◦ rotate, crop, and shear—was
utilized in the current study. The other combinations were further tested, but no better
results were obtained. Therefore, we presented those four augmentation features in the
current study.

The selected combination of augmentations further allows a multiplicative increase
in the amount of input data. This process involves reviewing the selected items and
choosing a version size to create a moment-in-time snapshot of the dataset via the applied
transformations. Increases from 2× to 50× are possible. Although larger increases increase
the training duration, they might result in better model performance. In the present study,
an increase of up to 5× was applied. To increase the diversity of the input model data,
combinations of four augmentations were applied at both a maximum increase of 5 and an
intermediate increase of 3×.

3.3. Model Evaluation

The performance of the object detection model was assessed by summing the differ-
ences between the mean average precision (mAP), precision, and recall values of the model
without augmentation and those of the model with augmentation. The mAP is the average
of the average precision (AP) for multiple classes and is used to comprehensively evaluate
the performance of an object detection model. The AP is calculated for each class; then,
the average of these APs is determined. The AP is computed as the area under the curve
(AUC) of the precision-recall graph, and the precision values must be averaged across all
recall values. The mAP is calculated as

mAP =
1
N ∑N

i=1 APi (1)

Precision is the ratio of actual true instances among those predicted as true by the
model, indicating the accuracy of the predictions. The precision is calculated as

Precision =
TP

TP + FP
(2)

Here; true positive (TP) refers to cases where the model accurately detects an object;
false-positive (FP) refers to cases where the model detects an object that is not present in
the image; false-negative (FN) refers to cases where the model fails to detect an object that
is present; and true negative (TN) refers to cases where the model correctly identifies that
no object is present in the image. Recall is the proportion of actual true instances that the
model predicted as true, indicating how well the model identifies actual positive cases. The
recall is calculated as

Recall =
TP

TP + FN
(3)
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4. Result
The mean average precision (mAP) graph is represented in Figure 6, as a result of the

basic model. A higher mAP value indicates better model performance. Therefore, during
the learning process, the mAP graph should show an increasing trend. If the mAP value
decreases or fluctuates significantly, it may indicate overfitting by the model. Box loss
represents the prediction error of the bounding box. The lower this value is, the more
accurately the model can predict the location of the bounding box. Class loss (CL) measures
how well the class is predicted by the model (i.e., the type of object detected) and matches
the actual class. The object loss (OL) measures how well the model determines whether an
object is present. All loss values should show a decreasing trend. If the loss value increases
or fluctuates significantly, it may mean that the model is overfitting. The result indicates
that the employed images are sufficient to train the RivDet AI model with no overfitting.
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In the present study, we further analyzed two significant features during RivDet
training. First, the existence of river levees was investigated since these hydraulic structures
can significantly affect the overall identification of river areas. Although this approach
might help to detect rivers when they actually exist and are included in an image, this
feature can reduce the detection of river areas when they do not exist in testing data.
Therefore, a comparative study with and without levees in training data was performed.

Furthermore, the augmentation feature was thoroughly investigated since it is a highly
useful technique for improving model performance and covering limited UAV river images.
The results of these two features are discussed in the following two subsections.
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4.1. Comparative Analysis with River Levees

As discussed, a total of 4177 measured river models were analyzed via the Roboflow
platform with further data augmentation. In the process of determining feature indicators
as bounding boxes in images, the model that included river levees as feature indicators was
compared and analyzed with the model that did not include river levees. In the analysis of
the models that included river levees, 3195 out of the actual 4177 measured images that
contained river levees were used.

The prediction results of the bounding box for the river model including levees were a
mAP of 79.5%, a precision of 79.1%, and a recall of 76.8%, whereas the prediction results of
the bounding box for the river model without levees were a mAP of 87.20%, a precision of
81.60%, and a recall of 82.00%, as presented in Table 1.

Table 1. Performance of the RivDet AI model with or without river levees.

mAP Precision Recall

With Levees 0.795 0.791 0.768
Without Levees 0.872 0.816 0.820

Overall, the predicted values of the bounding box without river levees were higher
than those with river levees. This suggests that levees in rivers can increase structural
complexity within the image, making it difficult for the model to identify objects accurately.
Furthermore, structures such as river levees can disrupt the flow within the image and
cause localized erosion, altering patterns related to water flow, which in turn can affect the
ability of the model to identify the boundaries of rivers [35]. On the basis of these results,
this study selected the model without river levees as the basic model and proceeded to
predict bounding boxes.

4.2. Augmentation

Given the nature of deep learning-based image classification models, which learn
from the diverse features of images to classify targets, it is expected that performance can
be enhanced through the training of various image characteristics. To this end, model
development was conducted by utilizing the augmentation feature and comparing it with
the basic model. Augmentation can improve the model ability by further generalizing the
images through a variety of transformations [36].

Usually, UAV photogrammetry is carried out during the day or in sunny weather, and
image data taken mainly during the day provide relatively high accuracy [37]. Most of
the images used in this study were also taken during clear weather. To analyze only the
performance of simple shape transformations except for the color or brightness control
function, which is useful for images taken at night or in cloudy weather, four out of fourteen
augmentation methods were applied, and models for each augmentation method were
developed accordingly. Each model was classified on the basis of the application of one
augmentation function: flip, 90◦ rotate, crop, and shear functions. Also, their combinations
for two augmentation functions were tested: flip and 90◦ rotate (see Figure 7a), flip and
crop (see Figure 7b), flip and shear (Figure 7c), 90◦ rotate and crop (see Figure 7d), 90◦

rotate and shear (see Figure 7e), and crop and shear (see Figure 7f).
Additionally, the models with three augmentation features were categorized as flip

and 90◦ rotate and crop, as shown in Figure 8a; flip and 90◦ rotate and shear, as shown
in Figure 8b; flip and crop and shear, as shown in Figure 8c; and 90◦ rotate and crop and
shear, as shown in Figure 8d, as well as a model that applies four augmentation features, as
shown in Figure 8e.
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4.2.1. One and Two Augmentations

The number of training data samples used in the study, learned through the augmenta-
tion feature of the Roboflow platform, is based on the basic model with all adopted images.
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Augmentation of each method can be applied to increase the number of images by multiple
times [38]. In this study, three times and five times the number of original images are
used. The maximum value provided by the augmentation function of the starter plan from
the Roboflow platform is five times the reinforcement, and the minimum value is three
times the reinforcement excluding two times the basic provision. Therefore, learning was
conducted three times or five times.

For models applying a one augmentation function, the counts are as follows. The flip
operation was applied three times with 8027 images and five times with 10,211 images;
the 90◦ rotate operation was applied three times with 9283 images and five times with
12,156 images; the crop operation was applied three times with 10,029 images and five times
with 15,881 images; and the shear operation was applied three times with 10,027 images
and five times with 15,863 images.

For models applying two augmentation functions, the counts are as follows: the flip
and 90◦ rotate operations were applied three times with 9866 images and five times with
14,822 images, and the flip and crop, 90◦ rotate and crop, and crop and shear operations
were applied three times with 10,029 images and five times with 15,881 images. Addition-
ally, the flip and shear and 90◦ rotate and shear models were applied three times with
10,027 images and five times with 15,873 images. The learning results for each model were
displayed via a heatmap, as shown in Figures 9 and 10. Heatmaps utilize color to allow for
a quick visual assessment of data distributions and patterns, and they intuitively present
the interrelationships between models that influence each other [39].

Figures 9 and 10 present the interrelated data results for mAP, precision, and recall.
Figure 9 shows the results of three times the input data using the augmentation feature of
the Roboflow platform, whereas Figure 10 shows the results of five times the input data.
The x-axis and y-axis represent the augmentation functions used in the current study, and
the values in each table indicate the correlation data between the axes. The range of mAP
values is 0.870 × 0.893, the range of precision values is 0.798 × 0.838, and the range of recall
values is 0.790 × 0.848.

According to the 3× mAP results in Figure 9, the 90◦ rotate and shear model scored
the highest, whereas the flip model scored the highest according to the 3× precision results,
and the flip and 90◦ rotate and 90◦ rotate and crop models scored the highest according
to the 3× recall results. Similarly, as shown in Figure 10, the flip and shear model scored
the highest according to the 5× mAP results, the crop and shear model scored the highest
according to the 5× precision results, and the shear model scored the highest according to
the 5× recall results. These results indicate that certain augmentation methods may be more
advantageous for specific metrics. For example, while the flip augmentation positively
impacts precision, the combination of 90◦ rotate and shear may increase the mAP. However,
one cannot rely solely on a single metric when selecting the optimal model [40]. Since each
metric evaluates different aspects of the model, the most effective augmentation method
may vary according to the metric. This implies that multiple metrics must be considered
comprehensively when optimizing a model. For example, a model with a high mAP
might actually have low precision or recall, which could affect performance in practical
applications. Therefore, when evaluating and selecting a model, a balanced approach that
considers various metrics, such as mAP, precision, and recall, is essential. Additionally, it is
necessary to identify the most critical metric for a specific task or application and adjust the
model accordingly.
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To facilitate this, the performance of each model was analyzed by using the sum of
the differences between the metrics of the basic model without augmentation and the
models with augmentation applied, which is displayed in Table 2. For ease of analysis of
the augmentation models, one augmentation model was categorized as S1 to S8, and two
augmentation models were categorized as D1 to D12. Model S1 is the flip model with a
three-fold increase, Model S2 is the 90◦ rotate model with a three-fold increase, and Model
D12 is the crop and shear model with the five-fold increase. The differences between the
mAP values of the basic and augmentation models are denoted D-mAP, the differences in
precision are denoted D-Precision, and the differences in recall are denoted D-Recall.

Table 2. Differences in performance between the original model and the model with augmentation
(one or two augmentations). Note that D indicates the difference between the measurements from
the model with augmentation and the original model without any augmentation.

No. Augmentation D-mAP D-Precision D-Recall Sum

S1

3×

Flip 0.005 0.022 −0.030 −0.003
S2 90◦ Rotate 0.012 −0.009 0.021 0.024
S3 Crop 0.006 0.008 −0.013 0.001
S4 Shear 0.005 0.010 0.002 0.017

D1 Flip and 90◦ Rotate 0.017 −0.005 0.028 0.040
D2 Flip and Crop 0.015 0.020 0.009 0.044
D3 Flip and Shear 0.009 −0.002 0.009 0.016
D4 90◦ Rotate and Crop 0.017 −0.005 0.028 0.040
D5 90◦ Rotate and Shear 0.021 −0.001 0.027 0.047 †

D6 Crop and Shear 0.000 −0.012 0.027 0.015

S5

5×

Flip 0.016 −0.003 0.016 0.029
S6 90◦ Rotate 0.016 0.006 −0.011 0.011
S7 Crop −0.003 −0.006 0.011 0.002
S8 Shear −0.002 −0.015 0.024 0.007

D7 Flip and 90◦ Rotate 0.010 −0.015 0.007 0.002
D8 Flip and Crop 0.006 −0.018 0.017 0.005
D9 Flip and Shear 0.022 0.010 0.013 0.045

D10 90◦ Rotate and Crop 0.011 −0.007 0.017 0.021
D11 90◦ Rotate and Shear 0.011 −0.010 0.009 0.010
D12 Crop and Shear 0.003 0.017 −0.002 0.018

† The numbers in bold and underlined indicate the best-performing model.

The comparative analysis of the basic model and the augmentation models shows
that Model D5, which applies 90◦ rotate and shear operations, has the highest performance
among the models with three-fold increases, whereas Model D9, which applies flip and
shear operations, excels compared with the models with five-fold increases. A common
feature of Model D5 and Model D9 is the use of shear transformation. Shear transfor-
mation is used to simulate geometric distortion in images by skewing objects. This is
thought to aid the model in better handling various visual transformations that can occur
in real-world scenarios.

In particular, Model D5 has the highest performance among all augmentation models,
with a score of 0.047. The augmentations applied to Model D5, i.e., 90◦ rotate and shear
operations, can have complementary effects. For example, the 90◦ rotate transformation
aids the model in recognizing objects rotated along the horizontal or vertical axis, whereas
the shear transformation enhances the recognition of asymmetric tilt changes. This suggests
that Model D5 is not overly dependent on training data and can generalize better with
regard to new data, as evidenced by its relatively good ability to recognize new images
affected by different tilt and rotation angles.
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Conversely, Model S1 has the lowest performance, with a score of −0.003. This is
attributed to the application of fewer training data compared with Model S5 and the use of
only the flip transformation, which is a relatively simple transformation that flips images
horizontally or vertically. The use of a single transformation may limit the ability of the
model to learn various visual transformations, resulting in lower performance.

4.2.2. Three and Four Augmentations

The number of training samples learned through the three and four augmentations
were 10,029 with three times augmentation and 15,881 with five times augmentation for
each model. A performance analysis was conducted on the basis of the augmentation com-
binations, with the values of mAP, precision, and recall being calculated. The models based
on three augmentations are denoted T1 to T8, whereas the models with four augmentations
are represented as Q1 and Q2 in Table 3. The models with three-fold increases are classified
as T1 to T4 and Q1. The models with five-fold increases are represented as T5 to T8 and Q2.
According to the mAP results in Table 3, Model T6, the model with a five-fold increase and
a combination of flip, 90◦ rotate and shear operations, achieves the highest performance,
with a mAP of 0.890, and the highest precision, with a score of 0.842. Furthermore, on the
basis of the recall results, Model T1, the model with a three-fold increase and a combination
of flip, 90◦ rotate and crop operations, achieves the highest performance. These findings
support the earlier statement that the flip operation has a positive effect on precision and
that the combination of 90◦ rotate and shear operations can increase mAP.

Table 3. mAP, precision, and recall calculated through a combination of three and all augmentation
functions. Note that Roboflow augmentation was used to increase the amount of input data by three
or five times.

No.
Augmentation mAP Precision Recall

Basic 0.872 0.816 0.820

T1

3×

Flip and 90◦ Rotate and Crop 0.882 0.788 0.857
T2 Flip and 90◦ Rotate and Shear 0.878 0.820 0.825
T3 Flip and Crop and Shear 0.888 0.830 0.848
T4 90◦ Rotate and Crop and Shear 0.885 0.813 0.833

T5

5×

Flip and 90◦ Rotate and Crop 0.886 0.818 0.825
T6 Flip and 90◦ Rotate and Shear 0.890 0.842 0.795
T7 Flip and Crop and Shear 0.885 0.788 0.856
T8 90◦ Rotate and Crop and Shear 0.884 0.839 0.788

Q1 3× Flip and 90◦ Rotate and Crop
and Shear

0.884 0.802 0.842
Q2 5× 0.887 0.835 0.816

Despite the variety of augmentation combinations, reliance on a single metric for
selecting the optimal model is insufficient. Therefore, the performance of each model was
analyzed via the sum of the differences between the metrics of the basic model and the
models with three or four augmentations applied. The analyzed results are presented
in Table 4. The comparative analysis of the basic model and the augmentation models
indicates that Model T3 has the highest performance among the models with three-fold
increases, whereas Models T5 and T7 have the highest performance among the models
with five-fold increases. The models with the three-fold and five-fold increases applying
flip, crop and shear operations demonstrated the best performance.
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Table 4. Differences in performance between the original model and the model with augmentations
(three and four augmentations). Note that D indicates the difference in the measurements from model
with augmentations and the original model without any augmentation.

No. Augmentation D-mAP D-Precision D-Recall Sum

T1

3×

Flip and 90◦ Rotate and Crop 0.010 −0.028 0.037 0.019
T2 Flip and 90◦ Rotate and Shear 0.006 0.004 0.005 0.015
T3 Flip and Crop and Shear 0.016 0.014 0.028 0.058†

T4 90◦ Rotate and Crop and Shear 0.013 −0.003 0.013 0.023

T5

5×

Flip and 90◦ Rotate and Crop 0.014 0.002 0.005 0.021
T6 Flip and 90◦ Rotate and Shear 0.018 0.026 −0.025 0.019
T7 Flip and Crop and Shear 0.013 −0.028 0.036 0.021
T8 90◦ Rotate and Crop and Shear 0.012 0.023 −0.032 0.003

Q1 3× Flip and 90◦ Rotate and Crop
and Shear

0.012 −0.014 0.022 0.020
Q2 5× 0.015 0.019 −0.004 0.030

† The numbers in bold and underlined indicate the best-performing model.

This suggests that the models are helpful in detecting rivers in images where the
boundaries are tilted in various directions or partially obscured by surrounding environ-
ments. This finding reflects the ability of the models to adapt to a variety of scenarios
and changes similar to real river environments. The interactions between augmentation
functions can sometimes act in unexpected ways, potentially having a negative impact on
performance. Moreover, excessive augmentation may interfere with the ability of the model
to learn important features and lead to overfitting. Therefore, the selection and combination
of augmentation functions should be performed with care, and an experimental approach
with meticulous analysis is necessary to optimize model performance.

Overall, the models with augmentation performed better than the basic model without
augmentation. This is due to the augmentation features allowing the model to experience
a greater variety of transformations and scenarios, enabling it to learn about the diverse
situations that may occur in real-world settings.

4.3. Results for Each River

Based on the simulation results from Sections 4.1 and 4.2, The confidence was extracted
by applying them to the 11 study rivers as shown in Figure 11. The confidence score
is calculated by multiplying the objectness score and class probability. The objectness
score is the probability that an object exists within an estimated bounding box while
class probability is the likelihood that the detected object belongs to a specific class. The
confidence score represents the predictive confidence of the class predicted by the YOLO
model, with higher values indicating a better model. Parts of the data were excluded at
Andong river experiment center, Beophwacheon stream (D2~D5, D6~D11, and Q1~Q2)
due to data limitation to calculate the confidence score.

The result indicated that Wosucheon stream had the highest confidence score of 0.842,
while Sincheon stream had the lowest as 0.697. This shows that the models recognized
Wosucheon stream the best, while Sincheon stream had the lowest recognition confidence.
Wosucheon stream used the most images for training, accounting for about 12% of the
4177 drone photographs used in this study. Additionally, Sincheon stream showed a
tendency for its boundaries between the levees and river to be unclear due to the influence
of plant debris.
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Based on the results in Figure 11, the models with the highest confidence for each river
were identified and are presented in Table 5. The maximum confidence ranged from 0.88 (at
Migok with the basic model) to 0.74 (at Sin with T8). This suggests that data augmentation
does not always enhance model performance, highlighting the need for careful testing of
augmentation methods before conducting further analysis.

Table 5. Max confidence score among 20 augmentation models at each river.

River No. Augmentation Confidence

Chogang D6 Crop Shear 3× 0.849
Doya T8 90◦ Rotate and Crop and Shear 5× 0.867
Jinae S3 Crop 3× 0.847

Migok Basic - - 0.881
Nabul S5 Flip 5× 0.878
Pori T4 90◦ Rotate and Crop and Shear 3× 0.841
Sin T8 90◦ Rotate and Crop and Shear 5× 0.741

Suda S7 Crop 5× 0.812
Wogang D12 Crop and Shear 5× 0.866

Wosu T3 Flip and Crop and Shear 3× 0.885
Youngcheon T7 Flip and Crop nd Shear 5× 0.865

Except for the Basic Model and Model D5, all other models incorporated crop aug-
mentation. Crop augmentation enhances model performance by selectively removing
arbitrary portions of the image, reducing data redundancy, and ensuring that essential
features of the image are retained. As a result, this technique enables more accurate model
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predictions. This capability of crop augmentation significantly contributes to achieving
higher maximum confidence scores for most rivers.

According to the results in Table 5, models utilizing 90◦ rotate, crop, and shear achieved
the highest confidence, closely followed by those incorporating flip, crop, and shear. Among
models with one or two augmentation techniques, 90◦ rotate and shear demonstrated
the best performance, while flip, crop, and shear outperformed others in models with
three or four augmentation techniques. These findings suggest that model performance
significantly influences the confidence levels when applied to river data. Furthermore, data
augmentation techniques, particularly the crop method, effectively enhance the model’s
prediction confidence.

5. Conclusions
Given the recent impacts of climate change, which have led to floods and various

river-related disasters, securing technology to address these issues has become crucial. The
current state of artificial intelligence-based detection technology for rivers can be highly
adaptable for river-related management, and aerial images from UAVs can be advantageous
in training AI to detect river sections. Therefore, this study developed an AI model named
RivDet for automatic river path detection, which was performed by applying augmentation
through the YOLOv8 model on the Roboflow platform.

Two main issues were addressed when training RivDet AI: the existence of river levees
and the augmentation features. A river levee is crucial for protecting against and mitigating
floods, and it defines the river section. However, its clear boundary might not be helpful if
no bank exists. The results indicate that training river images without separating levees
can be more beneficial for better performance.

In addition, data augmentation was further investigated to determine whether this
augmentation can be helpful in training the RivDet AI model for detection, and which
feature is more reliable. The results showed that among the models with one or two
augmentations applied, the combined augmentation method using 90◦ rotate and shear
operations exhibited the highest performance, whereas the method using the flip aug-
mentation alone showed the lowest performance. This suggests that training the model
using 90◦ rotate and shear transformations can improve performance reasonably in river
detection tasks by making the model more robust to various directional and geometric
transformations. Moreover, among the models with three or four augmentations applied,
the model combining the flip, crop and shear operations demonstrated the highest per-
formance. This finding indicates that training under conditions similar to those of the
actual river environment is advantageous for adapting to various scenarios and changes
in field conditions and that excessive augmentation can hinder the model from learning
important features.

Based on the results, confidence was calculated by applying it to the rivers. When
all models, except those with limitations, were applied, it was found that the Wosucheon
stream had a higher average confidence. This suggests that training the models with a large
number of images from the specific river can yield higher confidence. Additionally, the
max confidence, representing the highest reliability for each river, was extracted based on
the confidence results. Therefore, Chogangcheon stream is best represented by Model D6,
Doyacheon stream by Model T8, Jinaecheon stream by Model S3, Migokcheon stream by
Basic, Nabulcheon stream by Model S5, Poricheon stream by Model T4, Sincheon stream by
Model T8, Sudacheon stream by Model S7, Wogangcheon stream by Model D12, Wosucheon
stream by Mode T3, and Youngcheongang stream by Model T7. Except for two rivers, the
recognition accuracy of the augmentation models using the crop function was found to be
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higher in all other rivers. This suggests that including crop in the simulations can result in
higher confidence in detecting rivers.

However, the effects of data augmentation can vary depending on factors such as
the characteristics of the dataset, the structure of the model, and the training process,
which indicates that the results may not always reflect general cases. These outcomes are
limited to specific datasets and experimental settings, and different results may emerge
under other conditions. Furthermore, these augmentation methods do not guarantee
optimal results in all cases, and it is important to find the best augmentation combination
through experimentation with various datasets and models. Therefore, it is believed that
appropriately applying augmentation functions according to the river field environment
can yield the highest performance.

The training models with augmentations applied are expected to help the model gener-
alize better with regard to new data and improve performance in real-world environments.
Additionally, the RivDet artificial intelligence model for the automatic river path setting
developed in this study is expected to solve various problems, such as finding the best river
path, automatically calculating the flow rate, establishing an early flood warning setup,
and estimating the flood inundation range for river disaster prevention.
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