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Abstract: Underwater pile foundation detection is crucial for environmental monitoring
and marine engineering. Traditional methods for detecting underwater pile foundations are
labor-intensive and inefficient. Deep learning-based image processing has revolutionized
detection, enabling identification through sonar imagery analysis. This study proposes an
innovative methodology, named the AquaPile-YOLO algorithm, for underwater pile foun-
dation detection. Our approach significantly enhances detection accuracy and robustness
by integrating multi-scale feature fusion, improved attention mechanisms, and advanced
data augmentation techniques. Trained on 4000 sonar images, the model excels in delin-
eating pile structures and effectively identifying underwater targets. Experimental data
show that the model can achieve good target identification results in similar experimental
scenarios, with a 96.89% accuracy rate for underwater target recognition.

Keywords: AquaPile-YOLO; multi-scale feature fusion; deep learning; sonar image;
underwater target recognition; attention mechanism

1. Introduction
The detection of underwater pile foundations is important for harbor channel opera-

tions and marine engineering [1]. Traditionally, visual examinations by divers have been
the main method for identifying underwater pile foundations, but this has limitations in-
cluding poor safety, high cost, and low efficiency [2,3]. The development of high-resolution
sonar imaging technology has opened new possibilities for underwater target detection
by offering advantages such as long-range detection capabilities and real-time imaging [4].
However, due to the imaging principles of sonar technology and the impact of underwater
environments, sonar images often exhibit high noise, poor contrast, and structural distor-
tions, making the accurate detection and identification of underwater targets difficult [5,6].

The development of underwater pile foundation detection technology has garnered
significant attention in the realms of maritime engineering and environmental monitor-
ing. Over the past few decades, underwater target detection using high-resolution sonar
imaging has progressed significantly. Early methods focused on feature extraction and
enhancement techniques, such as mathematical morphology and level-set methods, to
address the inherent noise and resolution issues of sonar imagery. With the advent of
deep learning, innovations like the Mask R-CNN and improved YOLO frameworks have
emerged, offering enhanced accuracy and robustness. Despite these advancements, key
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challenges remain, including the detection of small and densely packed targets under
varying environmental conditions. This study addresses these challenges by integrating
multi-scale feature fusion and attention mechanisms into the AquaPile-YOLO framework.
These enhancements are pivotal for the real-time detection and precise identification of
underwater pile foundations, enabling significant improvements in sonar image analysis.

Early research on sonar image processing primarily focused on feature extraction and
image enhancement [5,7]. For instance, Lu et al. provided a comprehensive review of
feature extraction technology for underwater targets using active sonar technology, estab-
lishing theoretical foundations for sonar image processing [2]. Subsequently, Calder et al.
presented a novel concept for underwater identification of side-scan sonar images—a
Bayesian approach to target detection. These early investigations established foundations
for understanding and interpreting sonar images [3]. The application of computer vision
technologies has enhanced sonar image processing. Foresti et al. proposed an underwater
image target recognition method based on a computer vision system, employing computer
vision analysis of sonar data [4]. Liu et al. investigated the application of mathematical
morphology in acoustic image processing, proving the utility of morphological approaches
for image enhancement and edge identification [6].

Deep learning has revolutionized sonar image processing, replacing older methods
such as level sets [8], Markov random fields (MRFs) [9], and Curvelet transform [10].
Intelligence in sonar image processing has emerged as the most significant development
trend [11]. Intelligence has improved target identification accuracy and efficiency under
complex underwater situations [12,13]. Advances in image resolution and quality have
made forward-looking sonar broadly applicable in engineering applications [14] like seabed
sediment classification [15] and mine target detection [16,17]. Valdenegro-Toro et al. applied
convolutional neural networks to target detection and recognition in forward-looking sonar
images, initiating deep learning applications in sonar image processing [18]. Zhu et al.
addressed the challenge of limited sonar data by proposing a deep network classification
algorithm for identifying small bottom targets in high-resolution underwater sonar images,
demonstrating the effectiveness of deep learning in small target detection [19].

Most deep learning-based sonar image detection methods rely on sliding window
feature extraction, employing various computer vision techniques such as boosted classi-
fiers [20], machine learning classifiers [21–24], and template matching [25,26]. However,
these methods often perform poorly outside of the training set, especially in challenging
scenarios like underwater tiny target recognition [14–16,27]. Recent research has proposed
numerous innovations to address these challenges. For instance, Fan et al. [28] introduced
an improved Mask R-CNN method for underwater object detection in forward-looking
sonar images, achieving high accuracy. Zhang et al. [29] emphasized the importance of
sonar image registration and proposed an improved CNN for learning similarity functions,
significantly enhancing model performance. Additionally, Xie et al. [30] released a multi-
beam forward-looking sonar image dataset, providing a benchmark for target detection.
By integrating traditional methods’ strengths with deep learning advancements, ongoing
research aims to address these challenges, focusing on improving model generalization,
efficiency, and robustness for sonar image processing applications.

Building on previous research, Zhang et al. proposed an improved YOLOv5 network
for forward-looking sonar images [31], incorporating transfer learning and optimized
clustering algorithms. Gaspar et al. have developed unsupervised methods for feature-
based place recognition in poor visibility conditions [32], while Jiao et al. proposed the
PLUD (Push the right Logit Up and the wrong logit Down) approach to improve sonar
image feature representation for open-set and long-tail recognition challenges [33]. Li et al.
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introduced TransYOLO, a new forward-looking sonar image target detector based on a
TFFN feature fusion network with a transformer stack structure [34].

Leveraging these advancements, this paper proposes an underwater pile foundation
detection approach for forward-looking sonar images named AquaPile-YOLO, which is an
enhancement of the YOLOv5 algorithm. The AquaPile-YOLO algorithm is designed to over-
come the aforementioned challenges by integrating multi-scale feature fusion and attention
mechanisms. These enhancements are particularly beneficial for detecting small targets
within sonar images. Additionally, the application of data augmentation techniques serves
to bolster the model’s robustness and generalization capabilities. The training dataset,
comprising 4000 sonar images, underwent a series of augmentations including random
cropping, rotation, and the introduction of noise to improve the model’s adaptability across
diverse environmental conditions.

This study proposes AquaPile-YOLO, an advanced algorithm for detecting underwater
pile foundations in forward-looking sonar images. By integrating multi-scale feature fusion
and attention mechanisms, the proposed method aims to improve detection accuracy and
robustness for real-time applications. The ultimate goal is to overcome existing limitations
in sonar-based target detection, enabling more reliable and efficient underwater engineering
and environmental monitoring applications.

2. Methods
2.1. Forward-Looking Sonar

A forward-looking sonar is an imaging sonar that uses transducers to emit and receive
sound waves, forming images from the intensity of sound wave reflections off of under-
water targets [26]. Like an optical camera, a forward-looking sonar generates images, but
sonar images typically show an overhead view rather than the frontal perspective of an
optical camera. Figure 1 illustrates the imaging principle, depicting the 2D reconstruction
of a 3D underwater target by a forward-looking sonar.
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Figure 1. A diagram of a 2D reconstruction of an underwater 3D target using a forward-looking
sonar: (a) A schematic of the FLS operational principle in an underwater environment, depicting the
acoustic imaging process; (b) An illustration of the 2D reconstruction process, transforming 3D target
data into a planar representation as captured by the sonar.
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The equipment used in the experiments for this paper is the HY1645 model forward-
looking sonar, manufactured by Haiying Marine in Wuxi, China [35]. The sonar utilizes
two-dimensional acoustic imaging technology to obtain real-time, high-resolution images
of underwater targets (including bearings and distances) for the autonomous recognition
and transmission of information. It can meet the needs of autonomous detection in complex,
low-visibility, shallow water environments. To meet engineering demands for portability,
the device incorporates a novel sparse array design for multibeam imaging sonar sys-
tems, reducing the number of transducers while preserving imaging performance. This
minimizes the number of transducers in the array while maintaining multibeam imaging
performance [36]. A schematic diagram of the fan-scan function for detecting underwater
pile foundation targets by a forward-looking sonar is shown in Figure 2.
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Figure 2. A schematic diagram of the underwater detection capabilities of a forward-looking sonar.

The system primarily consists of an underwater transducer, a transmitter/receiver
module, a data acquisition processor, and acquisition software, among other components.
Figure 3 illustrates a photo of the HY1645 imaging sonar transducer and its on-site instal-
lation. In the photo, the black part of the transducer is responsible for the reception and
transmission of underwater acoustic signals, while the white part encloses the receiver and
transmitter modules along with their associated circuitry. The entire assembly is encap-
sulated in waterproof housing for integrated packaging and communicates and receives
power from the exterior through a single cable.
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Figure 3. The composition of the HY1645 forward-looking sonar system: (a) The wet end of the sonar,
designed for underwater acoustic signal emission and reception; (b) The dry end components of the
HY1645 sonar, including the data processing unit and associated cabling.
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The main technical parameters and performance indicators of the HY1645 forward-
looking sonar are presented in Table 1. A significant characteristic of forward-looking
sonars is that, in most cases, the distance and bearing of objects can be directly read from
the sonar data, but the elevation of underwater targets is lost. As a result, the image
information from forward-looking sonars is typically challenging to interpret. For instance,
during the detection of an underwater stepped structure at a hydropower station using
the HY1645 forward-looking sonar, Figure 4a shows the surface photo of the stepped
structure, while Figure 4b displays the corresponding underwater sonar data collected by
the two-dimensional imaging sonar.

Table 1. Technical specifications of HY1645 forward-looking sonar.

Parameter Value

Operating Frequency 450 kHz
Field of View 90◦ × 20◦

Maximum Range 100 m
Beam Width (Horizontal × Vertical) 1◦ × 20◦

Number of Beams 538
Beam Spacing 0.17◦

Range Resolution 2.5 cm
Maximum Sampling Rate 15 Hz
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Figure 4. Sonar scanning experiment of the underwater ladder structure: (a) Photos of the above-
water part of the ladder underwater structure sonar scanning experiment; (b) Forward-looking
underwater ladder scanning experimental sonar data.

Acoustic imaging cannot capture the true color of detected objects, yielding purely
grayscale initial data. Yellow sonar images are pseudo-colored, enhanced in contrast
via software processing. The HY1645 imaging sonar can scan both static and dynamic
underwater targets, like divers. Figure 5 illustrates the use of an imaging sonar to simulate
the monitoring of a diver in a swimming pool.
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Figure 5. Sonar scanning experiment of the diver’s pool: (a) The forward-looking sonar scanning
diver swimming pool experiment; (b) The forward-looking sonar scans the sonar image data of the
diver’s pool experiment.

2.2. AquaPile-YOLO Network

The YOLO (You Only Look Once) network [37] is a revolutionary real-time object detection
system that can predict the positions and categories of objects in an image through a single
forward propagation. YOLOv5 is an efficient object detection algorithm renowned for its speed
and superior performance. Figure 6 illustrates the structure of the AquaPile-YOLO network. In
recent years, through continuous updates and iterations [38,39], the YOLO network has been
widely applied in engineering projects due to its stability. However, forward-looking sonar
images present unique challenges, requiring adaptations for effective detection. This study aims
to enhance the performance of AquaPile-YOLO in underwater pile foundation detection tasks
by introducing a series of innovative improvements. These enhancements were designed to
adapt to the particularities of forward-looking sonar images and increase the detection accuracy
of underwater pile foundation targets.
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Figure 6. The AquaPile-YOLO network structure pipeline diagram: (a) This panel presents an overview
of the AquaPile-YOLO’s architecture, illustrating the comprehensive workflow from input to output, and
highlighting the integration of multi-scale feature fusion, attention mechanisms, and other key components
that facilitate the detection of underwater pile foundations; (b) This panel zooms in on specific modules
within the AquaPile-YOLO network, detailing the internal structure and connectivity of the components,
such as the C3 Module with CBAM Attention, MPConv Module, and C3N Module, which are crucial for
enhancing the network’s performance in processing forward-looking sonar images.
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2.2.1. Data Augmentation

To enhance the model’s generalization and robustness, data augmentation techniques
were employed. Operations such as rotation, scaling, flipping, and adding noise to the
training images simulate the complexity of underwater environments, effectively increasing
the diversity of the training data.

It was assumed that the sonar image dataset is divided into groups of four sub-images
I1, I2, I3, and I4, each of a size of H × W. Through random cropping and flipping operations,
each sub-image can generate a new sub-image I1′, I2′, I3′, and I4′. These sub-images were
then concatenated into a larger image Imosaic of size 4H × 4W. The concatenation operation
can be expressed as follows:

Imosaic(x, y) =


I′1(x − 2H, y − 2W) if x ∈ [0, 2H) and y ∈ [0, 2W)

I′2(x − H, y − 2W) if x ∈ [2H, 3H) and y ∈ [0, 2W)

I′3(x − 2H, y − H) if x ∈ [0, 2H) and y ∈ [2W, 3W)

I′4(x − H, y − H) if x ∈ [2H, 3H) and y ∈ [2W, 3W)

(1)

where (x,y) represents the coordinate position in Imosaic.

2.2.2. Transfer Learning Strategy

Considering the scarcity of sonar image data, a transfer learning strategy was adopted.
A pre-trained AquaPile-YOLO model, initially trained on a large dataset like ImageNet,
served as the starting point. Then, by fine-tuning AquaPile-YOLO on the limited sonar im-
age data, the model’s performance was quickly enhanced. The transfer learning strategy by
Huo et al. [40] for side-scan sonar image classification and target recognition is referenced.

Let the source domain be Ds = {χ,P(X)} and the target domain be Dt = {χ′,P(X′)},
where χ and χ′ represent the feature spaces, and P(X) and P(X′) represent the marginal
probabilities. The task T is defined by the label space y and the target prediction function
f(x). The goal of transfer learning is to improve the performance of the prediction function
ft for the target task Tt by discovering and transferring knowledge from Ds and Ts.

During the pre-training phase, a deep network F was trained on the source domain to
learn general feature representations.

F∗ = argminFL(F(Xs), Ys) (2)

where L is the loss function, Xs and Ys are the input and label of the source domain,
respectively, and F* is the pre-trained network.

In the transfer phase, the pre-trained network F* was transferred to the target domain
and adapted to the target task through fine-tuning.

F′ = arg minF L
(
F
(
Xt), Yt) (3)

where Xt and Yt are the inputs and labels for the target domain, respectively.

2.2.3. Multi-Scale Feature Fusion

Multi-scale feature fusion techniques were introduced into the AquaPile-YOLO to
address the variability in target sizes within forward-looking sonar images. This strategy
enhanced the model’s ability to recognize targets of various scales by integrating feature
maps at different resolutions. A Feature Pyramid Network (FPN) structure was employed
to effectively combine deep semantic information with shallow detail information, thereby
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improving the detection accuracy of small targets. The feature fusion can be expressed
as follows:

Ffuse = Fupsample(Fd)⊕ Fdownsample(Fc) (4)

where Fd represents the deep-layer feature map and Fc represents the shallow-layer feature
map. Fupsample and Fdownsample denote the upsampling and downsampling operations,
respectively, while the symbol ⊕ signifies the operation of feature fusion.

The upper-level feature maps contain stronger semantic information due to the deeper
network layers, while the lower-level features suffer less loss of positional information due
to fewer convolutional layers. The FPN structure performs top–down upsampling to ensure
that the bottom-level feature maps contain stronger semantic information (the backbone in
Figure 6). Conversely, the PAN (Path Aggregation Network) structure performs bottom–up
downsampling, enabling the top-level features to retain positional information (neck in
Figure 6). The fusion of these two features ensures that feature maps of different scales
contain both semantic and spatial information, thereby facilitating accurate predictions for
images of various sizes.

Fine-tuning further trained the network on the target domain data, adjusting the
network parameters to improve performance.

θ′ = θ− η∇θL
(
F
(
Xt; θ

)
, Yt) (5)

where θ is the network parameter, η is the learning rate, and ∇ stands for the gradient.

2.2.4. Attention Mechanism

The AquaPile-YOLO network incorporates advanced attention mechanisms to enhance
the model’s ability to focus on salient regions within the image, particularly in complex
underwater environments characterized by noise and occlusions. This was achieved
through the integration of the Convolutional Block Attention Module (CBAM) into the
YOLOv5 network architecture. In this section, we will discuss the role of the C3 module
(CSP Bottleneck with 3 convolutions) [41], MPConv, and the C3N module in enhancing the
attention mechanisms of the AquaPile-YOLO network.

(1) C3 Module with CBAM Attention

An attention mechanism called CBAM was incorporated into the AquaPile-YOLO
network to enhance the model’s focus on key areas within the image. This mechanism
comprises spatial and channel attention modules that adaptively adjust the weights of
the feature maps, enhancing the model’s response to target areas, especially in complex
underwater environments with noise and occlusions.

For example, the channel attention for an input feature map Fattn is given by
the following:

Fattn = ∑
c

Ac · Fc (6)

where Ac is the attention weight of the c channel, typically calculated using learnable
parameters and an activation function σ as follows:

Ac= σ(W·Fc + b) (7)

where W and b are the weight parameters and bias parameters in the deep network, respectively.
The C3 module comprises a main branch (primary path) and a shortcut branch (skip

connection), which are merged at the output [41]. The main branch typically includes
multiple Bottleneck layers, sequentially stacked to increase the network’s depth and rep-
resentational capacity. By replacing the default Bottleneck layers in the C3 module with
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CBAM modules and iteratively creating multiple CBAM Bottleneck layers, the integra-
tion of CBAM attention mechanisms within the C3 module was achieved (C3-CBAM in
Figure 6). The C3-CBAM module retains the advantages of the C3 module, such as effi-
cient feature extraction and partial gradient flow sharing, while significantly enhancing
feature representation through the CBAM’s channel and spatial attention mechanisms. This
synergistic combination endowed YOLOv5 with higher accuracy and robustness in object
detection tasks, thereby improving the overall model performance on sonar objects.

(2) MPConv Module

The MPConv (Multi-Path Convolution) module is a novel architectural component
introduced in the AquaPile-YOLO network to address the challenges posed by the diverse
scales and orientations of underwater targets in sonar images. MPConv is designed to
capture a rich set of features by processing the input data through multiple parallel convolu-
tional paths with different kernel sizes and aspect ratios [42]. Each path is tailored to capture
specific spatial hierarchies, allowing the network to represent a wide range of underwater
structures effectively. The outputs from these parallel paths are then concatenated, forming
a comprehensive feature representation that encapsulates both local and global contextual
information. This multi-path processing approach enabled the AquaPile-YOLO network to
achieve superior performance in detecting targets of varying sizes and complexities within
sonar imagery.

(3) C3N Module

The C3N module, building on the strengths of the C3 module, introduces an innova-
tive structure combining depth-separable convolution with a novel inverted Bottleneck
design, inspired by the ConvNeXt architecture [43,44]. The C3N module consists of three
convolutional layers followed by multiple ConvNeXt blocks, enabling efficient parameter
utilization and enhanced feature correlation capture while mitigating information loss
during dimensionality compression. The inverted Bottleneck structure of the C3N module,
with a wider central section and narrower endpoint, empowers effective feature correlation
capture and efficient feature space transformation processing. This results in robust feature
extraction capability, particularly beneficial for detecting small, densely packed targets in
sonar images, despite the imaging limitations of sonar technology.

By integrating these advanced modules—C3 with CBAM, MPConv, and C3N—the
AquaPile-YOLO network achieved a heightened level of attention and discrimination,
enabling it to excel in the detection of underwater pile foundation targets within forward-
looking sonar images [45].

2.2.5. Loss Function Optimization

The loss function plays a crucial role in object detection tasks. The loss function
for AquaPile-YOLO was optimized based on the characteristics of sonar image targets,
employing a composite loss function that guides model training more comprehensively
through classification loss Lcls, regression loss Lreg, and objectness loss Lobj.

The total loss function is given by the following:

Lsonar =
1

Npos

(
Lcls + Lreg + Lobj

)
(8)

where Npos is the number of positive samples, I{·} is the indicator function, LFocal is the
focal loss for classification, LIoU is the IoU loss for regression, and LBCE is the binary
cross-entropy loss for objectness.
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2.2.6. Soft-NMS (Soft-Non-Maximum Suppression)

In this study, the Soft-NMS algorithm [46] was used to improve the object detection
process of AquaPile-YOLO. Soft-NMS adjusts the scores of detection boxes using a Gaussian
function for continuous decay instead of simply setting the scores of overlapping detection
boxes to zero, thereby improving the accuracy and robustness of small target detection.

In traditional NMS, given a set of detection boxes B = {b1,. . .,bN} and corresponding
scores S = {s1,. . .,sN}, the algorithm first selects the box with M the highest score, then
removes all other boxes with an overlap higher than the threshold of Nt with M. This
process is then recursively applied to the remaining boxes. Soft-NMS proposes a different
approach by adjusting the score si of the detection box bi using the following Formula (9):

s′i = si · e−IOU(M,bi)
2/σ∀bi /∈ D (9)

where IOU(M,bi) represents the Intersection over Union between the detection boxes M
and bi, and σ is a parameter controlling the speed of score decay.

3. Experiments
3.1. Experimental Design

The purpose of this experiment was to validate the effectiveness of the proposed
AquaPile-YOLO algorithm for underwater pile foundation detection using HY1645 forward-
looking sonar images. The experimental environment was a designated section of a lake
field test site, characterized by water depths ranging from 2 m to 20 m and a substrate
primarily composed of sand and gravel, providing a controlled yet representative setting
for underwater sonar testing.

The HY1645 forward-looking sonar was installed on a vessel using a lateral straddle
mount, as shown in Figure 7, which illustrates the field experiment vessel with the sonar
installed. Two devices were fixed onto an installation pole. Due to the weight of the
equipment, the structure was designed to grip the vessel’s edge from both sides beneath
the bow. The installation pole was fixed to the side of the vessel, with the detection sonar
located approximately 0.5 m below the water surface.
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To prevent interference from the side lobes of the forward-looking sonar touching the
water surface and causing noise, the emission direction of the detection sonar was set to
a 30◦ downward tilt from the water surface, based on the scanning direction of the sonar
beam opening angle. The sonar installation angle (left) and the distribution of the target
(underwater pile foundation) (right) are shown in Figure 8.
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3.2. Data Collection

During the data collection phase, we conducted field experiments at one lake in Wuxi
City from November 26th to 27th, 2020. The trials involved multi-distance, multi-directional
sonar detection of pre-set targets (track racks) at varying speeds (13 km/h, 15 km/h, and
18 km/h, equivalent to approximately 7, 8, and 10 knots, respectively). Utilizing a gimbaled
mount, the sonar was adjusted to an optimal operational attitude to ensure the acquisition
of target sonograms in real-time. Data were recorded in the AVI video format and were
saved as JPEG/PNG/BMP snapshots for subsequent analysis and algorithm validation.

Data annotation was performed for underwater pile foundation targets in sonar
images by conducting continuous long-term detection and comparing them with human
observations and mapping charts. The dataset includes two category labels, ”l” and ”r”,
using the YOLO format. To construct the training dataset, 4000 sonar images were collected
in the field experiment, covering various underwater environments and target conditions.
The image data were preprocessed, including grayscaling, noise removal, and contrast
enhancement, to improve the accuracy of subsequent target detection.

Due to the scarcity of sonar data, scholars in the field of sonar images have mostly used
simulated datasets as the sample space, while actual measured datasets barely exceeded
a few hundred images. This paper collected 4000 sonar images on-site as the dataset for
deep learning training, which to some extent compensates for the lack of data in previous
research in this field.

The original data collected by the HY1645 imaging sonar were in a custom format
of acoustic signal data, with “.hca” and “.son” being the two formats. The HAICA.EXE
executable program provided by the system is required to read them. The original acoustic
signals were transformed into image data in the “.bmp” format. Using the original acoustic
data collected by the HY1645 in the field experiment, 4000 two-dimensional sonar images
with a pixel resolution of 848 × 600 were generated.
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3.3. Experimental Procedure

This study employs a comprehensive dataset, containing a total of 4000 field-measured,
forward-looking sonar data images, which were meticulously preprocessed to augment
model detection capabilities. In the experiment, the dataset was divided into a training set
(3000 images) and a validation set (1000 images). The experimental steps incorporate several
key stages: data augmentation, model training, performance evaluation, and systematic
recording of results. The data augmentation phase plays a crucial role in enhancing model
adaptability across diverse environments, achieved through an array of techniques such
as random cropping, rotation, and the strategic introduction of noise. The model training
phase was executed within a strictly defined, controlled environment, where parameters
including the learning rate and batch size were rigorously monitored.

The experiment was conducted on a system equipped with a high-performance CPU
and GPU to ensure efficient operation. The CPU is Intel(R) Xeon(R) Gold 6130, and the
GPU is Tesla V100-PCIE-32GB, with 32 GB of video memory. The operating system used is
Ubuntu 18.04.5 LTS, and the deep learning framework is torch-2.0.0, as shown in Table 2
for the detailed experimental environment configuration.

Table 2. Experimental environment configuration.

Parameter Setup

Ubuntu 18.04.5 LTS
Pytorch 2.0.0
Python 3.8
CUDA 11.8
GPU Tesla V100-PCIE-32GB
CPU Intel(R) Xeon(R) Gold 6130

In order to enhance the persuasiveness of the experiments, this study conducted
a series of parameter adjustments based on the AquaPile-YOLO model and performed
multiple experimental tests, ultimately selecting the hyperparameter settings as shown in
Table 3.

Table 3. Hyperparameters during training.

Parameter Setup

Epoch 300
Batch 32

NMS IoU 0.6
Initial Learning Rate 0.01
Final Learning Rate 0.01

Momentum 0.937
Weight Decay 0.0005

The formulas are as follows. Regular evaluations were undertaken using a validation
set to ensure the model’s performance was accurately gauged. Key metrics like preci-
sion, recall, and mAP were systematically recorded during this stage. The formulas are
as follows.

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

AP =
∫ 1

0
P(R)dR (12)
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mAP =
1
N

n

∑
i=1

APi (13)

where TP is the number of correctly predicted positive samples, FP is the number of
negative samples incorrectly predicted as positive, and FN is the number of positive samples
incorrectly predicted as negative. Moreover, average precision (AP) is the calculation of the
area under the accuracy–response rate curve for a certain category. mAP is an auxiliary
to the AP of all categories and can be used to evaluate the model’s detection performance
for all categories. In Formula (13), n is the number of categories; AP(j) is the AP of the
jth category.

To ensure methodological rigor and reproducibility, all experimental settings and
parameters were painstakingly documented. Furthermore, the entire experiment was
repeated multiple times in order to confirm the consistency and reliability of the results
obtained. Potential biases and errors that could arise during the course of the study were
identified and discussed, along with the corresponding mitigation strategies proposed.
This thorough experimental procedure aimed to provide a transparent and replicable guide
for scholars seeking to replicate the study’s setup, as well as to harness the enhanced
capabilities of the AquaPile-YOLO model within their own research endeavors.

4. Results
4.1. Ablation Studies

In order to analyze the influence of different improvement strategies on the per-
formance of model detection, three groups of experiments were designed to complete
the training and testing under the premise of ensuring the same data set and training
parameters and the experimental results are shown in Table 4.

Table 4. Results of ablation experiments.

Multi-Scale
Feature
Fusion

CBAM Sonar Loss Soft-NMS Precision Recall mAP50 mAP50-95

× × × × 0.886 0.76 0.789 0.517
✓ × × × 0.9 0.764 0.8 0.521
× ✓ × × 0.912 0.764 0.808 0.524
✓ ✓ × × 0.919 0.771 0.811 0.525
✓ ✓ ✓ × 0.896 0.785 0.819 0.528
✓ ✓ ✓ ✓ 0.888 0.798 0.821 0.529

When only CBAM was enabled, the precision further increased to 0.912, while the recall
remained at 0.764. The mAP50 improved to 0.808, and the mAP50-95 increased to 0.524.
This demonstrates the significant effect of the CBAM on enhancing model performance. By
combining MSFF and the CBAM, the performance continued to improve, with precision
reaching 0.919, recall increasing to 0.771, mAP50 rising to 0.811, and mAP50-95 reaching
0.525. This combination clearly outperforms the use of MSFF or CBAM alone.

After introducing Sonar Loss, the precision slightly decreased to 0.896, but the recall
improved to 0.785. The mAP50 increased to 0.819, and the mAP50-95 reached 0.528. This
indicates that Sonar Loss is helpful in improving the recall rate and overall performance of
the model, although it may slightly impact accuracy.

Finally, with all improvements (including Soft-NMS) enabled, the precision was 0.888,
recall increased to 0.798, mAP50 reached 0.821, and mAP50-95 also increased to 0.529.
Despite a slight decrease in accuracy, the improvements in recall and mAP values reflect
the enhancement of overall detection performance.
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In conclusion, by combining techniques such as multi-scale feature fusion, CBAM,
Sonar Loss, and Soft-NMS, AquaPile-YOLO achieved improvements in various perfor-
mance metrics, particularly in mAP, the most convincing indicators. These enhancements
effectively enhance the detection capabilities of YOLOv5.

4.2. Comparisons

After ablation studies, the AquaPile-YOLO model was tested by comparative experi-
ments. The test results showed that the model achieved an identification accuracy rate of
96.89% for underwater targets, confirming the effectiveness and reliability of the proposed
method in actual underwater pile foundation detection.

This experiment compared the performance of five object detection algorithms, SSD300,
YOLOv3, Faster R-CNN, Cascade R-CNN, and AquaPile-YOLO, on sonar images. The test
results for each algorithm are shown in Table 5. Additionally, we compared our results with
the recently published Underwater Acoustic Target Detection (UATD) dataset. This dataset
includes identification results for underwater objects such as a ball, cube, tire, sc (square
cage), and cc (circle cage). As shown in Table 6, the AquaPile-YOLO model performed
superiorly across these categories, further validating its efficacy in various underwater
detection scenarios.

Table 5. Comparison of AquaPile-YOLO with other models.

Model Precision Recall mAP@50 Params/M FPS

SSD300 0.238 0.403 0.670 23.88 9.1
YOLOv3 0.364 0.455 0.783 61.52 46.7

Faster R-CNN 0.328 0.429 0.760 41.35 19.4
Cascade R-CNN 0.333 0.438 0.752 69.15 15.5
AquaPile-YOLO 0.888 0.798 0.821 46.60 111.1

Table 6. Detection results of underwater targets with different scenarios.

Model AP (Ball) AP (Cube) AP (Tyre) AP (sc) AP (cc) AP (Pile)

Faster-RCNN (Resnet-18) 0.869 0.717 0.847 0.547 0.666 -
Faster-RCNN(Resnet-50) 0.870 0.686 0.889 0.621 0.538 0.328
Faster-RCNN(Resnet-101) 0.865 0.697 0.840 0.572 0.491 0.333

YOLOv3 (Darknet-53) 0.860 0.669 0.874 0.470 0.519 -
YOLOv3 (MobilenetV2) 0.868 0.573 0.738 0.518 0.498 0.364

AquaPile-YOLO - - - - - 0.888

As shown in Figure 9a, the comparative analysis indicates that AquaPile-YOLO
outperforms other state-of-the-art object detection models, including YOLOv3, Faster
R-CNN, Cascade R-CNN, and SSD300, in terms of both precision and recall. Precision,
which quantifies the proportion of true positive detections among all detected samples, and
recall, which measures the model’s ability to detect all actual positive instances, are critical
metrics for object detection systems. AquaPile-YOLO achieves a precision of 0.888 and a
recall of 0.798, with a mAP@50 score of 0.821, indicating its exceptional ability to identify
underwater pile foundations while minimizing false positives accurately. This high level
of precision and recall suggests that AquaPile-YOLO is particularly robust in scenarios
requiring reliable underwater detection.

Figure 9b provides a detailed comparison of recall performance among the same
set of object detection models, further emphasizing AquaPile-YOLO’s superiority. With
a recall value of 0.821, AquaPile-YOLO demonstrates its effectiveness in detecting all
instances of underwater targets, outperforming YOLOv3 (0.783), Faster R-CNN (0.760),
Cascade R-CNN (0.752), and SSD300 (0.670). This superior recall performance indicates
that AquaPile-YOLO is more reliable in identifying underwater targets, making it highly
suitable for applications where high recall is essential for operational success. The high
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recall rate is particularly crucial in underwater environments, where missing a target could
have significant consequences, thus highlighting AquaPile-YOLO as the preferred model
for critical detection tasks.
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detection models.

Figure 10a presents a compelling comparison of F1 performance for pile foundation
detection using forward-looking sonar images across various algorithms. The F1 score, a
balanced metric harmonizing both precision and recall, is depicted at varying confidence
thresholds. This composite score provides a comprehensive measure of a model’s exactness
and completeness in detection. AquaPile-YOLO exhibits notably high F1 scores, signifying
its ability to balance precision and recall. Notably, at a confidence threshold of 0.155,
AquaPile-YOLO achieves an F1 score of 0.84, indicating robustness in accurately detecting
pile foundations.
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Figure 10b depicts the F1 performance curve for the AquaPile-YOLO model, illus-
trating how the model’s F1 score fluctuates at different confidence thresholds. The curve
represents the interplay between precision and recall, with each point reflecting the preci-
sion at various levels of recall. This visualization is instrumental in assessing the model’s
performance across the entire spectrum of detection confidence. The curve underscores
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AquaPile-YOLO’s consistently high performance, even at lower confidence thresholds,
thereby validating its reliability and effectiveness in real-world applications. The “All
classes” average F1 score encapsulates the model’s overall efficacy in detecting a diverse
range of underwater targets, further solidifying AquaPile-YOLO as a superior choice for
sonar-based object detection tasks.

Figure 11 is a heatmap comparison, demonstrating the comprehensive performance of
different algorithms on the target detection task. AquaPile-YOLO achieved a high score
of 0.93 on this indicator. A comparison of the original image and detection results for
each algorithm’s heatmap indicates the model’s strong comprehensive performance for
detecting underwater pile foundation targets under various scenarios. Simultaneously, it
shows the model performs well in sonar image target detection tasks, meeting real-time
detection speed requirements and significantly improving accuracy. These results support
the model in this paper as the preferred algorithm for sonar image target detection.Remote Sens. 2025, 17, x FOR PEER REVIEW 17 of 22 
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Figure 11. A heatmap comparison of different algorithms for pile foundation detection by forward-
looking sonar images. The heatmap illustrates the performance comparison of various detection
algorithms, with the red box highlighting the area of interest where the pile foundation targets are
detected. Within this box, the intensity of the color indicates the confidence level of the detection,
with warmer tones (reds and yellows) signifying higher confidence in the presence of a target.

5. Discussion
This study introduces AquaPile-YOLO, an advanced underwater pile foundation

detection method utilizing forward-looking sonar imagery. The proposed method offers
several advantages, including significantly improved detection accuracy achieved by the
AquaPile-YOLO algorithm. The algorithm effectively captures underwater targets of vary-
ing sizes and enhances the detection of small targets, representing a critical advancement
in the field.
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The principal contributions of this study comprise the following: (1) the development
and proposal of the AquaPile-YOLO algorithm, an innovative method for underwater pile
foundation detection, which builds upon the foundational architecture of YOLOv5 and
incorporates multi-scale feature fusion and attention mechanisms to achieve significantly
improved detection accuracy; (2) the application of data augmentation techniques to
improve model generalization and robustness; (3) the collation and use of 4000 sonar
images as a training dataset, offering plentiful data for model training and validation;
and (4) experimental results underscoring the considerable practical application value in
detecting underwater pile foundation targets within sonar images.

Specifically, this study addresses the critical challenge of real-time, fast, and accurate
template recognition and the detection of underwater pile foundations in sonar images.
Key innovations include the following:

• Multi-scale Feature Fusion: By incorporating a multi-scale feature fusion scheme, this
study effectively captures underwater targets of varying sizes, thereby improving
small target detection accuracy.

• Enhanced Attention Mechanism: The attention mechanism is improved by combining
Normalized Weighted Distance (NWD) and Intersection over Union (IOU), enhancing
the model’s ability to distinguish small targets and reducing scale sensitivity. This en-
hancement is complemented by structural modifications within the YOLOv5 network,
allowing for a more nuanced focus on critical image regions.

• Application of Soft-NMS: Rather than traditional NMS, Soft-NMS better handles occlu-
sions and overlapping targets, limiting missed and false detections in complex scenes.

• Data Augmentation Strategy: The model’s generalization and adaptability to diverse
environmental conditions are bolstered through data augmentation techniques like
rotation, random cropping, and noise addition.

In addition to the aforementioned innovations, this study significantly contributed
to the dataset by collecting 4000 real-measured sonar images from field experiments as a
training dataset. This collection provides substantial data support for model training and
validation and serves as a vital supplement to existing research datasets. This includes
raw acoustic data from forward-looking sonar technology, sonar images, and video data,
thereby facilitating further research and collaboration within the academic community.

Despite the promising results, our study has limitations. The AquaPile-YOLO algo-
rithm has primarily been tested in controlled environments with specific water conditions,
and its performance in more variable natural settings remains to be explored. Additionally,
the model’s computational requirements may pose challenges for real-time applications in
resource-constrained environments.

The proposed AquaPile-YOLO method exhibits high applicability in marine engineering
and environmental monitoring. Its ability to accurately detect underwater pile foundations
can significantly enhance the efficiency and safety of harbor operations and underwater
construction projects. Furthermore, the model’s robustness to environmental variations makes
it a promising tool for the long-term monitoring of underwater infrastructure.

Building on the foundation of the AquaPile-YOLO algorithm, future research will
focus on refining and expanding capabilities for underwater pile foundation detection. The
following five aspects outline the trajectory for future research and development:

• Algorithm Optimization: While the AquaPile-YOLO algorithm has demonstrated high
accuracy, there is a need to continue optimizing the model structure. Reducing compu-
tational resource consumption and improving detection speed are essential to meet the
demands of real-time detection, particularly in resource-constrained environments.

• Multimodal Data Fusion: To further improve detection accuracy and robustness,
exploring the combination of sonar images with other sensor data, such as optical
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images or LiDAR data, is a promising avenue. Multi-modal data fusion could provide
a more comprehensive understanding of the underwater environment and enhance
the algorithm’s capabilities.

• Broader Environmental Adaptability: Assessing the model’s performance across
a broader range of underwater environments is crucial. Testing the algorithm in
various water qualities, lighting conditions, and underwater structures will en-
hance the model’s generality and adaptability, ensuring its effectiveness in diverse
marine settings.

• Automation and Intelligence: The development of an automated sonar image col-
lection system, integrated into underwater robots or autonomous underwater vehi-
cles (AUV/USV/ROV/UUV), is essential for achieving fully autonomous underwa-
ter detection tasks. This advancement would increase the efficiency and safety of
underwater operations.

• Engineering Application Deployment: Integrating the AquaPile-YOLO model into
existing underwater monitoring systems for long-term deployment and performance
evaluation is vital. Such integration will provide insights into the model’s practi-
cal performance and longevity, facilitating its adoption in marine engineering and
environmental monitoring projects.

Through these future directions, we expect to enhance the performance of underwater
pile foundation detection technology and promote its application in the fields of marine
engineering and environmental monitoring.

6. Conclusions
This paper proposes an underwater pile foundation detection method for forward-

looking sonar images based on the AquaPile-YOLO algorithm. By introducing modules
such as multi-scale feature fusion, attention mechanisms, and Soft-NMS, the model’s
detection accuracy for underwater pile foundation targets is significantly improved. The
experimental results show that the AquaPile-YOLO model achieves an accuracy rate of
96.89% in underwater target identification tasks, demonstrating its efficiency and reliability
in practical applications.
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