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Abstract: Land cover classification from compact polarimetry (CP) imagery captured by
the launched RADARSAT Constellation Mission (RCM) is important but challenging due
to class signature ambiguity issues and speckle noise. This paper presents a new land
cover classification method to improve the learning of discriminative features based on
a novel pyramid fine- and coarse-grained self-attention transformer (PFC transformer).
The fine-grained dependency inside a non-overlapping window and coarse-grained de-
pendencies between non-overlapping windows are explicitly modeled and concatenated
using a learnable linear function. This process is repeated in a hierarchical manner. Finally,
the output of each stage of the proposed method is spatially reduced and concatenated to
take advantage of both low- and high-level features. Two high-resolution (3 m) RCM CP
SAR scenes are used to evaluate the performance of the proposed method and compare
it to other state-of-the-art deep learning methods. The results show that the proposed
approach achieves an overall accuracy of 93.63%, which was 4.83% higher than the best
comparable method, demonstrating the effectiveness of the proposed approach for land
cover classification from RCM CP SAR images.

Keywords: RADARSAT Constellation Mission (RCM); synthetic aperture radar (SAR);
compact polarimetry; attention; contextual information; feature learning; deep learning

1. Introduction
Satellites comprising the RADARSAT Constellation Mission (RCM) provide synthetic

aperture radar (SAR) data in various acquisition modes including compact polarimetric
(CP). In contrast to the dual-polarized (DP) mode, the CP mode imagery preserves the
phase information between channels, making it more appropriate for various applications
such as land cover classification [1]. Land cover classification is essential because it provides
valuable information about the Earth’s surface and its changes over time, which are impor-
tant for urban planning, natural resource management, and environmental monitoring [2,3].
Due to the limited data availability, the potential of generating land cover maps using CP
SAR data remains largely unexplored.

Land cover classification is challenging due to speckle noise [4] and ambiguities asso-
ciated with backscatter and unique class discrimination [5]. To mitigate this, conventional
land cover classification methods increase the number and type of hand-crafted features [6].
It is known that pixel-level features and spatially based texture features have limited
capabilities for scene classification [4].
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Deep learning (DL) methods provide an advantage over shallow-structured machine
learning tools (such as support vector machine [7]) by inherently extracting features [8,9].
Due to the intrinsic 2-D structure of remote sensing images, convolutional neural networks
(CNNs), as a DL approach, are widely used for image processing tasks [10–13]. While
CNNs are able to extract local features, they do not inherently capture long-distance
dependency among pixels which is important for land cover classification tasks due to
spatial heterogeneity of targets [14]. In contrast, vision transformer models are capable
of capturing long-distance dependencies [15]. As an example, the vision transformer
(ViT) [16] utilizes the idea of self-attention [17] to enable global receptive field processing
of non-overlapping patches.

Despite successful performance on various computer vision tasks [18], ViT has limita-
tions of requiring high computational and memory costs, even for nominally sized input
images and keeping the dimensions of the produced feature maps consistent [19]. To
enhance the accuracy and efficiency of ViT in different tasks, several transformer archi-
tectures have been introduced [19–22]. These approaches are global-based, such as the
pyramid vision transformer (PVT) [19], or local-based, such as the Swin transformer [20].
The local-based approaches divide the input image patch into non-overlapping windows
and calculate the self-attention inside of each window. The Swin transformer uses a shifting
window to describe the relationship among windows, which gradually moves the local
window’s boundaries. However, the window shifting technique lacks optimization for
GPU usage and demonstrates inefficient memory utilization [21]. Global approaches such
as PVT preserve the global receptive field of ViT but lower the resolution of the key and
value feature maps to reduce complexity. However, despite this reduction, the model’s
complexity is frequently still quadratic in relation to the input image’s resolution, posing
issues for larger images [21].

Successful classification has been demonstrated by both global self-attention meth-
ods [19,21] and local self-attention methods [20,23]. However, these approaches impose
limitations on the original full self-attention ability to concurrently capture short- and
long-range dependencies [18]. Land cover exhibits high spatial heterogeneity [24]; there-
fore, capturing both fine-grained and coarse-grained spatial dependencies simultaneously
is important because it allows for a comprehensive understanding of the relationships
between different pixels in a given feature map. The Focal transformer [18] is designed
to integrate fine-grained and different scale coarse-grained spatial dependencies, but it
requires a highly complex architecture with accompanying high computing requirements
to accomplish this task.

In a DL model, the shallow layers primarily focus on capturing low-level and fine
features. On the other hand, the deep layers of the model are responsible for extracting
deeper, coarse, and semantic features that encapsulate higher-level features, including
abstract representations and complex relationships within the data [9]. Consequently, by
integrating both low-level and high-level features, the DL model can leverage the comple-
mentary nature of these features and achieve a more robust and accurate performance in
classification tasks [25].

To the best of our knowledge, there is currently no published research specifically
addressing the generation of land cover maps in CP SAR imagery using a self-attention
method. As a result, this paper proposes a novel classification method called the PFC
transformer (pyramid of fine- and coarse-grained attention transformers), which utilizes
a pyramid of window-based vision transformers to measure both fine-grained attention
within a window and coarse-grained attention between windows. In summary, this study
makes the following contributions in CP SAR land cover classification:
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• Our proposed method simultaneously utilizes fine- and coarse-grained spatial depen-
dencies, enabling the model to extract more discriminative and detailed features by
capturing spatial relationships at different scales. This attribute effectively addresses
spatial heterogeneity present in land covers, ultimately leading to more accurate land
cover classification.

• Our proposed method incorporates the outputs of different stages and leverages
information across multiple scales, resulting in enhanced accuracy for land cover
classification. By addressing the challenges of signature ambiguity, this integration of
low- and high-level features improves the accuracy of land cover classification.

• The potential of state-of-the-art (SOTA) DL methods in generating accurate land cover
maps using CP SAR data are evaluated and compared with that of the proposed
method. This thorough assessment not only advances the understanding of DL
techniques in this domain but also provides valuable insights for decision makers
and researchers aiming to utilize SOTA DL method for land cover classification and
monitoring in CP SAR data.

Experiments are based on a pair of high-resolution RCM CP SAR scenes. To establish
a robust comparison, we selected baseline methods that represent both local self-attention
(e.g., Swin transformer) and global self-attention (e.g., PVT) approaches, as well as hybrid
models such as Twins transformer [21] and SepViT [22], which aim to balance computational
efficiency and feature extraction capability. The Focal transformer was included for its
unique approach to integrating fine-grained and coarse-grained spatial dependencies,
making it particularly relevant to the objectives of this study. Additionally, we included the
CAT model [26] for its ability to aggregate context features and ResCNN [27] for its robust
residual learning framework. These methods were chosen because they exemplify state-
of-the-art advancements in both convolution-based and transformer-based architectures,
offering diverse perspectives for benchmarking. Section 2 provides a literature review of
land cover classification methods utilizing SAR data. Then, the fundamentals of CP SAR
data are explained in Section 3. Section 4 describes the proposed method, and the study
area as well as datasets are introduced in Section 5. Section 6 presents and analyzes the
experimental results, and Section 7 provides the conclusions of this study.

2. Background
2.1. Land Cover Classification Using CP SAR Data

Most of the existing land cover classification methods using SAR data are based on
QP (Quad-polarized) or DP. There are only a few known published papers on land cover
classification using CP SAR data [28–30]. Robertson et al. [28] utilized hand-crafted features
derived from CP SAR data and employed a random forest (RF) classifier for producing crop
maps. Nonetheless, the creation of efficient hand-crafted features necessitates expertise
in the field and a deep comprehension of the particular domain. Furthermore, the RF
classifier does not consider spatial information. Roy et al. [29] proposed a MapReduce-
based multi-layer perceptron algorithm to distinguish different land cover classes. How-
ever, the algorithm did not utilize contextual information, and only numerical results
were reported without a classified land cover map, so visual evaluation was not possible.
Ghanbari et al. [30] introduced a region-based semi-supervised graph network land cover
classification for CP SAR data. Despite achieving reliable outcomes, the utilization of
hand-crafted features and uncertainty in the homogeneity of generated regions may impact
the results.

The reliance on hand-crafted features across these methods limits their adaptability
to other CP SAR datasets. Furthermore, the inability to effectively incorporate spatial and
contextual information exacerbates the issue of signature ambiguity in CP SAR data, which
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is inherent in CP SAR data. These challenges necessitate designing a feature learning-based
land cover classification method that minimizes reliance on hand-crafted features while
effectively addressing the inherent limitations of CP SAR data.

2.2. Land Cover Classification Using CNNs

CNNs are widely used to generate SAR land cover maps [31]. Zhou et al. [32] applied
a CNN for QP SAR land cover classification, employing a model that included two con-
volutional layers and two fully connected layers. Then, several methods for land cover
classification based on CNNs were proposed [3,5,33–37]. For example, Zhang et al. [36]
proposed a complex-valued CNN that was tailored to accommodate the arithmetic features
of complex data. To extract both spatial- and channel-wise information, Dong et al. [37]
utilized 3-D convolution. Liu et al. [5] considered the statistical distribution of the mid-level
features generated by a CNN model to increase the generalization of the model.

Although CNNs reached reliable results, they can introduce artifacts along the edges
of adjacent patches, leading to the over-smoothing of object boundaries and loss of useful
spatial resolution detail [38]. These challenges are particularly pronounced in CP SAR
data, where the reduced polarimetric information compared to QP data further exacerbates
the difficulty of preserving fine-grained spatial details and distinguishing between land
cover classes with similar polarimetric signatures. Moreover, despite their proficiency in
organizing local features, CNNs encounter challenges in capturing spatial dependencies
that extend over long distances [15,39] which limits their ability to fully leverage the
contextual information necessary for accurate classification in complex CP SAR scenes.

In several recent studies [4,9,40–43], fully convolutional networks (FCNs) have
been identified as another common approach that exhibits promising land cover results.
Wang et al. [4] proposed an integration of FCN with sparse and low-rank subspace fea-
tures network to classify QP SAR images. Mohammadimanesh et al. [9] proposed an FCN
network including inception and skip connection to utilize richer contextual information
and more detailed information in QP SAR data to classify. Henry et al. [41] evaluated the
potential of three FCNs in extracting roads from high-resolution SAR images. However,
the utilization of FCN models faces a significant hurdle due to the requirement of whole or
dense labeled scenes for their training. Li et al. [44] suggested the utilization of an FCN
with a sliding window technique to alleviate the computational burden and minimize
memory usage. The scarcity of labeled SAR data, especially in RCM CP data, makes it
infeasible to utilize FCN models [4].

Given the limitations of CNNs and FCNs in capturing fine- and coarse-grained spatial
dependencies and the requirement for dense labeled scenes, it is necessary to explore a
method that can effectively capture both levels of spatial dependencies in CP SAR data
without relying on whole labeled scenes.

2.3. Land Cover Classification Using Transformers

Recently, the effectiveness of transformer models in remote sensing applications has
captured the attention of remote sensing researchers [31,39,45–50]. While several studies
have employed transformer models to merge optical and SAR images and leverage the
benefits of both data types [44,51–53], the absence of clear optical images of the same
area due to cloud cover impedes their application to CP SAR data. Other studies have
combined CNNs and ViT methods to utilize local and global information for land cover
mapping [46,48,49]. To integrate the outputs of each branch, various fusion methods
have been proposed [48,51,54,55]. However, these methods have certain limitations, such
as increased complexity compared to individual models, requiring more time and data
for training.
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To address the limitations discussed, we propose a hierarchical fine- and coarse-
grained attention transformer for land cover classification. Our approach integrates fine
and coarse attentions, capturing spatial dependencies, within the same layer using a
learnable mechanism. This integration leads to richer information integration. Additionally,
our method leverages a pyramid of low- and high-level features to accommodate varying
levels of complexity. By combining these techniques, we aim to overcome the limitations of
existing CP SAR land cover methods and improve accuracy.

3. Compact Polarimetric SAR Basics
The backscattering field of single look complex (SLC) CP SAR data is defined by a

2 × 1 complex vector E. For the RCM CP mode, in which a right circular polarized wave
(R) is transmitted, and both horizontal (H) and vertical (V) polarizations are received, E is
defined as

E =

[
ERH

ERV

]
= Sût =

[
SHH SHV

SVH SVV

]
ût (1)

where ût is a unit Jones vector associated with a canonical polarization. Sij is a complex
number where the polarizations are represented by i (transmitted) and j (received) [56]. To
utilize polarimetric SAR data, the coherency matrix is often used instead of the scattering
matrix due to several reasons, including enhancing information content and mitigating the
adverse impact of speckle noise [57]. The coherency matrix of the RCM CP SAR data are a
2 × 2 semipositive-definite Hermitian matrix defined as [58,59]:

J =
1
n

n

∑
i=1

E · E∗T
=

[
⟨| SRH |2⟩ ⟨SRHS∗

RV⟩
⟨SRVS∗

RH⟩ ⟨| SRV |2⟩

]
(2)

where n is the number of looks for averaging. The term T represents the transpose,
∗ represents the complex conjugate, and < · · · > defines spatial ensemble averaging. The
diagonal elements describe the intensities and the non-diagonal describe the intensities
and phase between polarizations.

4. Methodology
Figure 1 shows the architecture of the proposed PFC transformer method. The pro-

posed method consists of four stages that produce four feature maps of varying scales. The
structure of all stages is similar, comprising of a downsampling layer, except for the stage 1
which includes linear embedding, and Ni times FC transformer block.

Figure 1. Architecture of the PFC transformer.

4.1. Linear Embedding

The linear embedding is a linear transformer that is applied to reduce the spatial
size of the image patch and increase the dimension of the raw-valued features into an
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arbitrary dimension [16,20]. Since, in this study, the size of the input image patch is not
very big, linear embedding is used to increase the dimension of features. Assume that
xin ∈ RH×W×C0 is the input image patch where H and W are the spatial dimensions and
C is the feature dimension, the linear embedding projects xin into z ∈ RH×W×C1 .

4.2. FC Transformer Block

The main core of the proposed method is the FC transformer block (see Figure 2a).
This mechanism captures spatial dependencies at both local-scale and broad-scale. Each
part of the block is described separately.

(a) (b) (c)

Figure 2. (a) Fine- and coarse-grained attention block; (b) fine-grained attention; (c) coarse-grained attention.

4.2.1. Fine-Grained Attention

Fine-grained attention captures local spatial dependencies by dividing an input fea-
ture map into small and non-overlapped windows. Each window is considered as an
independent sub-region, and attention is computed within these localized regions.

Given an input feature map z ∈ RH×W×C, it is divided into non-overlapping M × M
windows, and a layer normalization (LN) is applied. Then, by using a linear function,
query (Q f ), key (K f ), and value (Vf )∈ R(M×M)×d matrices are calculated where f stands for
fine-grained and d is the depth equals to the feature dimension of z divided by the number
of heads [20].

To calculate fine-grained attention (Fattn), similar to the approach employed by the
Swin transformer, the self-attention within each window is computed as follows:

Fattn = so f tmax(Q f KT
f /

√
d + B f )Vf (3)

As described by Liu et al. [20], B f is the learnable relative position bias which its values
are taken from B̂ f ∈ R(2M−1)×(2M−1). This relative position bias ensures that the model
encodes positional relationships explicitly. Figure 2b shows the structure of the Fattn.
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4.2.2. Coarse-Grained Attention

In addition to the fine-grained attention, the PFC transformer method introduces an
approach for calculating coarse-grained attention (Cattn). To model broad-scale dependen-
cies, Cattn employs a learnable window pooling mechanism. This mechanism aggregates
information from multiple windows, enabling the model to capture relationships across the
entire feature map. The feature map is downsampled by averaging the features within each
window, reducing its spatial dimensions from their original dimensions of (M × M)× d to
a compact (1 × 1)× d representation, called Kc and Vc, where c stands for coarse-grained.
This reduction in size not only helps to alleviate the complexity and computational costs
associated with the model but also enables the consideration of far spatial dependencies.

Then, the attention between each fine-grained query matrix, Q f , as well as coarse-
grained Kc and Vc, is calculated as follows:

Cattn = so f tmax(Q f KT
c /

√
d + Bc)Vc (4)

Bc is the relative position bias among fine- and coarse-grained windows; however,
since the sizes of the Kc and Vc are not the same as Q f , to represent the relative position bias
between them, values in Bc are taken from B̂c ∈ R(NW+M−1)×(NW+M−1), where NW stands
for the number of coarse-grained windows [18]. By leveraging this coarse-grained attention
mechanism, the model gains the ability to capture long-range spatial dependencies. The
structure of Cattn is depicted in Figure 2c.

4.2.3. Combining Fine- and Coarse-Grained Attentions

Finally, to take advantage of both fine- and coarse-grained spatial dependencies and
utilize them simultaneously, both attentions are concatenated along the channel dimension.
Nevertheless, this concatenation operation leads to a doubling of the feature dimension.
As a result, to restore the number of features to its original value in the input, a projection
step becomes necessary. This projection ensures compatibility and coherence in subsequent
stages of the computation. Fine- and coarse- attention (FCattn) is computed as

FCattn = Concat(Fattn, Cattn)W f c (5)

where W f c is the learnable linear projection.
By combining fine-grained and coarse-grained attention, the model leverages local-

and broad-scale contextual information simultaneously, leading to a more robust represen-
tation of spatial dependencies.

The rest of the FC transformer block is followed by a skip connection with the input
feature map, an LN, and a two-layer multi-layer perceptron (MLP) with GELU nonlinearity
in-between and again a skip connection, following the same procedure as [16,20]. In general,
the FC transformer block is computed as

α = LN(zl−1) (6)

ẑl = FCattn(Fattn(α), Cattn(α)) + zl−1 (7)

zl = MLP(LN(ẑl)) + ẑl (8)

in which zl−1 is the input feature map from the previous layer.

4.3. Downsampling

As the network becomes deeper, reducing the spatial dimensions of the feature maps
to produce a hierarchical representation is necessary. Therefore, the downsampling layer
which is a convolutional operator compromised of a 2 × 2 kernel with stride 2 along with



Remote Sens. 2025, 17, 367 8 of 19

an adjustable number of output features is employed to reduce the spatial size of feature
maps by a factor of 2. The downsampling reduces the computational cost and allows the
network to learn a hierarchical representation of the input.

4.4. Fusion

Unlike previous methods, which only utilized the output of the last stage, our pro-
posed method employs a pyramid of the outputs of FC transformer blocks to aggregate
information from all stages, allowing for more comprehensive characterization of land
cover types (see Figure 1). Given an input image patch of size H × W × 3, the linear
embedding is applied to increase the number of features to C1. Then, it is passed through
an FC transformer block with N1 layers resulting in F1 with the shape of H ×W × C1. Next,
F1 is used as the input of the next stage and this process is repeated to obtain feature maps
of F2, F3, and F4. To combine F1, F2, F3, F4, a learnable linear function is applied to decrease
their spatial sizes to that of the final stage’s output, which is H/8 × W/8, as follows:

Ft = Concat(F1W1, F2W2, F3W3, F4W4) (9)

in which W1, W2, W3, and W4 are convolutional operators with strides of 8, 4, 2, and 1,
respectively. The size of Ft is H/8 × W/8 × (C1 + C2 + C3 + C4). Then, a global average
pooling layer is applied to Ft followed by a fully connected layer with nodes equal to the
number of classes to determine the land cover class.

5. Study Area and Dataset
Due to the limited availability of CP SAR data and the absence of labeled benchmark

datasets, we selected two very high-resolution (3m) SLC RCM CP SAR scenes with similar
land cover classes. These scenes, with sampled pixel and line spacings of 1.39 m and 2 m,
were specifically chosen to ensure sufficient representation of the primary classes while
maintaining diversity in their spatial and radiometric characteristics. Each land cover class
was manually labeled based on visual inspection of both the SAR data and high-resolution
Google Earth images to establish ground truth.

The first scene, captured on 9 August 2022, over Quebec City in Canada, covers
approximately 43 km × 13 km and has a size of 10,954 × 8146 pixels. It has an incidence
angle range of 47.50 to 48.67 degrees, and its corresponding Google Earth image is presented
in Figure 3a. The second scene, acquired on 27 June 2020, has a size of 9344 × 21,942 pixels,
covering around 43 km × 130 km over the city of Ottawa in Canada. Its incidence angle
ranges from 38.48 to 39.90 degrees, and its corresponding Google Earth image is shown in
Figure 4a.

The study area has five primary classes: forest, water, two distinct urban areas, and
agricultural lands (farms). The urban areas are divided into two groups because some
buildings appear bright (Urban 1), while other ones are a mixture of trees and buildings
(Urban 2) and their backscattering is not as bright as the first group.

A 7 × 7 boxcar filter is applied on both datasets to reduce the impact of speckle noise.
Since the images are large, leading to exceptional computational cost, we reduce this cost
by taking a 4 × 4 non-overlapping block-wise average of the pixels.
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(a) (b)

Figure 3. (a) Google Earth image of Quebec City scene; (b) the first element of CP coherency matrix
along with manually selected samples.

(a) (b)

Figure 4. (a) Google Earth image of the city of Ottawa; (b) the first element of CP coherency matrix
along with manually selected samples.

6. Experiments
In this section, the performance of the proposed method in classifying land type covers

is discussed and compared to that of the SOTA methods. To assess the contributions of
the proposed components, we conducted ablation experiments focusing on key aspects of
the model:

• Fine-grained + coarse-grained attention (FC transformer): This configuration evaluates
the combination of fine-grained and coarse-grained attention mechanisms without the
incorporation of feature fusion.
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• Full model (PFC transformer): This configuration includes all three core components,
integrating fine-grained attention, coarse-grained attention, and fusion of features
from different levels (the pyramid of features).

We note that the effectiveness of using only fine-grained attention, limited to attention
within windows (local attention), has already been evaluated in the Swin transformer paper.
The Swin authors demonstrated that while fine-grained attention is effective, extending
attention across windows further improves model performance. Therefore, the compar-
ison between the FC transformer and the PFC transformer highlights the importance of
combining both attention mechanisms, as well as the added value of multi-level feature fu-
sion. These experiments provide a comprehensive understanding of how each component
contributes to the overall performance of the model. Table 1 indicates the structure of the
proposed method.

Table 1. Detailed architecture of the proposed PFC attention method.

Output PFC Attention Method

Stage 1 32 × 32 × 16

Linear Embedding, LN{
window size : 4 × 4

#heads : 1

}
× 2

Stage 2 16 × 16 × 32

Downsampling, LN{
window size : 4 × 4

#heads : 4

}
× 2

Stage 3 8 × 8 × 64

Downsampling, LN{
window size : 4 × 4

#heads : 4

}
× 2

Stage 4 4 × 4 × 128

Downsampling, LN{
window size : 4 × 4

#heads : 8

}
× 2

Global Average 1 × 1 × 128 4 × 4 average pool

Classification 5 128 × 5 fully connected

Softmax 5

It includes four stages where the FC transformer block is repeated twice in each stage.
The number of feature maps in each stage is set to 16, 32, 64, and 128, respectively. The size
of non-overlapping windows is set to 4 × 4, and the number of heads for each stage is 1, 4,
4, and 8, respectively.

The experiments were conducted on a system with a 13th Gen Intel(R) Core(TM)
i5-13400 CPU, an NVIDIA GeForce RTX 4060 GPU, and 32 GB of RAM. The implementation
code of the proposed method is publicly available at https://github.com/saeidtaleghani2
3/PFC_Attention.git. Table 2 presents the number of parameters for each model. The
parameters used in the proposed method have been set identically in the other models for
consistency. All other parameters specific to each model are kept at their default values. As
shown in Table 2, the proposed methods (FC and PFC) exhibit a computational cost that is
comparable to models such as Swin and SepViT, with a training time of 1.61 h, respectively.
Among all models, ResCNN demonstrates the shortest training time (0.67 h), followed by

https://github.com/saeidtaleghani23/PFC_Attention.git
https://github.com/saeidtaleghani23/PFC_Attention.git
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PVT (0.98 h) and Twins (1.02 h). In contrast, CAT requires the longest training time (7.64 h),
indicating a significantly higher computational cost.

Table 2. Comparison of computational cost for models.

Model Name Number of Parameters Training Time Efficiency Metric
(Millions) (Hours) (Hours/Million Params)

CAT [26] 1.45 M 7.64 5.26
Focal [18] 0.59 M 2.99 5.06
PVT [19] 0.69 M 0.98 1.42
ResCNN [27] 0.70 M 0.67 0.95
SepViT [22] 0.72 M 1.37 1.91
Twins [21] 0.67 M 1.02 1.52
Swin [20] 0.76 M 1.25 1.64
FC 0.78 M 1.61 2.06
PFC 0.78 M 1.61 2.06

To evaluate the robustness of our model, we utilized metrics such as overall accuracy
(OA), f-1 score (F1) for each class, average f-1 score (F1avg), and kappa coefficient (κ), which
account for class imbalances and provide a more detailed performance evaluation. OA is
determined by dividing the number of correctly classified test samples by the total number
of test samples. κ measures the level of agreement between the test samples and the final
labeled map [9]. F1 is a harmonic mean of precision and recall, which is particularly
useful for imbalanced classes [9]. The highest and lowest possible values of F1 are 1 and
0. Additionally, testing the model on three distinct subregions demonstrated its ability to
generalize across variations in data distribution.

6.1. Training and Testing

In this study, the labeled pixels of the Quebec scene were used for training the models
that were evaluated using the labeled pixels chosen from the Ottawa scene. Moreover, to
better evaluate the performance of the methods, three different regions have been selected
and shown in Figure 5. Regions A and B show agricultural, forest and urban areas, while
Region C includes forest and agricultural areas.

Table 3 represents the number of training and testing samples. The training samples
were used to standardize the Quebec and Ottawa scenes. To train the models, patches of
size 32 × 32 × 3 were extracted around each labeled pixel, where 3 represents the absolute
value of the coherency matrix elements in (2). In addition, the models were trained using
ADAMW optimization [60] with the learning rate, weight decay, and beta parameters set
to 1 ×10−5, 0.05, 0.9, and 0.999 as well as the batch size and training epochs are 32 and 100,
respectively. In the training step, 80% of the training samples were utilized to adjust the
model’s weight values by minimizing the multi-class cross-entropy lost function [61], while
the remaining 20% of training samples were used for validation purposes. The weight
values of the model that achieved the highest validation accuracy were selected.

Table 3. The number of training and testing pixels for each class selected from the Quebec and Ottawa
scenes, respectively. Note that # refers to the number of samples.

Class # of Train # of Test

Forest 15,381 11,690
Water 14,853 8093

Urban 1 12,032 11,263
Urban 2 15,098 10,206

Farm 10,773 20,022
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Figure 5. The Google Earth image of the test scene with three regions of interest along with their
corresponding |SRH |2. Regions A and B primarily consist of urban, farm and forest classes, while
Region C displays both forest and farm classes.

6.2. Results

Figure 6 shows the results obtained by the different methods along with their OA.
Due to resizing the images to fit the page, finer details present in the original images are not
apparent. Upon visual inspection of the outputs, the CAT, Focal, PVT, Swin, and ResCNN
methods appear to overestimate the water class in the lower portion of the scene. Twins
misclassifies many forest and farm samples into Urban 1 class in the upper part of the scene.
SepViT and Twins exhibited poor detection of the river in the middle of the scene, and it is
narrower than the one detected by the other and proposed methods.

The FC and PFC transformer methods have a higher accuracy and improved spatial
representation in specifying the type of land covers than the SOTA ones. The improvement
in performance with the proposed transformer method can be attributed to two key features
that enhance its ability to capture spatial and radiometric information in a way that existing
methods cannot. One significant factor is the simultaneous utilization of close and far
dependencies among pixels, which directs the model’s focus to the most relevant areas
of the scene, improving its ability to correctly classify challenging regions. By assigning
different levels of importance to pixels based on their contextual relationships, the attention
mechanism enhances the precision of the model’s predictions, particularly in regions
with complex spatial patterns such as agricultural areas. Moreover, the proposed method
benefits from the learnable fusion of features at multiple levels. This allows the model
to combine low- and high-level features, capturing both local details and global context.
The flexible and learnable integration of these features results in a more robust scene
representation, which enables the model to better differentiate between land cover types
with similar spectral characteristics, such as forests and farmlands. This fusion mechanism
not only improves the model’s overall accuracy but also enhances its ability to make precise
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predictions, especially in areas where both fine-grained details and broader contextual
information are critical for accurate classification.

(a) (|SRH |2) (b) CAT (86.92%) (c) Focal (88.48%) (d) PVT (86.92%) (e) ResCNN (88.22%)

(f) SepViT (88.80%) (g) Twins (88.49%) (h) Swin (88.02%) (i) FC (91.25%) (j) PFC (93.63%)

Figure 6. Part (a) shows the |SRH |2 image of the test scene, and parts (b–j) show the results obtained
by each method along with their OA.

As shown in Table 4, we compared the quantitative results obtained by the proposed
methods to those of the SOTA ones. The CAT and PVT methods were found to have the
lowest OA among the SOTA methods, with both achieving of 86.92%. In contrast, the
SepViT method achieved a reliable overall accuracy of 88.80%. While the Swin, CAT, and
PVT methods showed comparable κ and F1avg, the Focal, ResCNN, SepViT, and Twins
methods obtained higher accuracies, albeit still lower than those achieved by the FC and
PFC transformer methods.

The proposed FC transformer method achieved an OA of 91.25%, which is about
3–4% higher than those achieved by the SepViT and CAT methods. The higher values of
κ and F1avg obtained by the FC transformer method provide additional evidence of the
effectiveness of the proposed attention mechanism in improving the accuracy of generating
land cover type maps. These findings identify that SOTA models have limitations that
prevent them from achieving the same level of performance as the FC transformer.

When comparing the performance of the FC and PFC transformer methods, we found
that the PFC transformer outperformed the former, with a higher accuracy. By fusion of
the different feature levels in a learnable manner, the OA value reached a value that was
2% higher. Moreover, the higher values of κ and F1avg obtained by the PFC transformer
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suggest that leveraging the outputs of all stages can lead to improved accuracy of the
balanced and imbalanced classes [6].

Table 4. Assessment of the results obtained by the different methods by using overall accuracy (OA),
kappa coefficient (κ), average f-1 score (F1avg), and f-1 score of each class. The bold numbers indicate
the highest accurate results.

Name OA (%) κ F1avg Forest Water Urban1 Urban2 Farm

CAT 86.92 0.8343 0.8696 0.9116 0.7723 0.8843 0.9234 0.8574

Focal 88.48 0.8544 0.8852 0.9248 0.7812 0.9208 0.9278 0.8715

PVT 86.92 0.8351 0.8694 0.9218 0.7596 0.8955 0.9138 0.8561

ResCNN 88.22 0.8500 0.8780 0.8835 0.8246 0.9215 0.8820 0.8984

SepViT 88.80 0.8579 0.8850 0.9049 0.8219 0.9046 0.8971 0.8970

Twins 88.49 0.8538 0.8788 0.9181 0.8153 0.8531 0.8931 0.9144

Swin 87.14 0.8372 0.8707 0.9049 0.7881 0.9076 0.8866 0.8661

FC 91.25 0.8885 0.9054 0.9346 0.8564 0.9087 0.8844 0.9428

PFC 93.63 0.9185 0.9285 0.9491 0.8864 0.9191 0.9179 0.9701

The FC and PFC transformers yield higher F1 for the forest, water, and farm classes
than the SOTA methods, demonstrating the significance of fine- and coarse-grained de-
pendencies among pixels and the benefits of utilizing features at different levels. The
ResCNN and Focal methods achieved slightly higher F1 for the urban classes compared to
the proposed methods, but the difference is negligible.

Figure 7 shows the outputs of the methods on Region A which is a mixture of buildings,
forest, and agricultural areas. Notably, the CAT, Focal, PVT, ResCNN, and Swin methods
exhibited a higher rate of misclassifying water in this region, while the SepViT, Twins, and
proposed methods yielded more accurate outcomes. The output of the methods for Region
B is shown in Figure 8. Among the SOTA methods, the CAT, Focal, PVT, SepViT, and Swin
methods misclassified a significant portion of the agricultural lands as water class while
the ResCNN and Twins performed better. Moreover, the FC transformer method exhibited
performance over ResCNN and Twins, but the PFC transformer method achieved the best
classification performance in Region B. Using fine- and coarse-grained spatial information
decreased the rate of water misclassification in particular for the left agricultural land. By
adding the pyramid of low- and high-level features to the FC transformer method, the rate
of misclassification was reduced significantly. This is because the integration of different
level features enables the model to capture a wide range of features across different scales.
Figure 9 shows the output of the methods on Region C, which includes forest and farm
classes. All methods, except the proposed ones, had a high rate of misclassifying agricul-
tural areas as forests. The proposed methods exhibited significantly better classification
performance for forests.
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(a) Google Earth (b) CAT (c) Focal (d) PVT (e) ResCNN

(f) SepViT (g) Twins (h) Swin (i) FC (j) PFC

Figure 7. Part (a) shows the Google Earth image of Region A including urban, farm, and forest classes.
Parts (b–j) show the results obtained by each method.

(a) Google Earth (b) CAT (c) Focal (d) PVT (e) ResCNN

(f) SepViT (g) Twins (h) Swin (i) FC (j) PFC

Figure 8. Part (a) displays a Google Earth image of Region B, which includes agricultural lands,
forests, and a few buildings. Parts (b–j) show the results obtained by each method.
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(a) Google Earth (b) CAT (c) Focal (d) PVT (e) ResCNN

(f) SepViT (g) Twins (h) Swin (i) FC (j) PFC

Figure 9. Part (a) shows the Google Earth image of Region C including forest and farm classes. Parts
(b–j) show the results obtained by each method.

7. Conclusions
A new transformer approach was introduced in this paper for generating land cover

maps using high-resolution CP SAR scenes. To the best of our knowledge, this is the first
study that leverages spatial attention information in CP SAR data for land type classification.
The proposed attention mechanism captures both fine- and coarse-grained dependencies
among pixels within a feature map, resulting in richer information. This attribute endows
the method with the ability to consider the spatial relationship among the pixels, resulting
in more accurate outputs. The qualitative and quantitative comparison among the results
obtained by the proposed transformer method and the well-known SOTA methods confirm
the efficiency of the long dependency in increasing the accuracy of the generated land
cover maps.

Furthermore, we take into account the outputs from all stages and exploit the in-
formation across various scales to utilize more detailed information. The comparison of
the outputs from the proposed method, both with and without feature fusion, highlights
the importance of incorporating low-level features. This fusion approach improves the
proposed method’s ability to identify different land cover types.

The limited availability of RCM data has led to a shortage of annotated CP scenes.
As training deep learning methods demand a large number of samples, it is essential to
consider semi-supervised techniques in studies. The proposed method can potentially be
applied for dense semantic segmentation purposes by increasing the availability of RCM
CP SAR scenes and ground truth samples in the future.
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