
Academic Editor: Won-Ho Nam

Received: 26 November 2024

Revised: 10 January 2025

Accepted: 17 January 2025

Published: 22 January 2025

Citation: Gargiulo, M.; Cavallo, C.;

Papa, M.N. Mapping of Fluvial

Morphological Units from Sentinel-1

Data Using a Deep Learning

Approach. Remote Sens. 2025, 17, 366.

https://doi.org/10.3390/rs17030366

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Mapping of Fluvial Morphological Units from Sentinel-1 Data
Using a Deep Learning Approach
Massimiliano Gargiulo 1,∗ , Carmela Cavallo 2 and Maria Nicolina Papa 2

1 Earth Observation Systems and Application (AOTD), Italian Aerospace Research Centre (CIRA),
81043 Capua, Italy

2 Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy; ccavallo@unisa.it (C.C.);
mnpapa@unisa.it (M.N.P.)

* Correspondence: m.gargiulo@cira.it; Tel.: +39-0823-623164

Abstract: The identification of ongoing evolutionary trajectories, the prediction of future
changes in the functioning of riverine habitats, and the assessment of flood-related risks
to human populations all depend on regular hydro-morphological monitoring of fluvial
settings. This paper focuses on the satellite monitoring of river macro-morphological units
(assemblages of water, sediment, and vegetation units) and their temporal evolution. In
particular, we develop a deep-learning semantic segmentation method using Synthetic
Aperture Radar (SAR) Sentinel-1 dual-polarized data. The methodology is executed and
tested on the Po River, located in Italy. The training of a relatively deep convolutional
neural network requires a large amount of ground-truth data, which is often limited and
challenging to acquire. To address this limitation, the dataset is augmented using a random
forest (RF) classification algorithm. RF parameters are trained with both Sentinel-1 (S1)
and Sentinel-2 (S2) data. The RF classification algorithm is very robust and achieves
excellent performance. To overcome the limitation linked with the scarce availability of
contemporary acquisition by S1 and S2 sensors, the deep learning (DL) model is trained
by using only the Sentinel-1 input data and the ground truth from the RF result. The
proposed approach achieves promising results in the classification of water, sediments, and
vegetation along rivers such as the Italian Po River with low computational costs and no
concurrency constraints between S1 and S2.

Keywords: Sentinel-1 Synthetic Aperture Radar (SAR) data; Sentinel-2 data; fluvial satellite
monitoring; image segmentation; convolutional neural network; google earth engine;

1. Introduction
Fluvial geomorphological investigations have gained increasing importance over

the past decade, emerging as an essential tool for the sustainable management of fluvial
environments [1]. These studies have proven particularly effective in assessing flood risks
and providing crucial data to understand hydro-morphological variations, both natural
and anthropogenic, including those induced by restoration interventions. There is a strong
link between river physical forms and biological conditions [2]. Geomorphic units (e.g.,
riffles, pools, bars, islands) constitute essential habitats for fluvial biota. For example, they
offer refuge from disturbance or predation, spawning spots, etc. Therefore, continuous
monitoring of geomorphic units is essential for gathering insights into habitat availability
and dynamics. This study focuses on mapping macro-morphological units, defined as
aggregates of one or more units belonging to the same typology. These units, characterized
by common textural features such as aquatic portions, sediments, and vegetation, provide a
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preliminary level of characterization of the river environment [3,4]. Wet channel, sediment
bars, and vegetated areas are the macro-morphological units identified in this work.

To ensure effective and long-lasting river management, it is essential to conduct contin-
uous geomorphological observations over time. However, these investigations can become
quite complex and costly if carried out in the field. Remote sensing (RS) technologies play a
key role in addressing numerous environmental and societal challenges. In particular, one
field of application is hydrology and river monitoring, which has become increasingly criti-
cal due to climate change. Rivers are highly sensitive to sudden variations, such as floods,
as well as medium-term changes like droughts and the drying of non-perennial riverbeds.
The fusion of remote sensing data from multiple sources has proven invaluable in this con-
text. By leveraging the enhanced spatial, spectral, and temporal resolutions offered by data
fusion, the monitoring of rapid and instantaneous phenomena has become more effective.
Earth observation is nowadays supported by a huge number of satellites [5,6], providing
precious data for various applications in fluvial hydro-morphology, such as monitoring and
quantifying hydro-morphological changes [7–10], and analyzing the dynamics of riparian
vegetation [11]. The extensive coverage provided by satellite systems ensures that even the
most remote and inaccessible river regions can be monitored effectively. This global reach
is crucial for creating comprehensive hydro-morphological maps and detecting changes
over large areas. Secondly, the frequent revisit time (around 5 days for the Sentinel mission)
enables the monitoring of rapid changes and events in river environments, such as floods,
sediment transport, and alterations in river courses. This high temporal resolution allows
for timely interventions and informed decision-making in water resource management
and disaster response. Furthermore, the cost-effectiveness of satellite data is a significant
advantage. While traditional field surveys and airborne missions can be expensive and
logistically challenging, satellite observations offer a more economical and efficient alter-
native. The ability to repeatedly capture data without the need for extensive on-ground
infrastructure reduces both the financial and environmental costs associated with river
monitoring. Multispectral and Synthetic Aperture Radar (SAR) imagery are commonly
used to provide information about vegetation, risk management, river water mapping, and
much more. Multispectral imagery such as MODIS, SPOT, Landsat-8, and Sentinel-2 are
readily available and easy to process, but are often disturbed by clouds and cloud shadows.
In contrast, SAR imagery from satellites such as Envisat, RADARSAT, and Sentinel-1 SAR
can penetrate clouds, thus providing great advantages such as, for example, the possibility
of observing hydro-morphological variations immediately after flood events, when cloud
cover often limits the use of multispectral data. Numerous studies have utilized multispec-
tral imagery to monitor fluvial hydro-morphology. Multispectral images have already been
used to study various river morphologies and dynamics [10,12]. For example, the Sentinel-2
images are used to delimit water, vegetation, and dry sediment, detect vegetation growth,
and delimit active channels on four Italian rivers: the Po River, the Sesia River, the Paglia
River, and the Bonamico River [13]. The Sentinel-2 images have been further used to study
alternate sandbars movement on the Vistula River in Poland [14]. In [9], a combination
of Landsat and Sentinel-2 imagery is used to assess the river dynamics and changes over
time in the Po River. Regarding multispectral images, classification methods based on
multispectral indices have been successfully applied to rivers with a width-to-resolution
ratio in the order of 3:1 or greater [10,15–18]. According to our knowledge, studies that have
utilized SAR data for monitoring fluvial hydro-morphology rather than flooding events
are limited [19]. SAR data are more complex to interpret without a strong background in
electromagnetics. The monitoring of rivers is also affected by difficulties linked with the
possible presence of hill shadows and water surface ripples. Hill shadows are particularly
problematic in mountainous regions, where terrain-induced shadows and complex water
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dynamics complicate accurate water surface detection. Surface ripples generate higher
backscatter that can cause confusion between water surfaces and non-water surfaces [20],
Only a few approaches have been developed for extracting geomorphic macro-units from
SAR satellite data. For instance, SAR data are used to analyze river morphology [20] and to
assess braided river-bed dynamics over time [19]. Among the most promising sensors for
fluvial monitoring, the Sentinel-1 and Sentinel-2 satellites of the ESA Copernicus program,
provide data with a higher revisit time than the other satellites at finer spatial resolution,
and at a higher spatial resolution than other missions, such as Landsat, MODIS, and
so on [21–24]. Sentinel-2 is an advanced multispectral sensor that captures data in 13 spec-
tral bands with a temporal resolution of 5 days and a spatial resolution of up to 10 m. On
the other hand, Sentinel-1, equipped with a C-band, is one of the most recent and advanced
SAR sensors, with a high temporal and spatial resolution capability, providing data with
temporal and spatial resolutions of up to 6 days and 10 m, respectively. The main limitation
of relying on a single sensor lies in the unavoidable trade-off between spatial and temporal
resolution. Image blending, achieved by combining multiple data sources, is a widely used
method for enhancing temporal resolution [25,26]. In fact, in recent decades, data fusion
algorithms based on the use of multispectral and SAR data have gained attention in the
research community. Thus, a wide range of data fusion studies combine specific bands and
polarizations of optical and SAR sensors to gain a more thorough understanding of fluvial
processes [27–35]. Data fusion algorithms were developed to fully exploit the potential of S1
and S2 sensors and overcome their limitations [27,36–38]. In the last decade, deep learning
(DL) with increasingly complex architectures [39–42] has attracted increasing interest in the
computer vision community. Thus, an increasing number of works address data fusion
using DL architectures, as they are very effective in global monitoring for a plethora of RS
applications [35,43–46]. The growing interest and the increasing number of satellites (and
thus data) have encouraged the use of methods based on Convolutional Neural Networks
in fluvial monitoring. We present a new deep learning-based methodology that leverages
the temporal coverage of Sentinel-1 and the segmentation accuracy of S1 and S2 data fusion
to classify fluvial macro-morphological units [3], such as channels, wet areas, sediments,
and vegetation. The suggested method focuses on two main challenges in dynamic fluvial
environments: (i) the constraints caused by the non-contemporaneity of S1 and S2 datasets,
and (ii) the dependency on large ground-truth datasets for deep learning model training.
To overcome these obstacles, the suggested method uses Random Forest (RF)-generated
semantic segmentation maps (obtained by the use of S1 and S2 data) as training labels
for a deep learning architecture that has only been trained on S1 dual-polarized data. As
a result, the method demonstrates high-frequency monitoring capabilities, limited only
by Sentinel-1’s six-day revisit time, which makes it especially appropriate for monitoring
rapid hydro-morphological changes.

The paper is organized as follows. Section 2.1 provides an overview of the case study,
including the area of investigation, and details the S1 and S2 data used in this research. In
Section 3, we explain the general workflow of the proposed method, and in particular the
proposed deep learning architecture used for the semantic segmentation training. Further,
we describe the definition of a specific loss function and the implementation of the training
phase. In Section 4, the results are shown in detail with visual and numerical assessments.
Section 5 focuses on evaluating the performance. Section 6 summarizes the main findings
and outlines the future directions of this research.
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2. Study Area and Satellite Imagery Used
2.1. Study Area Overview

To illustrate our approach, we chose two downstream sections of Italy’s Po River to
train our model and assess the outcomes obtained through the classification technique. The
Po River is the longest watercourse in Italy (spanning approximately 652 km), is located in
northeast Italy, and flows from the Cozie Alps to the Adriatic Sea, draining a catchment
area of approximately 74,091 km2 (Figure 1a). This research primarily concentrated on a
40 km reach between Boretto and Borgoforte (Figure 1b), with an average bank width of
200–500 m, and another section close to Boschina Island located downstream of the Revere
railway bridge, near Ostiglia village (Figure 1c). Within the analyzed reaches, the river
exhibits a predominantly single-thread channel with a planform ranging from straight
to meandering. The most frequent geomorphic features include point bars, mid-channel
bars, and chute channels. The alluvial bed consists of well-sorted coarse sand, with a d50

of approximately 0.4 mm [9]. Figure 1b shows the RGB representation of the Borgoforte
area, used as a training dataset, together with a zoomed image (Figure 1c) of the test area
(Ostiglia, Italy). The test area was not considered in the training phase because we wanted
to validate the model in other areas with similar fluvial morphological conditions. The dates
were selected for cloud-free conditions, and hence with available reference ground-truth
for any possible optical feature.

Figure 1. (a) Main channel of the Po River, highlighting the locations of the cases study. (b) View of
Boretto-Borgoforte area. (c) View of Ostiglia island.

2.2. Sentinel-1 and Sentinel-2 Data

In recent years, the GEE has been increasingly used in the remote sensing community [47],
thanks to its free access to satellite data and specific algorithms useful for various appli-
cations [48]. Its data collection over four decades around the world provides valuable
opportunities for global-scale applications in hydrology [49], channel change detection
[18], and other areas [50]. The data collections available on GEE are from the complete
Landsat series, S1, S2, Sentinel-3, and others [51]. In this study, we used Copernicus Sentinel
data, specifically the S1 and S2 datasets, which were downloaded and pre-processed using
Google Earth Engine (GEE), as shown in Figure 2. The GEE presents the S2 at different
levels: the Level-1C (L1C), provided in Top Of Atmosphere (TOA) reflectances, and the
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used Level-2A (L2A), provided in Bottom Of Atmosphere (BOA) reflectances, obtained by
the atmospheric correction from the L1C (see Figure 2). The GEE provided the Sentinel-1
data processed with the S1 Toolbox using the following processing chain: thermal noise
removal, radiometric calibration, and terrain correction using SRTM 30 m. Finally, the
terrain-corrected product was converted to decibels. Then, simple despeckling was applied
to each S1 polarization based on the mean filter with a Gaussian kernel. After the described
processing, the despeckled S1 backscatter in VV and VH polarizations was used as input to
the Random Forest algorithm (as shown in Figure 2). Conversely, we did not consider any
despeckling algorithms on the S1 input when we developed the deep-learning solution. As
shown in [44], the usage of speckled S1 images allowed us to save time and still achieve
excellent classification/segmentation results. The information about the data provided by
the two missions used is reported in Tables 1 and 2.

Table 1. Overview of the Sentinel-1 SAR dual-polarized data.

Characteristics Sentinel-1A Data

Acquisition orbit Descending
Imaging mode IW
Imaging frequency C-band (5.4 GHz)
Polarization VV, VH
Data Product Level-1 GRDH
Spatial Resolution 10-m

Table 2. Overview of the Sentinel-2 Multispectral data.

Spectral Bands (Bands Number) Wavelength Range Spatial
[µm] Resolution [m]

Blue (2), Green (3), Red (4), 0.490–0.842 10and NIR (8)

Vegetation Red Edge (5, 6, 7, 8A) 0.705–2.190 20and SWIR (11, 12)

Coastal Aerosol (1), 0.443–1.375 60Water Vapour (9), and SWIR (10)

Depending on sediment size, the SAR signal returns a different response; if sediment
size exceeds a threshold, the surface is rough, and vice versa smooth. We considered the
threshold h defined in [52] and described below:

h <
λ

25 · θinc
(1)

where λ is equal to 5.6 cm (C-band) and θinc is approximately equal to 38◦ in the considered
area. In our case, the condition was h < 2 mm, that is, the sediments of the Italian Po River,
at approximately 1 mm, satisfied the condition of a smooth surface. We conclude that in
the smooth state, both the VV and the VH backscattering values are lower compared to the
rough state (see Figure 3). However, the VH/VV backscattering ratio of the smooth state
is higher than that of water, indicating a significant difference in the scattering behaviour
between the two states [53].

The GEE provided the S2 data at the L2A and L1C levels [54]. We used the L2A level
data, obtained by processing the S2 L1C with atmospheric correction through the Sen2cor
toolbox, as shown in Figure 2. To create a dataset for supervised Random Forest algorithms,
we manually selected a ground truth corresponding to irregular 100 polygons drawn in
GEE. The 100 chosen polygons were manually selected to cover specific geomorphological
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features, such as sediment bars, wet channel, and vegetated areas. The total area of the
polygons was equal to 2.16 km2. Specifically, each polygon was associated with one of three
specific classes (water, sediment, and vegetation). These polygons were drawn for a day
with acquisitions of S1 and cloudless S2, benefiting from expert knowledge that ensured
the representativeness of the geomorphic diversity of the river.

Figure 2. The processing chain on S1 and S2 data to train the Random Forest model using expert
knowledge on fluvial morphological conditions.

(a) (b)

Figure 3. (a) false colour RGB visualization of Sentinel-1 (R: VH, G: VV, B: VH
VV ) and (b) RGB of

Sentinel-2 on site under investigation.

3. Proposed Method
In this paper, we propose an automatic semantic segmentation method for land

cover classes along river corridors. The proposed solution, in particular, removes the
constraint of concurrence between S1 and S2, which is too stringent a limitation. This is
particularly relevant in tropical areas or when monitoring rapid phenomena, such as hydro-
morphological changes in rivers, where cloud cover limits the availability of Sentinel-2
data. For this reason, we trained the DL architecture so that the presence of the S2 data
was not required during the testing phase. However, we did apply the S2 data when
using ground truth in Random Forest training and testing. This deep learning strategy has
been used in previous studies [44] to extract information from lentic wetlands, whereas
in the current work it was employed to extract data on water, vegetation, and sediments
in dynamic environments such as rivers. The proposed workflow was composed of a
three-step solution:

1. We created a manual ground truth (polygons shown in Figure 4) from the observation
of Sentinel-2 data and the corresponding higher spatial resolution data (on the same
day). These polygons were used to train the Random Forest model, for which the
input was composed of the contemporary data from S1 and S2 (as shown in Figure 2);

2. We trained a deep neural network starting from only the Sentinel-1 input data and, as
a reference, the segmentation obtained from Random Forest (refer to Figure 5);

3. We tested the trained deep neural network (see Figure 6).

Compared with our previous solution [44], the novelties introduced in this paper are:
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• a novel deep learning architecture that means the U-Nets cascade;
• a three-terms loss function;
• a different segmentation map as reference, obtained by using the random forest

algorithm;
• a case study that best matches the characteristics of the proposed solution.

Given the structure obtained as a cascade of three U-Nets and the presence of three
terms of the loss function that carry an implicit denoising capability as in the work [55],
known as Noise2Noise (N2N), the proposed network, hereafter, will be called CUN2Net
(Cascade Unet Noise2Noise net).

Figure 4. Polygons, manually extracted in GEE, and evaluated in Random Forest Algorithm. In the
image, green polygons is for the vegetation, yellow ones for the sediments, and blue for the water.

Figure 5. The general workflow of the proposed method to train the proposed CUN2Net architecture.
The S1 and S2 pre-processing block is the same as in Figure 2.
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Figure 6. The general workflow to use and test the trained CUN2Net architecture. The S1 and S2
pre-processing block is the same as in Figure 2.

3.1. Dataset Generation with Random Forest Model (Step I)

The Random Forest (RF) algorithm is a common pixel classification approach [56,57].
To benefit from the S1 and S2 data, we used to train the RF in the contemporaneous presence
of S1 and S2 for a specific date. However, the simultaneousness of the two datasets was a
limitation. To overcome this drawback, we used the output of an RF-based segmentation
map to move forward with a deep learning solution trained with only S1 dual-polarized
data. However, this approach represented a supervised algorithm, and required many
examples from which it was able to learn helpful information in remote sensing applications.
In our context, we used S2 images to provide the necessary examples by drawing polygons
on the Google Earth Engine, facilitated by expert knowledge. Just as for all supervised
algorithms, the RF required examples from which to learn, so we built pairs (input, target)
that allowed the Random Forest to reproduce similar classifications as in example pairs,
but in areas never seen before. In our case, the input stack was composed of the Sentinel-1
dual-polarized data and the 20 m and 10 m Sentinel-2 bands. The S1 dual-polarized data
were reprojected into the geographical raster of the S2 ones at 10 m. The central date (t2)
is reported in Table 3 for S2, while for S1 it was anticipated or postponed by a maximum
of 2 days with respect to the S2 data. The dates t1and t3 considered were thus 6 days
from the S1 date. This input configuration gave better results than other configurations
composed of a subset of this configuration. The output was obtained from manually
extracted information, which means the polygons drawn in Google Earth Engine. For
each polygon, we associated a specific class between the classes mentioned earlier (water,
sediments, and vegetation), and thus a single specific class corresponded to each input pixel.
The RF model was trained using 80% of the drawn polygons, while 20% were used for
testing. Figure 2 illustrates the processing chain applied to S1 and S2 data used to train the
Random Forest model, incorporating polygons drawn (ground truth). To better understand
the diversity of the input data, some examples of polygons are shown in Figure 4. After the
specific training, achieved by using 300 trees and no limit for the maximum number of leaf
nodes in each tree, we tested the trained model on other areas. We considered a numerical
inspection, as shown in Table 4, to determine the goodness and generalization capability of
this method with respect to other machine learning algorithms: Support Vector Machine
(SVM) and Classification And Regression Trees (CART) [58]. The overall accuracy (OA)
of the RF (with the usage of S1 and S2) was equal to 0.9991, and was higher than other
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supervised classification algorithms. Moreover, the RF was trained only on S1 (first line in
the Table 4) with an overall accuracy of 0.9171, and only on S2 (second line in the Table 4)
with an OA of 0.9367. The significance of training the RF to use S1 and S2 simultaneously
to provide superior results is confirmed by this further analysis. Similar considerations can
be made for the other algorithms.

Table 3. The used datasets for training and testing phases, both for Random Forest and deep learning
approaches. For S1, we also considered the t1 and t3 dates (6 days before and after the t2 due to the
temporal resolution of S1).

Datasets Year S2 and S1 Date Considered Area Data Type (Size)(t2)

RF Training 2019 09-11 Po Polygons (80)

RF Testing 2018 12-10 Po Polygons (20)

DL Training 2018 09-16; 12-10 Borgoforte Patches 128 × 128
2019 01-04; 01-09; 09-11 (9.5k)

DL Testing 2018 09-16; 12-10 Ostiglia Patches 128 × 128
2019 01-04; 09-11 (500)

Table 4. Comparison of different classification algorithms in terms of accuracy.

Methods S1 Data S2 Data Accuracy Reference

RF ✓ 0.9171 [56]
RF ✓ 0.9367 [56]

CART ✓ ✓ 0.9980 [59]
SVM ✓ ✓ 0.9797 [60]

RF ✓ ✓ 0.9991 [56]

Convinced of the effectiveness of the training, we used the RF output to extensively
train a deep neural network (Figure 5). We extended the results to a broader area, and
we also included different dates with different conditions. For the RF training, the con-
temporaneous presence of S1 and S2 for a specific date was the main limitation, and so to
overcome this drawback, we moved forward with a deep learning solution trained with
only S1 dual-polarized data. It disengaged itself from the need to have simultaneous or
contiguous dates of the two sensors because this condition is complicated to obtain due to
the unavailability of S2 in the presence of clouds. Therefore, the deep learning method that
we proposed exploited only Sentinel-1 dual-polarized data in the input, also available in
cloud presence, and in the output, the result from the RF model.

3.2. Deep Learning Architecture (Step II)

The CUN2Net method we propose is built on a supervised deep learning architecture
based on the concatenated use of convolutional layers and, in particular, on the use of a
U-Net cascade similar to the W-Net strategy described in [44,61]. The core of the proposed
architecture is the U-Net architecture [41]. In this work, we consider three sequential U-
Nets, one after the other. The U-Net structure consists of contracting and expansive paths,
as described in [41]. The blocks of the U-Nets are composed of: (i) the batch normalization
layers, (ii) the 3 × 3 convolutional layer with a Rectified Linear Unit (ReLU), and (iii) the
max pooling 2 × 2 layers. More details on the single parts of the U-Nets are included
in [44]. At the end of the first and third U-Net, there is a convolutional layer that produces
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a number of feature maps equal to the number of classes considered in our problem (i.e., 3)
and, to produce the output, a softmax activation function. At the end of the second U-Net,
there is a convolutional layer with a ReLU as an activation function to reconstruct the SAR
information (VV and VH polarizations) in the central data (t2). The output of the blocks
at one level in a U-Net part is concatenated with the output of the max pooling layers (as
shown in Figure 7) in the following U-Net, which is identical to the first. The first and
third U-Nets have the same objective, i.e., image segmentation. On the other hand, the
second UNet has the SAR image reconstruction objective. These outputs and objectives
are differently weighted in the loss function, as described later. The output of the second
UNet is an ancillary and helpful result that we show in visual inspection, but it is not the
primary focus of this work. To support the supervised training required for the proposed
CUN2Net, we first need to realize input-target (x,y) samples in order to start the training
phase. The network is trained using six distinct input stacks, each representing a different
combination of VV and VH polarizations, as reported in Table 5 and as already presented
in [44]. In the multi-temporal input configuration (CUN2Net in Table 5), we consider the
S1 dual-polarized data on three different dates: one is the closest to the target date (1), and
the others are the next closest dates, before (0) and after (2) the target date. Hereafter, the
closest date is also defined as the central date. The same considerations on the different
dates are made for the C4 and C5 configurations in Table 5, but for these configurations, we
only consider one polarization at a time. The other two subsequent U-Nets are fed with
the output of the previous UNet. The first and third U-Net outputs consist of three-class
segmentation maps. Conversely, the second UNet’s output is the SAR data considered as
input. The strategy of using the speckled data (input) in the output follows the denoising
method described in [55].

Figure 7. The proposed CUN2Net architecture.

Table 5. Different input stacks are considered in the training phase.

Configurations No. Input Bands Description Considered Times

C1 1 VHi 1
C2 1 VVi 1
C3 2 VVi, VHi 1
C4 3 VHi 0, 1, 2
C5 3 VVi 0, 1, 2
CUN2Net 6 VVi, VHi 0, 1, 2

Training

After designing the architecture, it is necessary to define an appropriate loss function
that must be minimized to enable the learning process. In supervised learning, we mainly
distinguish two kinds of problems: the generative and the discriminative. In the discrimi-
native (for instance, segmentation) context, IoU or Jaccard losses are the main choices, due
to their simplicity and robustness, but a plethora of losses could be used, as reported in [62].
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In the generative context, the L2 or L1 norms are typical choices [63] due to the effectiveness
of speeding up training, as observed in [64]. However, in the proposed CUN2Net solution,
we define a combined loss that accounts for a segmentation task, specific to our application,
and a generative loss for an ancillary task. Specifically, we use an objective function that
consists of three terms:

L = λ1 · L1
IoU + λ2 · L1 + λ3 · L3

IoU (2)

where Lk
IoU with k = 1, 3 are the terms of the loss based on the Intersection over Union for

the first U-Net and the third U-Net, respectively, and the term L1 represents the terms of
the loss for the second U-Net and is computed on the pixel-wise L1 norm basis. The terms
Lk

IoU with k = 1, 3 are based on the Intersection over Union (IoU) to be more effective in
error backpropagation [65]. The IoU function can be defined as:

IoU =
I

U
=

y ∩ ŷ
y ∪ ŷ

=
TP

TP + FP + FN
(3)

where I is the Intersection and U is the Union, and y and ŷ are the reference and the
predicted map, respectively. Further, the IoU is also expressed as the combination of True
Positive (TP), False Positive (FP), and False Negative (FN). Specifically, the IoU loss is
computed on the objective function by averaging over the mini-batch samples at each
updating step of the learning process:

LIoU = 1 − IoU = 1 − 1
N

N

∑
n=1

yn ∩ ŷn

yn ∪ ŷn
(4)

where N is the batch size during the training phase (equal to 64 in this context), yn is the n-th
reference, and ŷn is the n-th predicted map, dependent on all the network trainable weights.
In the following analyses, the three different terms are weighted with the following values:
λ1 = 0.25, λ2 = 0.05, and λ3 = 0.7. The weights were empirically chosen and the higher
weight was assigned to the final segmentation task (λ3 = 0.7) to prioritize accuracy, while
lower weights (λ1 = 0.25, λ2 = 0.05) were assigned to intermediate tasks for stabilization.
Furthermore, in the next section, the importance of each term is explained in more detail. In
addition, we adopted the Adam optimizer, implemented in the Tensorflow Python package,
and we considered a learning rate of η = 0.002, and the decay rate of the first and second
moments to be β1 = 0.9 and β2 = 0.999, configured as in [66]. In the training phase, we
started the training via Glorot initialization of the weights [67]. Because of the relative
lightness of the considered network, we obtained considerable results despite the Glorot
initialization of the network weights. In particular, we considered six input configurations
(see Table 5) that differed from each other in the composition of the input stack x, while the
output y is always the RF-based classification result obtained from Sentinel-1 and Sentinel-2
at the target date. The training phase was performed for just 10 epochs. We stopped training
after 10 epochs due to overfitting that occurred when increasing the number of epochs.
Each epoch passed over all mini-batches, composed of 64 128 × 128 input–output samples,
over which the training set had been divided. The training dataset consisted of 10k patches
(9.5k reserved for the training phase and 500 for the validation phase) derived from S1
images acquired on the reported in Table 3.

3.3. Testing the Model with Classification Metrics (Step III)

We employed metrics derived from the confusion matrix to assess our model’s perfor-
mance in terms of segmentation results. In particular, we considered the accuracy, precision,
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recall, and F1-score, which are used to assess the correctness of multi-class classification
and segmentation algorithms as reported and defined in [68].

These metrics rely on a ground truth (or reference), which, like the training data, was
generated using the RF-based technique from the S1 and S2-L2A products. However, the
RF-based classification could pose a limitation during the training phase.

4. Results
In this section, we describe the classification results obtained by the proposed

CUN2Net method (Section 4.1). Then, a comparison is made between the proposed solu-
tion and some alternative methods from the literature (Sections 4.2–4.4). Performance is
evaluated by visual inspection and by the previously defined metrics.

4.1. Numerical and Visual Results

The proposed CUN2Net solution allowed us to obtain encouraging results. Basically,
the training data in the best-performing configuration (CUN2Net) consisted of three S1
couples (VV and VH on three different dates) in input, and a segmentation map from
the previously described Random Forest algorithm in output. The general idea was to
obtain from the standalone S1 dual-polarized data a result comparable to that obtained by
combining the information from the S1 and S2 data. The comparison between the Random
Forest result and the manually extracted ground truth showed an overall accuracy of 0.9915.
Figure 1 shows the RGB representation of the Borgoforte area, used as a training dataset,
together with a zoomed image of the test area (Ostiglia, Italy). The test area was completely
disjointed from the area considered in the training phase because we wanted to validate the
model in other areas with similar fluvial morphological conditions. The dates were selected
for cloud-free condition, and hence with available reference ground-truth for any possible
optical feature. The Random Forest algorithm in our configuration had the limitation
of being able to work only in the presence of near contemporaneity between S1 and S2.
However, it provided very robust results for the different couples of S1 and S2 considered
as input of the algorithm. Ideally, we wanted the S2 data corresponding to the S1 central
date, but clearly, this condition was not easily obtainable, so we trained and tested with the
S2 image, which was at most 2 days away from the central date. This temporal shift did
not lead to any kind of defection in the use of the Random Forest algorithm, although there
was still the constraint of the patchy presence of S2. In fact, the results of Random Forest
obtained very high accuracy with respect to ground truth data even when the S2 data was
not coincident with the central data of S1. As already underlined, this does not restrict the
implementation of the deep learning solution, as it is trained and tested only on S1 images.
However, the constraint of the contemporary presence of S1 and S2 limits the application
point of view and also the creation of the training dataset. We first compared the results
obtained by using as inputs either of the two VV and VH polarizations singularly with the
one obtained by the joint use of the two polarizations. The results shown in the first three
rows of Table 6 and in Figure 8 clearly show that the use of both polarizations provided
the best results, while VV is better than VH when used alone. This behaviour was also
confirmed in multi-temporal configurations (see C4 and C5 in Table 6). We can conclude
that with three dates and with the two polarizations, we obtained performances that were
comparable to a Random Forest segmentation starting from the fusion of the multi-spectral
data (S2) and the SAR data (S1). This confirms that reliable results are also obtained by
the only use of the S1 dual-polarized data. The multi-temporal configurations, shown in
Figure 8, highlight the importance of including temporal information from three dates
to improve segmentation performance. This is clearly advantageous, especially in areas
where the S2 data is more frequently corrupted by the presence of clouds. Moreover, even
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in the absence of clouds, it also removes the problems associated with the non-constant
time shifts between the S1 central date and the S2 date. In particular, in all configurations,
both single-date and multi-temporal, the greatest ambiguities arise between the water and
sediment classes. The multi-temporal version with both polarizations exhibited the best
performances in terms of the F1-score for the single classes (Table 6).

RGB

VV

Ground Truth

C1

C2

C3

CUN2Net

Figure 8. Comparison between three multi-temporal configurations of the proposed CUN2Net
architecture in the testing area under investigation: blue is for the water class, red for the sediments,
green for the vegetation.

Table 6. Comparison of results between solutions with different input configurations in terms of
F1-score and accuracy.

F1-Score AccuracySediments Vegetation Water

C1 0.3822 0.9833 0.8421 0.6839
C2 0.5094 0.9817 0.8459 0.6782
C3 0.5584 0.9811 0.8389 0.7078

C4 0.2735 0.9760 0.2221 0.5786
C5 0.5583 0.9849 0.7869 0.6432

CUN2Net 0.7296 0.9842 0.8736 0.7866

4.2. Comparison with Literature Algorithms

We compared the results of the proposed CUN2Net method with those shown in [44]
and the W − Net+ solution, which is an advanced solution of [44]. Specifically, the W −
Net+ solution has the same architecture with respect to the solution of two cascaded U-nets
proposed in [44]. Still, the loss is composed of two IoU losses: one related to the first
U-net and the other to the second U-net. In Table 7, we see that the W-Net is poorly able
to discriminate the sediment pixels. In fact, the F1-score is very low and lower than the
advanced solution W − Net+ and the proposed CUN2Net. W − Net+ provides a better
classification of sediment, but the classification of water is less accurate. Eventually, the
proposed CUN2Net solution is better than the other two and, in particular, Figure 9 allows
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for the analysis of the effectiveness of the result obtained by the proposed method in all the
displayed images. We consistently focused on the same area, and thus the same sediment
bar, precisely to understand whether the Sentinel-1 data were capable of monitoring the
variations in the spatial arrangement of sediments.

RGB

VV

Ground Truth

W-Net

W − Net+

CUN2Net

Figure 9. Comparison between the W-Net architecture, proposed in [44], the modified W-Net, and
the proposed CUN2Net architecture in the testing area under investigation: blue is for the water class,
red for the sediments, green for the vegetation.

Table 7. Comparison in terms of F1-score and accuracy between the proposed CUN2Net architecture
and the W-Net architecture in two different configurations.

F1-Score AccuracySediments Vegetation Water

W-Net 0.2065 0.9381 0.8381 0.5686
W − Net+ 0.5578 0.9842 0.8014 0.6648
CUN2Net 0.7296 0.9842 0.8736 0.7866

4.3. Impact of Loss Terms

In order to understand the effect of the different components of the loss function
(defined in Equation (2) in the Training Section), we evaluated a comparison between the
proposed CUN2Net architecture and its variants that differed in the different combinations
of weights in the loss function. In particular, we considered two other solutions, called:
(i) IoU1, with λ1 = 0, λ2 = 0, and λ3 = 1, i.e., a solution where only the first part was
properly trained, and (ii) IoU2, with λ1 = 1, λ2 = 0, and λ3 = 1, i.e., a solution where only
the third part of the loss was properly weighted. As shown in Table 8, the solution IoU2

(with only λ3 = 1) presented a result that was improved by including the additional loss
component (λ1 = 1). Finally, the proposed loss (with an intermediate task not relevant for
the segmentation purposes) presented the best result, improving in particular the sediment
classification, as observed in Figure 10. This comparison allows us to understand that the
different losses for each U-net contributed to achieving the final semantic segmentation
objective.
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Table 8. Comparison in terms of F1-score and accuracy between the proposed CUN2Net architecture
and the other weight configurations of the same architecture. The check mark represents the presence
in the loss of the related term.

λ1 λ2 λ3
F1-Score AccuracySediments Vegetation Water

IoU1 ✓ 0.5030 0.9842 0.7473 0.6106
IoU2 ✓ ✓ 0.6385 0.9846 0.8570 0.7544
CUN2Net ✓ ✓ ✓ 0.7296 0.9842 0.8737 0.7866

RGB

VV

Ground Truth

IoU1

IoU2

CUN2Net

Figure 10. Comparison between three different weight configurations of the proposed CUN2Net
architecture in the testing area under investigation: blue is for the water class, red for the sediments,
green for the vegetation.

4.4. Ancillary Result

In this section, we showed the intermediate output of the proposed CUN2Net: the VV
and VH backscattering of S1 data. This output can be seen as a despeckled version of the
given VV and VH backscattering [69]. As shown in Figure 11, we can see that the VV from
the intermediate output of the proposed CUN2Net network is effectively the despeckled
version, which allows us to conclude that this architecture can realize a denoising version
of the input data in the target date, as in [55]. Specifically, we obtain the reduction of the
speckle noise, represented by an additive noise in the dB version of the SAR backscattering,
without the use of a despeckled version of the VV and VH backscattering in the training
phase. Furthermore, we have demonstrated the importance of this intermediate result in
the final performances. In particular, we can see the improvement in the visualization
of the sediment pixels. In these examples (Figure 11), we can recognize more clearly
the sediment pixels as compared to water ones. The despeckled version of the input
data clarifies the better performances in terms of semantic segmentation, in particular for
sediments’ pixels. Similar considerations in terms of despeckling visual results are obtained
for VH backscattering.
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(a) (b) (c)

Figure 11. Two examples of intermediate VV output (c) that represented the despeckled version of
the inputs (b). The areas are also shown in Sentinel-2 RGB representation (a).

5. Discussion
The proposed CUN2Net approach for fluvial morphological mapping represents a

significant step forward, as it allows for the extraction of valuable information exclusively
from Sentinel-1 (S1) data. Unlike previous work [44], which focused on the analysis of
the Albufera wetland area, the further novelty of this study lies in applying the approach
to rivers, environments characterized by continuously changing conditions, in contrast
to wetlands, which tend to have more stagnant conditions. In such dynamic environ-
ments, the use of high-frequency data, such as those from Sentinel-1 satellites, provides a
crucial contribution to monitoring rapid and variable phenomena, such as the dynamics
of watercourses.

The results indicate a high level of accuracy and very good generalization ability
when applied to images not included in the training phase. In fact, in the proposed multi-
temporal and cross-polarized configuration of the input, it is possible to obtain considerable
performance in terms of the F1-score. In particular, we evaluated the performances sepa-
rately for each considered class in order to have a more in-depth analysis that gave specific
insight into the considered application. The experimental results showed that the main
difficulties in the classification task were in the discrimination between water and sedi-
ments, for which classes we obtained F1-scores equal to 0.7296 and 0.8737, respectively. The
vegetation class was the most distinguishable and obtained a significantly higher F1-score
of 0.9842. However, the effectiveness of the deep learning algorithm was tested on an
area with similar river morphological characteristics, which attests to the model’s ability
to independently discern and learn the intrinsic patterns and traits of river reaches from
S1 dual-polarized data. We assessed the limits linked with the spatial resolution of S1 by
visual analysis that showed an excellent ability of the S1 dual-polarized data to determine
the exact position of the sediments (as in Figures 8–10). In the deep learning solution, we
did not use the S2 data as input, so we freed our results from simultaneity between S1
and S2. Such contemporaneity is difficult to achieve in areas affected by frequent cloud
coverage. Therefore, this deep learning method has shown the potential for high-frequency
monitoring, constrained only by the six-day revisit time of Sentinel-1 dual-polarized data.
This high-frequency monitoring capability is particularly helpful for capturing geomorphic
changes in rapid dynamic riverine environments. Furthermore, we performed training
on the speckled S1 dual-polarized data, and this efficiency not only shortened processing
times but also simplified the overall workflow for data collection and analysis. The GEE
usage for dataset creation introduced an important reduction in time consumption. Of
course, the method is affected by some limitations, which pose new challenges and the
basis for future works. One of the main limitations is the workload required for manu-
ally generating ground truth, although the use of the Random Forest algorithm for data
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augmentation is helpful to train a deep learning algorithm. It is clear that the reliability
of the training data depends largely on the amount of manually extracted information,
and therefore a larger dataset can improve performance and generality, allowing for the
implementation of deeper architectures than the ones used in this work. However, the
manual creation of an ample archive of ground truth is extremely time-consuming. For
smaller streams monitoring (especially in mountainous regions with geometric distortions,
including foreshortening, layover, and shadow), another bottleneck can be the limited
spatial resolution of the S1 dual-polarized data. Addressing these main limitations and
improving the model’s effectiveness in these contexts requires future research efforts, in-
cluding the use of SAR satellite data with better spatial resolution (such as the X-band
Cosmo-Skymed or Tandem-X constellations). Further analyses could also be conducted
using various datasets with better spatial (for instance, Planet, WorldView, and so on)
and/or spectral resolutions (for example, hyperspectral sensors).

6. Conclusions
This study presents a deep learning semantic segmentation method for land cover

classes along river environments. In particular, the proposed CUN2Net solution removes
the concurrency constraint on Sentinel-1 and Sentinel-2 in the testing phase with respect
to the Random Forest algorithm because the input is composed of only Sentinel-1 dual-
polarized data. In this work, we used Google Earth Engine (GEE) to create a three-class
semantic segmentation using Sentinel-1 and Sentinel-2 data as input to the Random Forest
algorithm and a manually selected ground truth (thanks to expert knowledge) on medium-
resolution images (at 10 m, thanks to S2 data) from GEE. The advantage of the RF algorithm
is its reliability and robustness, but it implies the condition that the images of S1 and
S2 must be acquired almost simultaneously. This condition is very difficult to satisfy,
especially during rainy periods when Sentinel-2 images are affected by the presence of
clouds. We overcame this limitation by using the highly reliable RF-based solution as the
ground truth for a deep learning method that only considers Sentinel-1 as input. The results
showed significant performance for the classification of water, sediment, and vegetation
classes. Moreover, it has been shown that we obtained a despeckled version of the input
as an intermediate result of the proposed CUN2Net architecture, which confirms why
the segmentation result in the proposed configuration is better than in the case where the
intermediate result is not considered in the loss. The approach is sufficiently adaptable and
can also be used for other datasets. The use of new datasets characterized by higher spatial
resolution will allow the method to be applied to less wide riverbeds and thus extend its
use to a larger portion of the hydrographic network.
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