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Abstract: The Gravity Recovery and Climate Experiment Follow-On (GRFO) mission pre-
cisely measures the inter-satellite range between the centers of mass of its twin satellites
to map the earth’s gravity field. The baseline ranging measurement is achieved using the
K-band ranging (KBR) system, which is sensitive to satellite attitude variations caused by
the offset between the satellite center of mass and the KBR antenna phase center. Accurate
decoupling of the KBR range from attitude variations requires precise determination of
the KBR’s antenna offset vectors (AOVs). To address this, GRFO conducted eight KBR
calibration maneuvers on 17 and 28 September 2020. However, these maneuvers exagger-
ated the impact of microwave multipath noise, complicating AOV estimation. Existing
studies have not fully mitigated this noise. This study introduces a new frequency-domain
method to estimate AOVs by leveraging double-difference signals and analyzing their
spectral characteristics, along with those of the KBR range during calibration maneuvers,
to suppress multipath noise. Our recalibrated AOVs achieve good alignment between the
KBR and laser ranging interferometer (LRI) ranging signals. We validate our recalibrated
AOVs by comparing the residuals between the LRI and KBR ranging signals corrected
using both recalibrated AOVs and documented AOVs. The results show that, for the
majority (58.4%) of the analyzed period (from January 2020 to June 2023), the residuals
corrected by the recalibrated AOVs are closer to the LRI ranging signal. These findings
demonstrate the effectiveness of the proposed method in addressing multipath noise and
improving the accuracy of KBR range measurements. This work provides a framework for
future gravity missions requiring precise calibration of multipath effects in inter-satellite
ranging systems.

Keywords: GRACE Follow-On; antenna offset correction; K-band ranging; multipath noise

1. Introduction
The Gravity Recovery and Climate Experiment Follow-On (GRFO), launched on

22 May 2018, continues the work of the Gravity Recovery and Climate Experiment (GRACE).
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Over its six years of operation so far, GRFO has demonstrated its effectiveness in earth sci-
ence, providing critical insights into sea level change, ice melt dynamics, flood monitoring
and earth’s free oscillations [1–4]. As the successor of GRACE, GRFO is equipped with the
K-band ranging (KBR) system, star cameras (SCA) for attitude determination, accelerom-
eters (ACC) for measuring the non-gravitational forces and global positioning system
(GPS) receivers for precise orbit determination (POD) [5]. A unique feature of GRFO is the
laser ranging interferometer (LRI), which validates the key technologies for future gravity
missions and space-based gravitational wave antennas [6,7]. Among these payloads, the
KBR and LRI systems simultaneously and independently measure the distance variations
between the two polar-orbit low-earth-orbit (LEO) spacecrafts. These measurements, essen-
tial for recovering the earth’s gravity field, are affected by internal error sources, such as
satellite attitude jitter and carrier frequency instability. The decoupling between KBR range
and attitude requires the precise determination of the KBR antenna offset vectors (AOVs)
on individual GRFO satellites. This study presents a new frequency-domain approach for
estimating the AOVs by revisiting multipath noise, a dominant error in AOV estimation
that has not been fully evaluated in previous studies [8–11].

The KBR system operates in a dual one-way ranging (DOWR) scheme, transmitting
and receiving K- and Ka-band microwave between the antenna phase centers (APCs) of two
satellites [12]. The APC of each satellite is offset from its center of mass (CM) by the AOV,
and variations in the microwave link due to satellite attitude jitter introduce time-varying
errors that couple with the earth’s gravity field. In the Level-1 processing workflow [13,14],
the corrections for these errors are performed by projecting the microwave link onto the
line-of-sight (LOS) baseline defined by the twin satellites’ CMs, resulting in the so-called
antenna offset correction (AOC) for Level-1B KBR (KBR1B) data products. To estimate
the AOVs, GRFO conducted both the pre-launch ground calibration and on-board KBR
calibration maneuvers on 17 September 2020 and 28 September 2020, using maneuver
strategies similar to those employed for GRACE. The ground calibration results, stored in
the VKB1B dataset, provide baseline AOV values.

Previous methods for AOV estimation, such as those outlined by Huang [8,9], relied
on time-domain analyses that combined maneuver data with their mirror counterparts
to suppress multipath noise. While effective to some extent, these methods were limited
in their ability to fully suppress multipath interference. Recent advancements in the
recalibration of systematic errors in GRACE KBR data have demonstrated improvements.
For instance, recalibration has been shown to reduce biases in pitch and yaw alignment
angles, enhance gravity field solutions by up to 50% for zonal coefficients and improve
agreement with in situ ocean bottom pressure observations, as well as estimates of Antarctic
ice sheet mass variations [10]. Building on these developments, Ellmer [15] introduced a
more sophisticated approach by combining total least-squares adjustment (TLSA), a priori
calibrated values and a stochastic model to co-estimate the KBR APC alongside the Stokes
coefficients of the gravity field. This method revealed biases in the x-coordinate estimates,
which were partially reduced—though not entirely eliminated—by incorporating AOC
covariance matrices. The application of TLSA further corrected these biases, achieving near-
complete mitigation. However, our analysis indicates that even these advanced techniques
may not entirely eliminate multipath noise, suggesting the need for further refinement in
AOV estimation methodologies.

Satellite attitude variations also contribute to tilt-to-length (TTL) coupling, a signif-
icant noise in LRI ranging measurement at low frequencies. TTL coupling arises from
misalignment in the satellite’s CM and LRI’s reference reflection point, thereby introducing
errors in the ranging data. To achieve minimal TTL coupling, active beam pointing based
on differential wave front sensing compensates spacecraft attitude fluctuations; thus, the



Remote Sens. 2025, 17, 353 3 of 21

TTL coupling in the LRI ranging measurement was proven to be lower than 150 µm/rad [5].
Furthermore, due to the laser-based measuring scheme with phase locking, the Level-1B
LRI (LRI1B) measurements are free from multipath noise [16].

To revisit the effects of multipath noise on AOV estimation, we use the K- and Ka-band
double-difference signals derived from GRFO’s Level-1A data products. These signals
are formed by combining four one-way KBR phase measurements with the frequencies
of each carrier as the scales [17]. Our analysis shows that this signal reveals the spectral
characteristics of multipath noise during KBR calibration.

This study presents a new algorithm to calibrate the AOVs of individual GRFO satel-
lites in the frequency domain using the measurements during on-board KBR calibration
maneuver by analyzing and addressing multipath noise. Section 2 establishes the observa-
tion equations for KBR calibration. Sections 3 and 4 detail the KBR calibration maneuver
strategy and then analyze the spectral characteristics of AOCs and double-difference
signals, which inform our frequency-domain approach. In Section 5, we propose an al-
gorithm to estimate the optimal angular frequency of each sub-maneuver, the multipath
noise’s amplitude at this frequency and the AOV of each satellite. Section 6 presents the
results, introduces a model-independent method to calibrate multipath noise in the inter-
satellite microwave link and compares the LRI ranging measurement with the KBR ranging
measurement corrected by recalibrated AOVs from this paper and the AOVs provided
by VKB1B.

2. Observational Equation
As illustrated in Figure 1, for each satellite (i = C, D), the APC (red point) is deviated

from its CM (blue point) by the AOV di, and the KBR system measures the distance between
the individual APCs. However, the inter-satellite range between the CMs ρCOM is required
for gravity field recovery. Therefore, for the misalignment of the inter-satellite pointing of
the two satellites, the AOVs dC and dD are projected on the LOS to correct the KBR range
ρKBR between two APCs, and this correction is the so-called AOC [15,18].
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The AOC ∆ρAOC is given by

∆ρAOC = ⟨uD, RDdD⟩ − ⟨uC, RCdC⟩, (1)

where rC and rD are the positions of the twin satellites in the inertial frame; RC and RD

are their orientation from the satellite reference frame (SRF) to the inertial reference frame
(IRF); and uC and uD are the AOVs in individual SRFs,. ⟨ ⟩ denotes the inner product of
two vectors.

In addition to this geometric correction, the distance between both satellites’ CMs
ρCOM at the same epoch differs from the measured KBR biased range ρKBR due to the travel
time of the microwave between the twin spacecrafts. This is corrected by the light-time
correction (LTC), denoted as ∆ρKLTC. Taking into account other error sources, including
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integer ambiguity N, multipath noise ξ and stochastic noise e, the GRFO range observations
are described by the following ionosphere-free combination [18]

ρCOM = 16
7
(
ρKa

KBR + ξKa + NKa + eKa
)
− 9

7
(
ρK

KBR + ξK + NK + eK
)
+ ∆ρKLTC + ∆ρAOC

= ρKBR + ∆ρKLTC + ∆ρAOC + ξ + N + e,
(2)

where ρKBR = 16
7 ρKa

KBR − 9
7 ρK

KBR, ξ = 16
7 ξKa − 9

7 ξK, N = 16
7 NKa − 9

7 NK, e = 16
7 eKa − 9

7 eK,
ρK

KBR and ρKa
KBR are the KBR biased range; ξK and ξKa are the multipath noise; NK and NKa

are the integer ambiguities; and eK and eKa are the stochastic noise for K- and Ka-bands.
Equations (1) and (2) imply the relationship between the AOVs and the other geo-

metrical quantities given by the GRFO data product. For a time span {t1, t2, . . . , tm}, we
rewrite Equations (1) and (2) to obtain the observation equation

b = Ax (3)

where

A =


u(t1)RD(t1) −u(t1)RC(t1)

u(t2)RD(t2) −u(t2)RC(t2)
...

...
u(tm)RD(tm) −u(tm)RC(tm)

 (4)

x =

[
dC

dD

]
=

[
dCx , dCy , dCz , dDx , dDy , dDz

]⊺
, (5)

b =


ρCOM(t1)− ρKBR(t1)− ∆ρKLTC(t1)− ξ(t1)− N − e(t1)

ρCOM(t2)− ρKBR(t2)− ∆ρKLTC(t2)− ξ(t2)− N − e(t2)
...

ρCOM(tm)− ρKBR(tm)− ∆ρKLTC(tm)− ξ(tm)− N − e(tm)

 (6)

From Equation (3), the AOVs in individual SRFs can be estimated by solving the linear
system. For clarity, the data sources of the quantities in A and b are listed in Table 1.

Table 1. Data sources.

Quantity Data Product Description

u GNI1B The unit LOS vector
ρCOM GNI1B The inter-satellite range between two CMs
ρKBR KBR1B The KBR biased range between two APCs
ρKLTC KBR1B The light-time correction for ρKBR

RC SCA1B The rotation matrix from IRF to SRF of GRACE-C
RD SCA1B The rotation matrix from IRF to SRF of GRACE-D

3. KBR Calibration Parameter
Although the APCs of the twin satellites are precalibrated on the ground before launch,

the on-orbit calibration is necessary due to the inevitable changes in APC positions in the
space environment. Based on the analysis in [8], the periodical multipath noise during the
calibration maneuvers is not negligible (see Section 4.2 for the mechanism). There are two
ways to suppress the multipath error. The first is to build an appropriate multipath noise
model, and the second is to reduce the magnitude of multipath error by mirror maneuvers.
The GRFO calibration design team adopted the latter option.

In 2020, the on-board KBR calibration maneuver was conducted, consisting of eight
sub-maneuvers. Table 2 provides the details of the GRFO’s KBR calibration maneuver
schedule. For simplicity, the eight sub-maneuvers are indexed by k, with the mirror sub-
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maneuvers denoted using a prime symbol. Each k-th sub-maneuver involves the following
two steps:

- Initial Rotation: Rotate one GRFO satellite along the yaw/pitch axis relative to the
nominal attitude by an angle bias ηk.

- Swing Maneuver: Swing this satellite along the same axis, and its attitude, θk, varies
according to Equation (7).

θk = ηk + Θksin
(

2π
Tk

t
)
= ηk + Θksin(2π fkt) = ηk + Θksin(ωkt), (7)

where ηk is the angle bias; Θk is the maneuver amplitude; Tk is the maneuver period; fk is
the maneuver frequency; and ωk is the maneuver angular frequency. Figure 2 shows the
attitudes relative to the LOS vector on 17 September 2020 and 28 September 2020.

Table 2. KBR calibration parameters.

Index (k) Starting Time (UTC) GRACE ID Direction ¯
ηk (◦)

¯
Θk (◦) Tk (s) Duration (s)

1′ 2020-09-17T05:37:00 C −pitch −2 1 250 3750
1 2020-09-17T08:46:00 C +pitch +2 1 250 3750
2′ 2020-09-17T11:55:00 C −yaw −2 1 250 3750
2 2020-09-17T15:04:00 C +yaw +2 1 250 3750
3′ 2020-09-28T05:05:00 D −pitch −2 1 250 3750
3 2020-09-28T08:15:00 D +pitch +2 1 250 3750
4′ 2020-09-28T11:55:00 D −yaw −2 1 250 3750
4 2020-09-28T14:35:00 D +yaw +2 1 250 3750
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17 September 2020 (a) and 28 September 2020 (b). The purple lines indicate the angle bias.

During the KBR calibration maneuvers, the satellite under calibration adjusted its
attitude using attitude control thrusters. In addition to the required angular accelerations,
the thruster firings would also inevitably cause linear accelerations. Both the KBR biased
range and the inter-satellite range between two CMs measure the range variation caused
by the linear accelerations. The range variations in ρKBR and ρCOM cancel each other in
the vector b in Equation (3). Thus, the thruster-induced range variation does not affect the
KBR calibration.

4. Spectral Characteristics
Based on the calibration maneuver strategy above, for the k-th sub-maneuver, the satel-

lite attitude follows a sinusoidal variation. In the frequency domain, the attitude’s energy
is entirely localized at the frequencies ±ωk. After the geometry projection represented in
Equation (1), the attitude’s spectral characteristics are transmitted into the AOCs, providing
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useful information in the estimation of the AOVs. Meanwhile, as outlined in [8], multipath
noise remains the primary error source in KBR calibration. In the following sections, we
propose a novel method to evaluate and suppress the multipath effect by introducing the
double-difference signal of the KBR phase signals.

4.1. Spectral Characteristics of AOCs

During the calibration maneuver, the misalignment of the inter-satellite pointing
results in a rotation transformation from the SRF to the IRF. The rotation matrix for the i-th
satellite is expressed as

Ri = RLOSF−IRF
i RSRF−LOSF

i , (8)

where RLOSF−IRF
i represents the rotation matrix from the line-of-sight frame (LOSF) of the i-th

satellite to the IRF, and RSRF−LOSF
i represents the rotation matrix from the SRF to the LOSF of

the i-th satellite. Since the nominal attitude of GRFO satellites deviates from the LOS only by a
few mrad, we neglect the attitude jitter for simplicity. Therefore, when the i-th satellite is under
the k-th sub-maneuver, ( RSRF−LOSF

i )k. is derived from Equation (7) directly

(RSRF−LOSF
i )k = {Ry(θk), (k = 1, 1′, 3, 3′)

Rz(θk), (k = 2, 2′, 4, 4′)′
(9)

where

Ry(θ) =

cos θ 0 −sinθ

0 1 0
sinθ 0 cosθ

, (10)

Rz(θ) =

cos θ −sin θ 0
sin θ cos θ 0

0 0 1

, (11)

For the satellite not under maneuver, (RSRF−LOSF
j )k. is approximated as a unit diagonal

matrix because it maintains a nominal attitude, that is

(RSRF−LOSF
j )k =

1 0 0
0 1 0
0 0 1

, (12)

Additionally (
uRSRF−IRF

i

)⊺
= RLOSF−SRF

i RIRF−LOSF
i u⊺, (13)

where RIRF−LOSF
i u⊺ indicates the transposed unit LOS vector in the i-th satellite’s LOSF,

that is, RIRF−LOSF
C u⊺ = [−1, 0, 0]⊺ , RIRF−LOSF

D u⊺ = [1, 0, 0]⊺ .
Furthermore, the elements related to the maneuver angle θk occupy two rows of

RSRF−LOSF
C ; therefore, only two columns in the model matrix A are sensitive to one sub-

maneuver. The two sensitive rows of x are denoted as xs1: and xs2: , and xs1: = dix is the x
component of AOV of the i-th satellite.

Substitute Equations (9) and (12) into Equation (1), and the AOCs for the k-th sub-
maneuver are expanded as follows:

∆ρk
AOC(t) ≈ xs1:cosθk − xs2: sinθk + djx

= xs1:cos
(
ηk + Θksin(ωkt)

)
−xs2:sin

(
ηk + Θksin(ωkt)

)
+ djx

= (xs1:cosηk − xs2: sinηk)cos
(
Θksin(ωkt)

)
−(xs1:sinηk + xs2: cosηk)sin

(
Θksin(ωkt)

)
+ djx ,

(k = 1, 2, 3, 4) (14)
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Because the Θsin(ωkt) in Equation (14) is small, we obtain

cos(Θksin(ωkt)) = 1 − 2sin2(Θk
2 sin(ωkt)) ≈ 1 − 2(Θk

2 sin(ωkt))

≈ 1 − (Θk)
2

4 + (Θk)
2

4 cos(2ωkt),
(15)

sin
(
Θksin(ωkt)

)
≈ Θksin(ωkt). (16)

Then, Equation (1) is approximated as follows:

∆ρk
AOC(t) ≈ djx + (xs1: cos ηk − xs2:sin ηk)

(
1 − (Θk)

2

4

)
−Θ(xs1:sinηk + xs2: cosηk)sin(ωkt)

+
(Θk)

2

4 (xs1:cosηk − xs2:sinηk)cos(2ωkt),

(17)

The three lines on the right-hand side of Equation (17) are the direct current component∣∣∣∣∆∼
ρ

k
AOC(0)

∣∣∣∣ and the harmonic components at the maneuver frequency
∣∣∣∣∆∼

ρ
k
AOC(ωk)

∣∣∣∣ and

the doubling maneuver frequency
∣∣∣∣∆∼

ρ
k
AOC(2ωk)

∣∣∣∣, respectively (Figure 3b,d).

|∆∼
ρ

k
AOC(0)| ≈ djx + (xs1:cos ηk − xs2:sin ηk)

(
1 − (Θk)

2

4

)
, (18)

∣∣∣∣∆∼
ρ

k
AOC(ωk)

∣∣∣∣≈ Θk(xs1: sinηk + xs2:cosηk), (19)

|∆∼
ρ

k
AOC(2ωk)| ≈

(Θk)
2

4 (xs1: cos ηk − xs2:sin ηk), (20)Remote Sens. 2025, 17, x FOR PEER REVIEW 9 of 21 
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Figure 3. The vector b on 17 September 2020 (a, blue for negative pitch sub-maneuver, orange for
positive pitch, yellow for negative yaw, purple for positive yaw) and 28 September 2020 (c). The
amplitude spectral density of the data superimposed on a strip with the same colors is shown in (b,d).
In the second column, the green dashed lines indicate the maneuver frequency ωk, and the red lines
indicate the doubling maneuver frequency 2ωk.
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The same derivation can be easily adapted to obtain the approximation of its mirror
sub-maneuver, i.e., k′

∆ρk′
AOC(t) ≈ djx + (xs1:cos ηk′ − xs2: sin ηk′)

(
1 − (Θk′ )

2

4

)
−Θk′(xs1:sinηk′ + xs2:cosηk′)sin(ωk′ t)

+
(Θk′ )

2

4 (xs1:cosηk′ − xs2: sinηk′)cos(2ωk′ t),

(21)

In Table 2, cosηk = cosηk′ and sinηk = −sinηk′ ; therefore, the coefficients of xs1: in
Equations (17) and (21) are the opposites of each other. Thus, we solve xs1: with the linear

combination of Equations (17) and (21). However,
∣∣∣∣∆∼

ρ
k
AOC(0)

∣∣∣∣ and
∣∣∣∣∆∼

ρ
k′

AOC(0)
∣∣∣∣ are coupled

with integer ambiguity N in the KBR biased range ρKBR, and the x component of AOV xs1:

dominates the harmonic components at the doubling maneuver frequency:

xs2: sinηk
xs1: cosηk

≈ 10−5, (22)

Therefore, it is the harmonic components at the maneuver frequency
∣∣∣∣∆∼

ρ
k
AOC(ωk)

∣∣∣∣
and

∣∣∣∣∆∼
ρ

k′

AOC(ωk′)

∣∣∣∣ that give a hint to solve xs1: .

Meanwhile, the AOCs ∆ρAOC are not direct observations of the GRFO but are viewed
as a derived quantity from ρCOM, ρKBR and ∆ρKLTC, as shown in Equation (2). Therefore,
in the time domain, Equation (3) indicates that b is a version of ∆ρAOC with stochastic
noise e, integer ambiguity N and multipath noise ξ. In the frequency domain, the integer

ambiguity N exerts no effect on
∣∣∣∣∼b(ωk)

∣∣∣∣ and
∣∣∣∣∼b(2ωk)

∣∣∣∣, and the harmonic component of

stochastic noise e at the maneuver frequency
∣∣∣∼e (ωk)

∣∣∣< 2 µm; thus, the boresight error

caused by
∣∣∣∼e (ωk)

∣∣∣ is less than 100 µrad. Multipath noise is analyzed in the following
section. Figure 3 presents the time series and ASDs of the measurement vector b. Outside
of the eight shaded regions in Figure 3a,c, notable low-frequency noise is introduced by the
POD measurements.

We substitute ∆ρAOC with the vector b (Figure 3) to estimate the AOVs:

|
∼
b

k
(ωk)| ≈ Θk(xs1:sinηk + xs2:cosηk) + |

∼
ξ

k
(ωk)|, (23)

|
∼
b

k′

(ωk′)| ≈ −Θk′(xs1: sinηk′ + xs2:cosηk′) + |
∼
ξ

k′

(ωk′)|, (24)

|
∼
b

k
(2ωk)| ≈

(Θk)
2

4 (xs1:cosηk − xs2: sinηk) + |
∼
ξ

k
(2ωk)|, (25)

|
∼
b

k′

(2ωk′)| ≈
(Θk′ )

2

4 (xs1: cosηk′ − xs2:sinηk′) + |
∼
ξ

k′

(2ωk′)|. (26)

where ξk and ξk′ are multipath noise during the k-th sub-maneuver and its mirror sub-
maneuver.

In Equations (23) and (24), there are four unknown parameters: (i) the AOV-related

parameters xs1: and xs2: and (ii) the multipath noise
∣∣∣∣∼ξ k

(ωk)

∣∣∣∣ and

∣∣∣∣∣∼ξ k′

(ωk′)

∣∣∣∣∣. Once the∣∣∣∣∼ξ k
(ωk)

∣∣∣∣ and

∣∣∣∣∣∼ξ k′

(ωk′)

∣∣∣∣∣ are determined, xs1: and xs2: are straightforwardly solved. Wang

treated the multipath noise during the k-th sub-maneuver and its mirror sub-maneuver as
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equal, i.e., |
∼
ξ

k
(ωk)| = |

∼
ξ

k′

(ωk′)| [8]. xs2: is solved from the difference between Equations
(23) and (24):

xs2: =

∣∣∣∣∣∼b k
(ωk)

∣∣∣∣∣−
∣∣∣∣∣∼b k′

(ωk′)

∣∣∣∣∣
Θkcosηk+Θk′ cosηk′

,
(27)

However, from Equations (22), (25) and (26), we obtain the following relationship:

(Θk′ )
2

4 xs1:cosηk′ =
(Θk)

2

4 xs1: cosηk ≫
(Θk′ )

2

4 xs2:sinηk′ = − (Θk)
2

4 xs2: sinηk, (28)

We further evaluate the harmonic components of multipath noise at 2ωk by∣∣∣∣∼ξ k
(2ωk)

∣∣∣∣ ≈ ∣∣∣∣∼bk
(2ωk)

∣∣∣∣− (Θk)
2

4 xs1: cosηk, (29)

∣∣∣∣∣∼ξ k′

(2ωk′)

∣∣∣∣∣ ≈
∣∣∣∣∣∼bk′

(2ωk′)

∣∣∣∣∣− (Θk′ )
2

4 xs1:cosηk′ , (30)

In the next section, we will discuss the relationship between
∣∣∣∣∼ξ k

(ωk)

∣∣∣∣ and
∣∣∣∣∼ξ k

(2ωk)

∣∣∣∣ by

leveraging the double-difference signal. Using this relationship, we integrate Equations (23)

and (24) with two additional equations (the relationship between
∣∣∣∣∼ξ k

(ωk)

∣∣∣∣ and
∣∣∣∣∼ξ k

(2ωk)

∣∣∣∣
and the relationship between

∣∣∣∣∣∼ξ k′

(ωk′)

∣∣∣∣∣ and
∣∣∣∣∼ξ k̂′

(2ωk′)

∣∣∣∣) to solve the four aforementioned

unknown parameters.

4.2. Spectral Characteristics of Double-Difference Signal

The microwave wavefront received by one GRFO satellite is approximately planar and
perpendicular to the LOS vector. During each sub-maneuver, the multipath noise of the
satellite under calibration exhibits spectral characteristics similar to those of the AOC (b).
In contrast, the satellite not under calibration does not exhibit these spectral characteristics.

This alignment of spectral characteristics indicates that multipath noise is one of the
predominant contributors to errors in estimating the AOVs, as it shares the same period
as b. To mitigate the impact of multipath noise on AOV estimation, we introduce the
double-difference combination of KBR phase signals. This approach effectively reduces the
influence of multipath noise, enabling a more accurate estimation of AOVs.

One-way phase measurements of K- and Ka-bands at any time t contain gravity
signal proportional to the corresponding K/Ka-band carrier frequency. This enables us
to eliminate the gravity field signal, carrier frequency noise, high-frequency noise of the
ionosphere and time-tag noise by combining four one-way phase measurements with K-
and Ka-bands carrier frequencies as the scaling factors. Thus, this combination can be
used to evaluate the stochastic noise and residual multipath noise. We call this linear
combination the double-difference signal [17]:

σ(t) = c
f K
C + f K

D

[(
ϕD−C

K (t)− 3
4 ϕD−C

Ka (t)
)
−

(
ϕC−D

K (t)− 3
4 ϕC−D

Ka (t)
)]

=
(

ρD−C
K (t)− ρD−C

Ka (t)
)
−

(
ρC−D

K (t)− ρC−D
Ka (t)

)
,

(31)

where f K
C and f K

D represent the K-band carrier frequency for each GRFO satellite; ϕC−D
K (t)

and ϕC−D
Ka (t) indicate separately the K- and Ka-band carrier phase signal transmitted by

GRACE-D and received by GRACE-C; ϕD−C
K (t) and ϕD−C

Ka (t) indicate separately the K-
and Ka-band carrier phase signal transmitted by GRACE-C and received by GRACE-
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D; ρC−D
K (t), ρC−D

Ka (t), ρD−C
K (t) and ρD−C

Ka (t) are the corresponding inter-satellite ranges.
Figure 4 illustrates the double-difference signals during each sub-maneuver in the time and
frequency domain. The harmonic components at the maneuver frequency and its doubling
are notable for all sub-maneuvers, except the positive pitch pone for GRACE-C.
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During the k-th sub-maneuver, the double-difference signal is expanded as follows:

σk(t) = ξk
K(t)− ξk

Ka(t) + eσk + Nσk

+2Θksin
(

ωk
2 τ

)[(
xK

s1:
− xKa

s1:

)
sin ηk +

(
xK

s2:
− xKa

s2:

)
cos ηk

]
· cos

(
ωk

(
t + τ

2
))

+
(Θk)

2

2 sin(ωkτ)
[(

xK
s1:

− xKa
s1:

)
cos ηk −

(
xK

s2:
− xKa

s2:

)
sin ηk

]
· sin

(
2ωk

(
t + τ

2
))

≈ ξk
K(t)− ξk

Ka(t) + eσk + Nσk ,

(32)

where ξk
K and ξk

Ka represent the K- and Ka-band multipath noise during the k-th sub-
maneuver; eσk represents the stochastic noise and residual ionosphere noise; Nσk represents
the residual integer ambiguity; and τ represents the flight time of carrier. For GRFO,

τ ≈ 1× 10−3 second, then (Θk)
2

2 sin(ωkτ) ≈ 3× 10−9 and 2Θksin
(

ωk
2 τ

)
≈ 4 × 10−7. These

values indicate that the fifth and sixth terms in Equation (32) are negligibly small and can be
disregarded in the analysis. Consequently, the double-difference signal reflects the spectral
characteristics of multipath noise:∣∣∣∣∼σk

(ωk)

∣∣∣∣= ∣∣∣∣∣∣∣∣∼ξ k

K(ωk)

∣∣∣∣− ∣∣∣∣∼ξ k

Ka(ωk)

∣∣∣∣∣∣∣∣, (33)

∣∣∣∣∼σk
(2ωk)

∣∣∣∣= ∣∣∣∣∣∣∣∣∼ξ k

K(2ωk)

∣∣∣∣− ∣∣∣∣∼ξ k

Ka(2ωk)

∣∣∣∣∣∣∣∣, (34)
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The coefficients of K- and Ka-band multipath noise in the double-difference signal
([1,−1]) differ from those in the GRFO range observation (

[
− 9

7 , 16
7

]
), indicating that the

multipath noise effects in the double-difference signal and GRFO range are linearly inde-
pendent from each other. Meanwhile, during each sub-maneuver, the K- and Ka-band
carriers share identical reflection points, and they exhibit consistent reflection angles and
attenuation factors. Therefore, we make an assumption as follows:

∣∣∣∣∣∼ξ k

K(2ωk)

∣∣∣∣∣∣∣∣∣∣∼ξ k

K(ωk)

∣∣∣∣∣
=

∣∣∣∣∣∼ξ k

Ka(2ωk)

∣∣∣∣∣∣∣∣∣∣∼ξ k

Ka(ωk)

∣∣∣∣∣
=

∣∣∣∣∣
∣∣∣∣∣∼ξ k

K(2ωk)

∣∣∣∣∣−
∣∣∣∣∣∼ξ k

Ka(2ωk)

∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∼ξ k

K(ωk)

∣∣∣∣∣−
∣∣∣∣∣∼ξ k

Ka(ωk)

∣∣∣∣∣
∣∣∣∣∣

= αk , (35)

For the k-th sub-maneuver, the ratio of harmonic components at ωk and 2ωk demon-
strates a consistent ratio across both K-band and Ka-band carriers. This ratio is identical to
that observed in the double-difference signal, denoted as αk.

Note that when GRACE-D is under calibration, i.e., k = 3, 3′, 4, 4′, the signs of ξk in
the double-difference signal are opposite to those in Equation (26) [17].

5. Methodology
We propose a new algorithm to estimate the harmonic components of multipath noise

at the maneuver frequency and the AOVs x together, as outlined in Figure 5.
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Figure 5. Schematic for GRFO KBR phase centers’ estimation.

According to [15], the AOVs of GRACE are affected by solar illumination, and spectral
analysis reveals that the period of AOV change corresponds to a full revolution of the
longitude of the ascending node for the GRACE orbital plane. Due to the resemblance of
the MWIs of GRACE and GRFO, we assume that the AOVs of the GRFO remain constant
during KBR calibration.

Taking the calibration from 17 September 2020 as an example, we reformulate Equa-
tions (23)–(26) and (33)–(35) to a linear system of equations as follows, and we replace∣∣∣∣∼ξ k

K(2ωk)

∣∣∣∣ and
∣∣∣∣∼ξ k

Ka(2ωk)

∣∣∣∣ with αk

∣∣∣∣∼ξ k

K(ωk)| and αk

∣∣∣∣∼ξ k

Ka(ωk)| .

[Ψ, Π]γ = β, (36)
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where Ψ is the design matrix related to the AOV dC, and Π is the design matrix related to
multipath noise.

Ψ =



Θ1sin η1 0 Θ1cos η1
(Θ1)

2

4 cos η1 0 − (Θ1)
2

4 sin η1
0 0 0

−Θ1′sin η1′ 0 −Θ1′cos η1′

(Θ1′)
2

4 cos η1′ 0 − (Θ1)
2

4 sin η1
0 0 0

Θ2sin η2 Θ2cos η2 0
(Θ2)

2

4 cos η2 − (Θ2)
2

4 sin η2 0
0 0 0

−Θ2′sin η2′ −Θ2′cos η′ 0
(Θ2′)

2

4 cos η2′ − (Θ2′)
2

4 sin η2′ 0
0 0 0



, (37)

γ =

[
dCx , dCy , dCz ,

∣∣∣∣∼ξ 1

Ka(ω1)

∣∣∣∣, ∣∣∣∣∼ξ 1

K(ω1)

∣∣∣∣,
∣∣∣∣∣∼ξ 1′

Ka(ω1′)

∣∣∣∣∣,
∣∣∣∣∣∼ξ 1′

K (ω1′)

∣∣∣∣∣,∣∣∣∣∼ξ 2

Ka(ω2)

∣∣∣∣, ∣∣∣∣∼ξ 2

K(ω2)

∣∣∣∣,
∣∣∣∣∣∼ξ 2′

Ka(ω2′)

∣∣∣∣∣,
∣∣∣∣∣∼ξ 2′

K (ω2′)

∣∣∣∣∣]⊺,
(38)

Π =



16
7 − 9

7 0 0 0 0 0 0
16
7 α1 − 9

7 α1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 16

7 − 9
7 0 0 0 0

0 0 16
7 α1′ − 9

7 α1′ 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 16

7 − 9
7 0 0

0 0 0 0 16
7 α2 − 9

7 α2 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 16

7 − 9
7

0 0 0 0 0 0 16
7 α2′ − 9

7 α2′

0 0 0 0 0 0 1 −1



, (39)

β =

[∣∣∣∣∼b1
(ω1)

∣∣∣∣, ∣∣∣∣∼b1
(2ω1)

∣∣∣∣, ∣∣∣∣∼σ1
(ω1)

∣∣∣∣,
∣∣∣∣∣∼b1′

(ω1′)

∣∣∣∣∣,
∣∣∣∣∣∼b1′

(2ω1′)

∣∣∣∣∣,
∣∣∣∣∼σ1′

(ω1′)

∣∣∣∣,∣∣∣∣∼b2
(ω2)

∣∣∣∣, ∣∣∣∣∼b2
(2ω2)

∣∣∣∣, ∣∣∣∣∼σ2
(ω2)

∣∣∣∣,
∣∣∣∣∣∼b2′

(ω2′)

∣∣∣∣∣,
∣∣∣∣∣∼b2′

(2ω2′)

∣∣∣∣∣,
∣∣∣∣∼σ2′

(ω2′)

∣∣∣∣]⊺,
(40)

However, several questions need to be addressed:

• Replace elements in Ψ with measurements: solving dC using Equation (36) requires
precise knowledge of Ψ, but it is impossible for the actual angle bias ηk and the actual
maneuver amplitude Θk to maintain their corresponding nominal values. We denote
the two sensitive columns of Ak as Ak

:s1
and Ak

:s2
. The non-zero elements in Ψ are the

theoretical values of the harmonic components at ωk and 2ωk of Ak
:s1

and Ak
:s2

, that
is, ideally ∣∣∣∣∼Ak

:s1
(ωk)

∣∣∣∣ = Θksin ηk, (41)

∣∣∣∣∼Ak

:s2
(ωk)

∣∣∣∣ = Θkcosηk (42)
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∣∣∣∣∼Ak

:s1
(2ωk)

∣∣∣∣ = (Θk)
2

4 cos ηk, (43)

−
∣∣∣∣∼Ak

:s2
(2ωk)

∣∣∣∣ = −
(
Θk)

2

4
sinηk (44)

−
∣∣∣∣∼Ak

:s2
(2ωk)

∣∣∣∣ = −
(
Θk)

2

4
sinηk. (45)

Therefore, we substitute
{∣∣∣∣∼Ak

:s1
(ωk)

∣∣∣∣, ∣∣∣∣∼Ak

:s2
(ωk)

∣∣∣∣, ∣∣∣∣∼Ak

:s1
(2ωk)

∣∣∣∣,−∣∣∣∣∼Ak

:s2
(2ωk)

∣∣∣∣} for{
Θksin ηk, Θkcos ηk, (

Θk)
2

4 cos ηk,− (Θk)
2

4 sin ηk

}
.

• Due to the complicated attitude control strategy, it is difficult to evaluate whether the
actual maneuver period Tk maintains the nominal value Tk from the time domain.
Direct discrete Fourier transform (DFT) may cause spectral leakage when Tk ̸= Tk,
thus affecting Ψ. As presented in [19], we estimate harmonic components using the
least-squares (LS) method by finding an optimal T⋆

k .
• The low-frequency noise in POD measurements is another main noise source when

estimating the harmonic components of bk (Figure 3). Wang presented a method by
fitting the low-frequency noise in bk using a fourth-order polynomial function [8]. For
simplicity, we use the second-order difference of bk to eliminate low-frequency noise,
which is equivalent to fitting low-frequency noise using a second-order polynomial
function. The second-order difference with signal y is denoted as

..
y, i.e.,

..
y(ti) =

y(ti+2)− 2y(ti+1) + y(ti), i = 0, 1, . . . , n − 2, and its Fourier transform is denoted as
∼..
y.

We find the optimal ω⋆
k to minimize the L2,1 norm of the following error matrix W

using a grid search.

argmin
ω⋆

k∈S
f (ω⋆

k ) = {ω⋆
k ∈ S : f (ω⋆

k ) ≤ f (ωk) for all ωk ∈ S}, (46)

where
f (ωk) = ∥W∥2,1, (47)

W = M − H × Y, (48)

M =

[
..
b

k
,

..
A

k
:s1

,
..
A

k
:s2

,
..
σ

k
]

, (49)

H =


eiωkt0 ei2ωkt0

eiωkt1 ei2ωkt1

...
...

eiωktn−2 ei2ωktn−2

, (50)

Y =



∣∣∣∣∣∣
∼..
b

k

(ωk)

∣∣∣∣∣∣,∣∣∣∣∣∣
∼..
b

k

(2ωk)

∣∣∣∣∣∣

∣∣∣∣∣∣
∼..
A

k

:s1
(ωk)

∣∣∣∣∣∣,
,

∣∣∣∣∣∣
∼..
A

k

:s1
(2ωk)

∣∣∣∣∣∣,

∣∣∣∣∣∣
∼..
A

k

:s2
(ωk)

∣∣∣∣∣∣,∣∣∣∣∣∣
∼..
A

k

:s2
(2ωk)

∣∣∣∣∣∣,

∣∣∣∣∣∼..σk

(ωk)

∣∣∣∣∣∣∣∣∣∣∼..σk

(2ωk)

∣∣∣∣∣

, (51)
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where

∣∣∣∣∣∣
∼..
A

k

:s1
(ω)

∣∣∣∣∣∣,
∣∣∣∣∣∣
∼..
A

k

:s2
(ω)

∣∣∣∣∣∣,
∣∣∣∣∣∣
∼..
b

k

(ω)

∣∣∣∣∣∣ and

∣∣∣∣∣∼..σk

(ω)

∣∣∣∣∣ represent the harmonic components of
..
b

k
,

..
A

k
:s1

,
..
A

k
:s2

and
..
σ

k at ω; H is the inverse discrete Fourier transform (IDFT) functional matrix;

M is stacked by
..
b

k
,

..
A

k
:s1

,
..
A

k
:s2

and
..
σ

k.
Denote the optimal Y as Y⋆, and the i-th column of Y⋆ is obtained by

Y⋆
:i =

[(
H⋆)⊺H⋆]−1(H⋆)⊺M:i, (i = 1, 2, 3, 4) (52)

Here, using Equations (52) and (53), we reformulate Equation (36) into its second-order
difference as follows: [ ..

Ψ,
..
Π
] ..
γ =

..
β, (53)

where

..
Ψ =



∣∣∣∣∣∣
∼..
A

1

:1
(
ω⋆

1
)∣∣∣∣∣∣ 0

∣∣∣∣∣∣
∼..
A

1

:3
(
ω⋆

1
)∣∣∣∣∣∣∣∣∣∣∣∣

∼..
A

1

:1
(
2ω⋆

1
)∣∣∣∣∣∣ 0 −

∣∣∣∣∣∣
∼..
A

1

:3
(
2ω⋆

1
)∣∣∣∣∣∣

0 0 0∣∣∣∣∣∣
∼..
A

1′

:1
(
ω⋆

1′
)∣∣∣∣∣∣ 0 −

∣∣∣∣∣∣
∼..
A

1′

:3
(
ω⋆

1′
)∣∣∣∣∣∣∣∣∣∣∣∣

∼..
A

1′

:1
(
2ω⋆

1′
)∣∣∣∣∣∣ 0

∣∣∣∣∣∣
∼..
A

1′

:3
(
2ω⋆

1′
)∣∣∣∣∣∣

0 0 0∣∣∣∣∣
∼..
A

2

:1(ω
⋆
2 )

∣∣∣∣∣
∣∣∣∣∣
∼..
A

2

:2(ω
⋆
2 )

∣∣∣∣∣ 0∣∣∣∣∣
∼..
A

2

:1(2ω⋆
2 )

∣∣∣∣∣ −
∣∣∣∣∣
∼..
A

2

:2(2ω⋆
2 )

∣∣∣∣∣ 0

0 0 0∣∣∣∣∣∣
∼..
A

2′

:1
(
ω⋆

2′
)∣∣∣∣∣∣ −

∣∣∣∣∣∣
∼..
A

2′

:2
(
ω⋆

2′
)∣∣∣∣∣∣ 0∣∣∣∣∣∣

∼..
A

2′

:1
(
2ω⋆

2′
)∣∣∣∣∣∣

∣∣∣∣∣∣
∼..
A

2′

:2
(
2ω⋆

2′
)∣∣∣∣∣∣ 0

0 0 0



, (54)

..
γ =

[
dC..
ξγ

]

=


dCx , dCy , dCz ,

∣∣∣∣∣
∼..
ξ

1

Ka
(
ω⋆

1
)∣∣∣∣∣,

∣∣∣∣∣
∼..
ξ

1

K
(
ω⋆

1
)∣∣∣∣∣,

∣∣∣∣∣∣
∼..
ξ

1′

Ka
(
ω⋆

1′
)∣∣∣∣∣∣,

∣∣∣∣∣∣
∼..
ξ

1′

K
(
ω⋆

1′
)∣∣∣∣∣∣,∣∣∣∣∣

∼..
ξ

2

Ka(ω
⋆
2 )

∣∣∣∣∣,
∣∣∣∣∣
∼..
ξ

2

K(ω
⋆
2 )

∣∣∣∣∣,
∣∣∣∣∣∣
∼..
ξ

2′

Ka
(
ω⋆

2′
)∣∣∣∣∣∣,

∣∣∣∣∣∣
∼..
ξ

2′

K
(
ω⋆

2′
)∣∣∣∣∣∣



⊺

(55)
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..
Π =



16
7 − 9

7 0 0 0 0 0 0
16
7

..
α
⋆
1 − 9

7
..
α
⋆
1 0 0 0 0 0 0

1 −1 0 0 0 0 0 0
0 0 16

7 − 9
7 0 0 0 0

0 0 16
7

..
α
⋆
1′ − 9

7
..
α
⋆
1′ 0 0 0 0

0 0 1 −1 0 0 0 0
0 0 0 0 16

7 − 9
7 0 0

0 0 0 0 16
7

..
α
⋆
2 − 9

7
..
α
⋆
2 0 0

0 0 0 0 1 −1 0 0
0 0 0 0 0 0 16

7 − 9
7

0 0 0 0 0 0 16
7

..
α
⋆
2′ − 9

7
..
α
⋆
2′

0 0 0 0 0 0 1 −1



, (56)

..
β =



∣∣∣∣∣∣
∼..
b

1(
ω⋆

1
)∣∣∣∣∣∣,

∣∣∣∣∣∣
∼..
b

1(
2ω⋆

1
)∣∣∣∣∣∣,

∣∣∣∣∣∼..σ1(
ω⋆

1
)∣∣∣∣∣,

∣∣∣∣∣∣
∼..
b

1′(
ω⋆

1′
)∣∣∣∣∣∣,

∣∣∣∣∣∣
∼..
b

1′(
2ω⋆

1′
)∣∣∣∣∣∣,

∣∣∣∣∣∼..σ1′(
ω⋆

1′
)∣∣∣∣∣,∣∣∣∣∣∣

∼..
b

2

(ω⋆
2 )

∣∣∣∣∣∣,
∣∣∣∣∣∣
∼..
b

2

(2ω⋆
2 )

∣∣∣∣∣∣,
∣∣∣∣∣∼..σ2

(ω⋆
2 )

∣∣∣∣∣,
∣∣∣∣∣∣
∼..
b

2′(
ω⋆

2′
)∣∣∣∣∣∣,

∣∣∣∣∣∣
∼..
b

2′(
2ω⋆

2′
)∣∣∣∣∣∣,

∣∣∣∣∣∼..σ2′(
ω⋆

2′
)∣∣∣∣∣



⊺

, (57)

where
..
α
⋆
i =

∣∣∣ ..
σ

k(2ω⋆
k
)∣∣∣/∣∣∣ ..

σ
k(

ω⋆
k
)
| ,
∣∣∣∣ ..
ξ

k
K(ω)

∣∣∣∣ and
∣∣∣∣ ..
ξ

k
Ka(ω)

∣∣∣∣ are the harmonic components of
..
ξ

k
K and

..
ξ

k
Ka at ω, respectively. Due to the non-negativity of the elements of

..
ξγ, the following

constraints are applied: ∣∣∣∣∣∣
∼..
ξ

k

K
(
ω⋆

k
)∣∣∣∣∣∣ > 0,

∣∣∣∣∣∣
∼..
ξ

k

Ka
(
ω⋆

k
)∣∣∣∣∣∣ > 0, (58)

By solving Equations (53) and (58), we obtain the multipath noise at the maneuver
frequency and the AOVs x. Likewise, the AOV of GRACE-D dD can be solved using a
similar method based on measurements from 28 September 2020.

6. Results and Discussion
6.1. Optimal Angular Frequency of Each Sub-Maneuver and Multipath Noise

Figure 6 is an m-by-n mesh of pixels where m = 8 is the number of sub-maneuvers,
and n = 4001 is the length of the grid set S, displaying the values of f (ωk) for each sub-
maneuver on the grid set S. Each f (ωk) specifies the color for one pixel in Figure 6. The
black downward-pointing triangle markers indicate the optimal maneuver period T⋆ of
each sub-maneuver, and the corresponding angular frequency is computed as ω⋆

k = 2π/T⋆.
After obtaining the optimal ω⋆

k , we form Equation (53) after computing Y⋆
:i. Due

to differentiation of the Fourier transform, the amplitudes of multipath noise at ω⋆
k are

approximately computed by

∣∣∣ξk
K
(
ω⋆

k
)∣∣∣ =

∣∣∣∣ ..
ξ

k
K(ω⋆

k )
∣∣∣∣

(5ω⋆
k )

2 , (59)

∣∣∣ξk
Ka
(
ω⋆

k
)∣∣∣ =

∣∣∣∣ ..
ξ

k
Ka(ω⋆

k )
∣∣∣∣

(5ω⋆
k )

2 , (60)

where the constant 5 stands for the sampling interval in seconds.
In the multipath noise model presented in [18], the adopted multipath noise parameter

is 3 µm/mrad. Given that the amplitude of the attitude angle at ω⋆
k is approximately

17 mrad, the corresponding amplitude multipath noise |ξ(ω)| is 51,000 nm. The results in
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Table 3 align with the expectations in [8], confirming that the multipath effect is smaller
than the assumption by Kim [18]. Furthermore, the multipath noise of GRACE-C is much
smaller than that of GRACE-D. This difference is likely due to the KBR antenna horn of
GRACE-D being more affected by the space environment than that of GRACE-C, as the
x-axis of the SRF of GRACE-D aligns with its flight direction, whereas the x-axis of the SRF
of GRACE-C is oriented opposite to its direction of flight.
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Table 3. Multipath noise for each sub-maneuver.

nm GRACE-C (17 September 2020) GRACE-D (28 September 2020)

1’ 1 2’ 2 3’ 3 4’ 4∣∣∣∣ ..
ξ

k
K
(
ω⋆

k
)∣∣∣∣ 5367.3 - 7831.1 7098.0 6124.3 10,397.5 2276.3 6468.1∣∣∣∣ ..

ξ
k
Ka
(
ω⋆

k
)∣∣∣∣ 809.6 - 457.6 568.0 7570.8 8230.8 5153.2 6118.3

Furthermore, the estimation of the amplitude at ω⋆
k of multipath noise offers a potential

approach to calibrating the multipath effect. Based on the above analysis, the amplitude of
multipath noise at any arbitrary frequency can be determined by maneuvering the attitude
angle of one satellite in a sinusoidal pattern at the desired frequency. This method enables
the estimation of multipath noise amplitudes at various frequency points, constrained only
by the satellite’s maneuvering capabilities.

For future missions requiring multipath noise calibration, if the estimated frequency
points are sufficiently dense, the multipath noise can be modeled as a fitted curve derived
from the amplitudes at each frequency. Additionally, the observed differences in multipath
noise amplitudes between a sub-maneuver and its corresponding mirror sub-maneuver
suggest that multipath noise is influenced by the attitude orientation of the calibrated satel-
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lite. By interpolating the calibrated multipath noise amplitudes across different directions,
a comprehensive estimation of multipath noise can be achieved.

6.2. KBR Antenna Offset Vectors

Table 4 shows our AOC estimates of the individual GRFO and AOCs provided by the
VKB1B data product [20]. The difference in the x component of the AOC for GRACE-C
is approximately 1 cm, while for GRACE-D, the corresponding difference is about 1 mm.
The differences in the y and z components are less than 1 mm. Additionally, the boresight
difference of two AOCs of GRACE-C is 0.648 mrad, and the boresight difference of GRACE-
D is 0.458 mrad.

Table 4. Antenna offset vectors for individual GRFO satellite.

mm
GRACE-C GRACE-D

x y z x y z

Recalibrated 1458.2992 −0.073 −0.526 1445.1798 0.770 −0.247
VKB1B 1444.3985 −0.017 0.448 1444.4575 0.054 0.230

As presented in [21], the noise of the ranging signal measured by the LRI reaches
10 nm√

Hz
at 40 mHz and 300 pm√

Hz
at 1 Hz, significantly below the requirement for noise in

the KBR ranging signal. Additionally, the antenna offset correction for the KBR ranging
signal is intended to compensate for the effect on ranging signal due to attitude jitter. In
contrast, according to [21], spacecraft attitude fluctuations are compensated by active beam
pointing based on differential wavefront sensing, that is, making the LRI1B ranging signal
insensitive to the attitude of the twin satellites.

To validate our recalibrated AOVs, we use the LRI ranging signal as a reference or
“ruler”. The residuals between the LRI ranging signal and the KBR ranging signal corrected
by two different sets of AOVs represent the validity of the recalibrated AOVs.

We denote the AOCs derived from VKB1B-provided AOVs as ∆ρVKB1B
AOC and those

derived from the recalibrated AOVs as ∆ρre
AOC. The residuals can be represented as follows:

sVKB1B = ρLRI + ∆ρLLTC − ρKBR − ∆ρKLTC − ∆ρVKB1B
AOC . (61)

sre = ρLRI + ∆ρLLTC − ρKBR − ∆ρKLTC − ∆ρre
AOC. (62)

where sVKB1B is the residual between the LRI range and the VKB1B-corrected KBR range,
while sre denotes the residual between the LRI range and the KBR range corrected by our re-
sults. Figure 7 juxtaposes the residual of the LRI ranging signal and the KBR ranging signal
(1) corrected by the recalibrated AOVs (sre), (2) corrected by AOVs from VKB1B (sVKB1B)
and (3) uncorrected on the CM calibration epochs. During these dates, the variations in
cone angles increase, leading to uncorrected residuals exceeding the KBR noise requirement.
Notably, across all dates, the residuals corrected using our recalibrated AOVs are smaller
than those corrected using the VKB1B-provided AOVs. In the mHz frequency band, where
time-variable gravity field signals are concentrated, our results show significantly smaller
residuals, highlighting the improved accuracy of our recalibrated AOVs in this critical
range. In contrast, at low frequencies and in high-frequency regions dominated by noise,
the residuals from both methods are of similar magnitude. This demonstrates that our
approach provides enhanced performance in the frequency band most relevant for gravity
field recovery while maintaining comparable results in the other regions.
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Figure 7. Cone angles of twin GRFO satellites (left panel, pink for GRACE-C and green for GRACE-D)
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2021 (b), 23 November 2020 (c), 16 November 2020 (d), 29 March 2021 (e), 20 February 2022 (f), 4
March 2023 (g) and 12 June 2023 (h).
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To further validate the recalibrated AOVs, we use the ratio of the average powers of
these two residuals within a milli-hertz band. The ratio Ω f2

f1
is denoted as

Ω f2
f1
=

(Qre)
f2
f1

(QVKB1B)
f2
f1

=

∫ f2
f1

Sre( f ′)d f ′∫ f2
f1

SVKB1B( f ′)d f ′
. (63)

where the f1 = 1 mHz and f2 = 10 mHz, (Qre)
f2
f1

. and (QVKB1B)
f2
f1

. represent the band

powers from f1 to f2 of sre and sVKB1B, respectively, and Sre and SVKB1B represent the
power spectral densities of sre and sVKB1B, respectively.

Figure 8 shows the ratio in the milli-Hertz band from 1 January 2020 to 30 June 2023.
The blue area indicates (Qre)10mHz

1mHz > (QVKB1B)10mHz
1mHz , that is, the KBR range corrected by

the AOVs from VKB1B is closer to the LRI ranging signal, while the yellow area indicates
(Qre)10mHz

1mHz < (QVKB1B)10mHz
1mHz , that is, the KBR ranging signal corrected by the recalibrated

AOVs is closer to the LRI ranging signal. Among the 1276 days of data analyzed in this
paper, 243 days (19.0%) resulted in a value greater than 1 (blue area); 745 days (58.4%)
resulted in a value less than 1 (yellow area); and 251 days (19.6%) were missing (red
cross). The results demonstrate the effectiveness of the recalibrated AOVs, as the number
of days with Ω10mHz

1mHz < 1 (yellow area) is more than three times the number of days with
Ω10mHz

1mHz > 1 (blue area). The average value and variance of
(
Qre)10mHz

1mHz are 3.736 × 10−4 m
and 1.728 × 10−4 m, separately, while those of

(
QVKB1B)10mHz

1mHz are 4.635 × 10−4 m and
2.144 × 10−4 m. This indicates that, for the majority of the analyzed period, the KBR
ranging signal corrected by the recalibrated AOVs aligns more closely with the LRI ranging
signal compared to corrections using the VKB1B-provided AOVs.
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Among the 1276 days of data analyzed in this paper, Ω10mHz
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and 251 days (19.6%) of data were missing (red cross).

7. Conclusions
In this study, we revisited the calibration of the APCs of GRFO’s KBR system, focusing

on addressing the impact of multipath noise. By employing a frequency-domain method
based on the spectral characteristics of AOCs and the double-difference signals, we suc-
cessfully evaluated and suppressed multipath noise using double-difference signals and
recalibrated the AOVs.
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Validation against the LRI ranging signal demonstrates the effectiveness of the recali-
brated AOVs. The residuals between the LRI and KBR ranging signals corrected with the
recalibrated AOVs consistently outperform those corrected with VKB1B-provided AOVs,
especially in the milli-Hertz band. Over the 1276 days analyzed, the power ratio Ω10mHz

1mHz
indicates superior performance of the recalibrated AOVs on 58.4% of the days, more than
three times the proportion for VKB1B-provided AOVs. This improvement highlights
the utility of our approach in mitigating multipath noise and enhancing the accuracy of
inter-satellite range measurements.

Our findings contribute to a robust methodology for future gravity missions, empha-
sizing the importance of on-orbit calibration and the role of spectral analysis in addressing
multipath noise. This work not only enhances the utility of GRFO data but also establishes
a foundation for similar calibration strategies in future satellite missions.
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LRI laser ranging interferometer
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AOV antenna offset vector
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LOS line of sight
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