
Academic Editor: Shuying Li

Received: 25 November 2024

Revised: 16 January 2025

Accepted: 21 January 2025

Published: 24 January 2025

Citation: Zhong, J.; Zeng, T.; Xu, Z.;

Wu, C.; Qian, S.; Xu, N.; Chen, Z.; Lyu,

X.; Li, X. A Frequency Attention-

Enhanced Network for Semantic

Segmentation of High-Resolution

Remote Sensing Images. Remote Sens.

2025, 17, 402. https://doi.org/

10.3390/rs17030402

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A Frequency Attention-Enhanced Network for Semantic
Segmentation of High-Resolution Remote Sensing Images
Jianyi Zhong 1,†, Tao Zeng 1,†, Zhennan Xu 1, Caifeng Wu 1, Shangtuo Qian 2, Nan Xu 3, Ziqi Chen 4, Xin Lyu 1,5

and Xin Li 1,5,*

1 College of Computer Science and Software Engineering, Hohai University, Nanjing 211100, China;
zhongjianyi@hhu.edu.cn (J.Z.); tzeng.nj@hhu.edu.cn (T.Z.); zhennanxu@hhu.edu.cn (Z.X.);
caifengwu@hhu.edu.cn (C.W.); lvxin@hhu.edu.cn (X.L.)

2 College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China;
stqian@hhu.edu.cn

3 College of Geography and Remote Sensing, Hohai University, Nanjing 211100, China; hhuxunan@hhu.edu.cn
4 Department of Earth System Science, Tsinghua University, Beijing 100084, China;

chenzq21@mails.tsinghua.edu.cn
5 Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University,

Nanjing 211100, China
* Correspondence: li-xin@hhu.edu.cn; Tel.: +86-187-6186-0051
† These authors contributed equally to this work.

Abstract: Semantic segmentation of high-resolution remote sensing images (HRRSIs)
presents unique challenges due to the intricate spatial and spectral characteristics of these
images. Traditional methods often prioritize spatial information while underutilizing the
rich spectral context, leading to limited feature discrimination capabilities. To address
these issues, we propose a novel frequency attention-enhanced network (FAENet), which
incorporates a frequency attention model (FreqA) to jointly model spectral and spatial
contexts. FreqA leverages discrete wavelet transformation (DWT) to decompose input
images into distinct frequency components, followed by a two-stage attention mechanism
comprising inner-component channel attention (ICCA) and cross-component channel atten-
tion (CCCA). These mechanisms enhance spectral representation, which is further refined
through a self-attention (SA) module to capture long-range dependencies before trans-
forming back into the spatial domain. FAENet’s encoder–decoder architecture facilitates
multiscale feature refinement, enabling effective segmentation. Extensive experiments
on the ISPRS Potsdam and LoveDA benchmarks demonstrate that FAENet outperforms
state-of-the-art models, achieving superior segmentation accuracy. Ablation studies further
validate the contributions of ICCA and CCCA. Moreover, efficiency comparisons confirm
the superiority of the proposed FAENet over other models.

Keywords: high-resolution remote sensing images; semantic segmentation; attention
mechanism; convolutional neural network

1. Introduction
Semantic segmentation entails partitioning an image into regions belonging to the

same class, assigning a label to each pixel [1–6]. Unlike image classification, which cate-
gorizes an entire image holistically, semantic segmentation provides granular class-level
delineations. Stemming from image segmentation techniques, it focuses on embedding
semantic context, thereby rendering segmented regions meaningful. This capability is
essential for numerous computer vision tasks and finds application in diverse fields, includ-
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ing medical and natural image parsing [7–10], autonomous driving [11–14], road network
extraction [15–18], and land-use classification [19–23].

Early approaches to semantic segmentation relied on manually designed low-level
features, such as color, shape, and texture [24–26]. These features were processed using
clustering or classification algorithms in high-dimensional spaces to perform segmenta-
tion. While these methods laid the foundation for early advancements, they exhibited
clear limitations, including low flexibility and inadequate abstraction to handle complex
segmentation tasks.

To overcome these constraints, convolutional neural networks (CNNs) revolutionized
segmentation tasks by enabling hierarchical feature learning [27–29]. Among them, fully
convolutional networks (FCNs) [30–35] established a new standard for semantic segmenta-
tion with their end-to-end trainable frameworks. However, due to their simplistic decoder
structures, FCNs often produce coarse predictions, which led to the development of more
advanced encoder–decoder architectures, such as UNet [31], SegNet [32], and UNet++ [33].
These models leverage hierarchical features to capture both local and global contexts, sub-
stantially improving segmentation precision, especially in medical imaging and natural
scene analysis. For instance, UNet [31] adopts a symmetric encoder–decoder structure with
skip connections to fuse low-level spatial features with high-level semantic information,
becoming a cornerstone model in segmentation tasks. SegNet [32] enhances computational
efficiency by reusing max-pooling indices, making it particularly appealing for real-time
applications. UNet++ [33] introduces nested and dense skip connections to refine feature
fusion, further boosting segmentation accuracy. Despite these advancements, the inherent
challenges of remote sensing images (RSIs) remain unresolved due to their unique spectral
and spatial complexities.

RSIs are distinct from natural images due to their intricate spatial structures and
diverse spectral information. These images often exhibit high intraclass variability and low
interclass separability, such as urban areas with overlapping spectral characteristics, which
significantly complicates semantic segmentation. A key limitation of existing methods is
their inability to consistently handle small objects and preserve fine boundaries in high-
resolution remote sensing images (RSIs). For example, in complex urban environments,
densely packed cars and intricate building edges are often misclassified or blurred by con-
ventional models. This occurs because most CNN-based methods rely heavily on localized
convolutional operations, which struggle to capture the high-frequency details necessary
for accurate boundary delineation. Similarly, attention mechanisms and transformer-based
models, while improving context modeling, still face challenges in maintaining a balance
between local detail preservation and long-range dependencies. This inadequacy in han-
dling small, detailed objects and accurately segmenting complex boundaries motivates the
need for an approach that can effectively integrate spectral and spatial information.

Attention mechanisms (AMs) [36,37] have emerged as a transformative solution for
capturing spatial and contextual dependencies in RSIs. By dynamically focusing on salient
regions and features within an image, AMs enhance interpretability and segmentation
accuracy, particularly in heterogeneous and complex environments. For instance, MACU-
Net [38] integrates multiscale features and hierarchical connections, outperforming UNet
in satellite image segmentation tasks. Similarly, A2FPN [39] incorporates an attention
aggregation module to simultaneously enhance spatial and contextual understanding,
demonstrating its effectiveness across diverse datasets. SAPNet [40], a more recent contri-
bution, combines spatial and channel attention, achieving finer segmentation granularity.
These advances highlight the potential of attention-driven frameworks to tackle RSIs’
multiscale challenges.
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Transformers have recently garnered significant attention in computer vision due to
their ability to capture both local and global dependencies [41–43]. SETR [44] reformulates
semantic segmentation as a sequence-to-sequence prediction problem by encoding images
as patch sequences, achieving strong results on natural image benchmarks. Similarly,
Segmenter [45], based on a vision transformer, employs a pre-trained image classification
model and a simple linear decoder to produce segmentation masks. In the context of remote
sensing images (RSIs), Blaga and Nedevschi [46] proposed a transformer-based U-Net with
Guided Focal-Axial Attention, combining global and localized attention to improve the
segmentation of high-resolution RSIs. Wang et al. [47] introduced UNetFormer, a hybrid
transformer model that integrates local spatial details and global dependencies for efficient
urban scene segmentation. Lin et al. [48] presented the Swin Transformer Segmentor,
which integrates Swin Transformers with CNNs to refine boundary details in RSIs and
improve the segmentation accuracy. Li et al. [49] proposed GPINet, which fuses CNN
and transformer features with geometric priors to enhance segmentation performance.
Similarly, He et al. [50] developed ST-UNet by combining Swin transformers and CNNs to
leverage global context and spatial detail for better RSI segmentation. Lastly, Long et al. [51]
introduced CLCFormer, a hybrid network that combines fine-grained spatial features and
long-range global contexts using CNNs and transformers, achieving state-of-the-art results
on high-resolution RSI datasets. However, there are two main issues to be addressed:

1. Existing methods often rely heavily on spatial features, while spectral richness in
RSIs remains underexplored. This limitation reduces their capacity to distinguish
subtle interclass differences, particularly in complex scenarios involving overlapping
spectral features.

2. Capturing both local spatial details and long-range global dependencies is crucial for
high-resolution RSIs. However, many existing models struggle to effectively balance
these two aspects, limiting their segmentation accuracy in heterogeneous landscapes.

In recent years, frequency domain learning has gained traction for its ability to comple-
ment spatial domain approaches in image processing tasks [52,53]. Research has revealed
that neural networks exhibit a spectral bias, naturally favoring low-frequency represen-
tations while struggling to capture high-frequency details critical for tasks such as edge
preservation and fine-grained segmentation [54]. Inspired by these advancements, this
paper proposes a novel frequency attention-enhanced network (FAENet) for semantic
segmentation of high-resolution RSIs. The key contributions are summarized as follows:

1. We propose a frequency attention model (FreqA) that explicitly incorporates spectral
and spatial contexts. Using discrete wavelet transformation (DWT), FreqA decom-
poses feature maps into frequency components. Inner-component channel attention
(ICCA) and cross-component channel attention (CCCA) are designed to selectively em-
phasize informative spectral bands. These enhanced features are processed by a self-
attention (SA) module, enabling joint modeling of spectral and spatial dependencies.

2. We design FAENet, an encoder–decoder architecture equipped with FreqA modules.
This design enables hierarchical learning and multiscale feature refinement, allow-
ing the model to handle the complexity and variability in RSIs effectively. FAENet
balances local spatial detail capture with long-range dependency modeling.

3. Extensive experiments on the ISPRS Potsdam [55] and LoveDA [56] benchmarks
demonstrate that FAENet demonstrates state-of-the-art segmentation accuracy, achiev-
ing improvements across key metrics such as AF, OA, and mIoU. Ablation studies
further confirm the critical roles of ICCA and CCCA in spectral–spatial modeling,
validating the robustness and generalizability of the proposed approach for complex
remote sensing tasks. Moreover, efficiency comparisons confirm the superiority of the
proposed FAENet.
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This paper is organized as follows: Section 2 provides an overview of related works in
the semantic segmentation of RSIs and the advanced methods based on frequency analysis.
Section 3 introduces FAENet. Section 4 gives the results. Section 5 draws the conclusion
and points out future directions.

2. Related Works
2.1. CNN-Based Methods for Semantic Segmentation of Remote Sensing Images

CNNs have become a cornerstone for the semantic segmentation of RSIs, demonstrat-
ing their ability to extract hierarchical features effectively. RSIs, characterized by high
spatial resolution and complex spectral variations, has driven the adaptation of CNN
architectures to address unique challenges in this domain. A key advancement is the
ResUNet-a model [57], which incorporates residual connections and atrous convolutions
to enhance multiscale feature learning while maintaining efficient feature propagation.
This architecture has shown significant improvements in handling RSIs with intricate
spatial structures and complex boundaries. Similarly, D-LinkNet [58] extends traditional
CNN-based architectures by introducing dense connections within an encoder–decoder
framework, achieving enhanced feature reuse and better segmentation accuracy for road
extraction tasks in RSIs. PSPNet [59] has been adapted for RSIs by leveraging pyramid
pooling to capture global context, addressing the challenge of large-scale scene variability
in RSIs. For vegetation segmentation, methods like DeepLabV3+ [60] have been customized
to incorporate multiscale feature extraction and boundary refinement, enabling accurate
mapping of vegetation classes in high-resolution aerial imagery.

Despite these advancements, CNN-based methods exhibit notable limitations when
applied to RSIs. Specifically, they struggle to capture long-range dependencies due to
their reliance on localized convolutional operations. Additionally, their primary focus on
spatial features leads to an underutilization of the rich spectral information inherent in
RSIs, which is critical for differentiating spectrally similar classes. These shortcomings
highlight the necessity for advanced architectures that can integrate spectral and spatial
contexts effectively, motivating the development of approaches like FAENet proposed in
this work.

2.2. Attention-Based Methods for Semantic Segmentation of Remote Sensing Images

Attention mechanisms (AMs) have proven to be a powerful augmentation to CNNs,
addressing their limitations in capturing long-range dependencies and improving contex-
tual representation for semantic segmentation tasks. By dynamically emphasizing salient
regions and focusing on relevant features, attention-based methods have significantly
enhanced segmentation accuracy in RSIs, which are characterized by complex spatial
and spectral patterns. CAS-Net [61] enhances small object segmentation by integrating
coordinate attention (CA) and SPD-Conv layers to better capture orientation-sensitive
and positional information. MTCNet [62] combines CBAMs with multiscale transformers
for improved spatial–contextual modeling. Similarly, the AD-HRNet model [63] lever-
ages high-resolution attention modules to refine feature representations at multiple scales.
LANet [64] introduced a patch-wise attention module to preserve local details during multi-
level feature fusion, resulting in improved segmentation accuracy. Similarly, Li et al. [65]
proposed a hybrid attention mechanism, applying spatial attention in shallow layers to
capture local features and channel attention in deeper layers to enhance hierarchical feature
learning for satellite image segmentation. Following this trend, hybrid designs such as
SCAttNet [66], HMANet [67], and HCANet [37] effectively combined spatial and channel
attention mechanisms to enrich feature representations before final inference. MDANet [68]
introduces a deformable attention module (DAM) to enhance locality awareness and struc-
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tural adaptability for high-resolution remote sensing (HRRS) images, achieving significant
performance gains with a multiscale strategy. In contrast, CCAFFMNet [69] focuses on
dual-spectral (RGB-thermal) segmentation, utilizing channel-coordinate attention feature-
fusion modules (CCAFFMs) to refine infrared and RGB feature integration. More recent
advancements have focused on improving long-range dependency modeling and global
contextual representation. For instance, WiCoNet [70] employed a dual-branch structure
with two CNNs to independently model local and global features, effectively capturing
long-range dependencies for improved segmentation performance. Li et al. [40] introduced
a synergistic attention model (SAM) to simultaneously capture spatial and channel de-
pendencies, mitigating attention bias often present in traditional methods. By integrating
SAM, the SAPNet framework achieved state-of-the-art performance by enhancing feature
representations with comprehensive contextual information.

Despite these advancements, attention-based methods still face notable limitations.
First, they often struggle to effectively decouple spatial and spectral features, leading
to suboptimal fusion and reduced segmentation accuracy in spectrally complex RSIs.
Second, these methods face challenges in balancing the preservation of local details with the
integration of long-range dependencies, both of which are crucial for accurate segmentation
in high-resolution remote sensing tasks. These limitations highlight the need for advanced
architectures, such as FAENet, that address these issues by integrating frequency attention
mechanisms and synergizing spatial and spectral feature learning.

2.3. Transformer-Based Methods for Semantic Segmentation of Remote Sensing Images

Transformer-based architectures have emerged as a transformative approach in seman-
tic segmentation, particularly for RSIs, due to their ability to model long-range dependen-
cies and capture global context effectively. These capabilities make transformers well-suited
to address the challenges posed by high-resolution RSIs, such as complex spatial structures
and spectral variability. In the context of RSIs, transformer-based models have shown great
potential in improving segmentation performance. Blaga and Nedevschi [46] proposed a
transformer-based U-Net model with Guided Focal-Axial Attention, which combines the
global attention mechanism of transformers with localized attention to enhance feature
representation in high-resolution RSIs. Wang et al. [47] introduced UNetFormer, a hy-
brid architecture that incorporates transformer layers into a U-Net structure, enabling the
model to effectively capture both local spatial details and long-range global dependencies,
making it particularly suited for urban scene segmentation tasks. Lin et al. [48] presented
the Swin Transformer Segmentor, which integrates Swin Transformers with CNN-based
architectures to refine boundary information and achieve significant improvements in
segmentation accuracy.

More advanced transformer-based frameworks have further refined these ideas.
GLOTS [71] introduces a unified transformer encoder–decoder structure, leveraging a
masked image modeling pre-training strategy and a global–local attention mechanism to
capture multiscale contexts effectively. Another study [72] employs the Swin Transformer
backbone with a densely connected feature aggregation module (DCFAM) to restore resolu-
tions, demonstrating the strength of transformers in producing fine-grained segmentation
maps. EMRT [73] combines CNNs and deformable self-attention mechanisms within a
transformer-based architecture, enabling efficient multiscale representation learning by
fusing local and global features. These works highlight the growing focus on overcoming
the limitations of standalone CNNs or transformers through hybrid models and advanced
attention mechanisms. Li et al. [49] proposed GPINet, a hybrid network that combines
CNN and transformer features with geometric priors to improve the semantic segmentation
of high-resolution RSIs. Similarly, He et al. [50] developed ST-UNet, which integrates a
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Swin Transformer with a CNN-based U-Net to leverage both global context and detailed
spatial features. Hybrid models such as CLCFormer [51] balance fine-grained spatial de-
tails with global contextual information through a cross-learning framework, achieving
state-of-the-art performance on several very high-resolution (VHR) remote sensing datasets.
Meanwhile, LETFormer [74] addresses structural limitations in tokenization by integrating
intra-window self-attention with cross-window context interactions, enhancing global
feature modeling and spatial representation. Both CLCFormer [51] and LETFormer [74]
exemplify the advancements in transformer-based methods for RSI segmentation, tackling
key challenges such as balancing local spatial details and global contextual understanding.

However, these methods still face limitations in decoupling spatial and spectral fea-
tures effectively and integrating multiscale contextual information. The proposed FAENet
aims to address these issues by incorporating frequency attention mechanisms, enabling
a more robust and balanced approach to spectral and spatial feature learning, which is
critical for accurate semantic segmentation of high-resolution RSIs.

2.4. Learning in Frequency Domain

In recent years, frequency domain learning has gained significant attention for its abil-
ity to complement spatial domain approaches in image processing tasks [52,53]. Frequency-
based methods enable the separation of high-frequency components, such as textures
and edges, from low-frequency components, such as smooth regions, facilitating nuanced
feature extraction. Xu et al. [54] conducted a theoretical analysis of neural networks’
spectral bias using Fourier transformations, revealing a natural inclination toward low-
frequency representations and challenges in capturing high-frequency details. These
findings catalyzed further research into frequency domain techniques aimed at improving
high-frequency representation. For instance, Azad et al. [75] redesigned the self-attention
mechanism to operate in the frequency domain, enhancing contextual cues and uncovering
finer details for improved feature representation. Similarly, Zhang et al. [76] explored the
transformation of spatial-domain CNNs into frequency-domain equivalents to harness
their unique properties, enabling better utilization of spectral information. Additionally,
the development of frequency channel attention (FCA)-based networks enabled explicit
spectral feature processing without complex frequency transformations, showing promis-
ing results in various applications. Zhang et al. [77] further advanced this concept with
FsaNet, a framework leveraging frequency self-attention to improve edge preservation and
computational efficiency. FsaNet demonstrated state-of-the-art performance on several
benchmarks, achieving significant improvements in segmentation accuracy and efficiency.

In the domain of remote sensing, frequency domain methods have shown substantial
potential for addressing the challenges of high-resolution remote sensing imagery (HRRSI).
Techniques such as discrete cosine transformation (DCT) and Fourier analysis enable the
effective separation of spectral components, aiding in feature extraction for tasks like se-
mantic segmentation. Su et al. [78] proposed the Complete Frequency Channel Attention
Network (CFCANet), which integrates DCT frequency components into feature maps by
assigning the most significant eigenvalues to each channel. This approach significantly
enhances noise resistance, particularly in noisy remote sensing imagery. For semantic seg-
mentation, Li et al. [79] introduced the Spectrum-Space Collaborative Network (SSCNet),
which employs a joint spectral–spatial attention (JSSA) module to simultaneously model
spectral (SpeA) and spatial (SpaA) dependencies, leading to improved segmentation qual-
ity in HRRSIs. Hybrid architectures that integrate spatial and frequency domain features
have also emerged as a promising direction for remote sensing tasks. Hong et al. [80] pre-
sented the Spatial-Frequency Information Integration Network (SFINet), which leverages
invertible neural operators in the spatial domain and deep Fourier transformation in the
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frequency domain. SFINet excels in multimodal image fusion tasks, such as pan-sharpening
and depth super-resolution, by effectively integrating local and global information to cap-
ture high-frequency details. Similarly, the Fourier Frequency Domain Convolutional Neural
Network (FFDCNet) [81] introduces a dynamic frequency filtering mechanism that decom-
poses feature maps into low- and high-frequency components, improving classification
accuracy and segmentation robustness. FFDCNet has shown particular effectiveness in
addressing fragmented boundaries and incomplete extractions in crop segmentation tasks,
making it highly relevant for remote sensing applications.

Despite these advancements, existing frequency domain methods still face notable
limitations. Many approaches struggle to jointly integrate spectral and spatial features
effectively, resulting in suboptimal segmentation performance, particularly in spectrally
complex and high-resolution RSIs. Furthermore, current methods often lack a unified
framework to balance local detail preservation and global contextual understanding across
spatial and frequency domains. These limitations motivate the development of FAENet,
which explicitly combines spectral and spatial learning by leveraging frequency attention
mechanisms, providing a more robust and efficient solution for semantic segmentation
of HRRSIs.

3. Method
3.1. Overview of FAENet

FAENet, as illustrated in Figure 1, is a frequency attention-enhanced network designed
for the semantic segmentation of RSIs. It adopts a symmetric encoder–decoder architecture
wherein the encoder progressively down-samples the input to extract multiscale features,
while the decoder up-samples the encoded features to produce a pixel-wise segmentation
mask. The core innovation of FAENet lies in its integration of the proposed Frequency
Attention Model (FreqA) within the encoder–decoder framework, enabling joint spectral
and spatial feature learning. Each stage of the encoder and decoder consists of multiple
Conv Blocks interleaved with FreqA modules, ensuring both local detail preservation and
global context modeling.
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Figure 1. Overview of the proposed FAENet.

The encoder is based on a modified ResNet-50 backbone, where each Conv Block cor-
responds to a residual block from ResNet-50. A Conv Block consists of three convolutional
layers with kernel size 3 × 3, followed by batch normalization and ReLU activation. Skip
connections are employed within each Conv Block to enable efficient gradient propagation
and prevent vanishing gradients during training.
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Let the input image be denoted as I ∈ RH×W×C, where H, W, and C represent the
height, width, and number of channels, respectively. The encoder progressively down-
samples the input by a factor of 2 using pooling layers, resulting in feature maps Fi at
different scales, where i denotes the level in the encoder hierarchy.

Fi = ConvBlock(Fi−1), i ∈ {1, 2, . . . , N} (1)

Here, F0 = I, and N is the total number of Conv Blocks in the encoder. After each
Conv Block, a FreqA module is applied to enhance the extracted features by incorporating
spectral and spatial contexts, but its details will be elaborated in Section 3.2.

The decoder follows a symmetric structure, where each level up-samples the corre-
sponding encoder feature map using bilinear interpolation. Let Ui denote the up-sampled
feature map at level i in the decoder, which is computed as follows:

Ui = BilinearUpsample(FN−i), i ∈ {1, 2, . . . , N} (2)

To improve feature refinement, the up-sampled feature map Ui is concatenated with
the corresponding feature map from the encoder at the same level:

Gi = Concat(Ui, Fi) (3)

The concatenated feature Gi is then processed by a Conv Block to refine the combined
representation before being passed to the next level in the decoder. The final output is
obtained by applying a 1 × 1 convolution followed by a softmax activation to produce a
pixel-wise class probability map O ∈ RH×W×K, where K is the number of classes:

O = Softmax(Conv1×1(G0)) (4)

In summary, FAENet employs a carefully designed encoder–decoder architecture
with integrated frequency attention to address the complex spectral–spatial characteris-
tics of HRRSIs. By combining hierarchical feature extraction, multiscale feature fusion,
and frequency attention mechanisms, FAENet is well-suited for high-resolution semantic
segmentation tasks.

3.2. Frequency Attention Model

The Frequency Attention Model (FreqA) is designed to enhance feature representations
by jointly modeling spectral and spatial contexts, which are crucial for accurate semantic
segmentation in RSIs. As shown in Figure 2, FreqA operates by first transforming the input
feature maps into the frequency domain using Discrete Wavelet Transformation (DWT) and
applying attention mechanisms to emphasize the most informative spectral components.
Finally, the refined features are transformed back into the spatial domain using Inverse
Discrete Wavelet Transformation (iDWT).

Given an input feature map X ∈ RH×W×C, where H, W, and C represent the height,
width, and number of channels, FreqA begins by applying DWT to decompose X into
four frequency components: FLL: Low-frequency component, representing the coarse
approximation of the input feature map. FLH : High-frequency component in the horizontal
direction. FHL: High-frequency component in the vertical direction. FHH : High-frequency
component in the diagonal direction.
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Figure 2. Details of the proposed FreqA.

The result is a set of four sub-band feature maps, each of size H
2 × W

2 × C:

{FLL, FLH , FHL, FHH} = DWT(X), (5)

where DWT facilitates the separation of low- and high-frequency components, enabling
nuanced feature extraction for tasks such as edge preservation and texture representation.

Once the feature maps are transformed into the frequency domain, FreqA applies
the Frequency Channel Attention (FCA) mechanism to selectively emphasize important
spectral information. FCA consists of two key sub-modules: (1) Inner-Component Channel
Attention (ICCA): Enhances the discriminative power of each frequency component by
modeling channel-wise dependencies within the same component. (2) Cross-Component
Channel Attention (CCCA): Captures correlations across different frequency components,
improving spectral coherence across the frequency domain.

For each frequency component Fk ∈ {FLL, FLH , FHL, FHH}, the FCA module produces
refined feature maps FFCA

k by sequentially applying ICCA and CCCA:

FFCA
k = CCCA(ICCA(Fk)). (6)

The outputs from all frequency components are then concatenated along the channel
dimension to form an aggregated feature map:

Fagg = Concat(FFCA
LL , FFCA

LH , FFCA
HL , FFCA

HH ). (7)

To further capture long-range dependencies and enhance global contextual repre-
sentation, FreqA applies a self-attention (SA) module to the aggregated feature map Fagg.
The self-attention mechanism computes query (Q), key (K), and value (V) representations
of the feature map:

Q = WqFagg, K = WkFagg, V = WvFagg, (8)

where Wq, Wk, and Wv are learnable projection matrices. The attention map is computed
using the scaled dot-product operation:

Attention(Q, K, V) = Softmax
(

QKT
√

dk

)
V, (9)

where dk is the dimensionality of the key. The output of the self-attention module, denoted
as FSA, is computed by applying the attention map to the value representation:

FSA = Attention(Q, K, V). (10)
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Finally, the refined feature map FSA is transformed back into the spatial domain
using Inverse Discrete Wavelet Transformation (iDWT), producing the output feature map
Y ∈ RH×W×C:

Y = iDWT(FSA). (11)

This process enables FAENet to jointly model spectral and spatial information, ad-
dressing the key challenges in high-resolution remote sensing segmentation tasks.

3.3. Frequency Channel Attention

The Frequency Channel Attention (FCA) module is a key component of the proposed
Frequency Attention Model (FreqA), designed to enhance feature representations by cap-
turing both intra-component and cross-component spectral dependencies. As shown in
Figure 3, ICCA operates on individual frequency components to refine channel-wise fea-
tures, while CCCA models interactions across different frequency components to improve
spectral coherence. The final output of FCA is a concatenated feature map that integrates
refined information from all frequency components.

LL LH HL HH

ICCA ICCA ICCA ICCA

CCCA

C

LL LH HL HH

ConcatenationC ICCA Inner Component 
Channel Attention

CCCA
Cross Component 
Channel Attention

LL LH

HLHH High-frequency Component

Horizontal  ComponentLow-frequency Component

Vertical Component

Figure 3. Details of the proposed FCA.

ICCA aims to enhance the discriminative power of each frequency component by
modeling channel-wise dependencies within the same component. Given a frequency
component Fk ∈ R H

2 ×W
2 ×C, where H, W, and C are the height, width, and number of

channels, respectively, ICCA computes a refined feature map FICCA
k by applying a channel

attention mechanism.
First, a channel descriptor zk ∈ RC is obtained by applying global average pooling

(GAP) across spatial dimensions:

zk(c) =
1

H
2 · W

2

H
2

∑
i=1

W
2

∑
j=1

Fk(i, j, c), c ∈ {1, 2, . . . , C}, (12)
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where Fk(i, j, c) denotes the value at position (i, j) in channel c of the frequency
component Fk.

Next, a fully connected (FC) layer followed by a ReLU activation is applied to zk to
obtain a transformed channel descriptor zFC

k :

zFC
k = ReLU(W1zk + b1), (13)

where W1 ∈ RC× C
r and b1 ∈ R C

r are learnable parameters, and r is the reduction ratio.
To obtain the final attention weights, another FC layer with a sigmoid activation

is applied:
ak = Sigmoid(W2zFC

k + b2), (14)

where W2 ∈ R C
r ×C and b2 ∈ RC are learnable parameters. The attention weights ak ∈ RC

are then used to reweight the original feature map Fk channel-wise:

FICCA
k (i, j, c) = ak(c) · Fk(i, j, c), (15)

where FICCA
k is the refined output of ICCA for the frequency component Fk.

After applying ICCA to each frequency component independently, CCCA is employed
to capture cross-frequency dependencies by modeling interactions across different fre-
quency components. The goal of CCCA is to improve spectral coherence by leveraging
correlations between the low-frequency and high-frequency components.

Let FICCA
LL , FICCA

LH , FICCA
HL , FICCA

HH denote the refined frequency components after ICCA.
For a given channel c, CCCA computes the correlation between the low-frequency compo-
nent FICCA

LL and the high-frequency components FICCA
LH , FICCA

HL , FICCA
HH :

aLL(c) = FICCA
LL (c) + ∑

k∈{LH,HL,HH}
αk · Corr(FICCA

LL (c), FICCA
k (c)), (16)

where αk are learnable weights, and Corr(·, ·) denotes a correlation function that employs
cosine similarity to compute across corresponding channels in different frequency com-
ponents. This operation ensures that each channel in the low-frequency component is
enriched with cross-component information from the high-frequency components.

The same process is applied to all channels in all frequency components, resulting in
refined feature maps FCCCA

LL , FCCCA
LH , FCCCA

HL , FCCCA
HH .

Finally, the refined frequency components after applying CCCA are concatenated
along the channel dimension to form the output feature map of FCA:

FFCA = Concat(FCCCA
LL , FCCCA

LH , FCCCA
HL , FCCCA

HH ), (17)

where FFCA ∈ R H
2 ×W

2 ×4C is the final output of the FCA module, containing enriched
spectral and spatial information from all frequency components.

To sum up, FCA ensures that both intra-frequency and inter-frequency dependencies
are effectively captured, enabling FAENet to jointly model spectral and spatial contexts for
enhanced segmentation performance in HRRSIs.

4. Experiments
4.1. Settings

In experiments, we implemented our FAENet and all comparative models under the
same settings, using PyTorch on a Linux OS with an NVIDIA A40 GPU. Data augmentations,
such as random flipping and cropping operations, were applied to all datasets and networks.
The initial learning rate and maximum epoch were fixed at 0.02 and 500, respectively.
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We adopt stochastic gradient descent (SGD) as the optimizer, with a momentum of 0.9.
The learning rate was adjusted using a polynomial decay strategy, defined as follows:

ηt = η0

(
1 − t

T

)p
, (18)

where ηt is the learning rate at iteration t, η0 is the initial learning rate, T is the total number
of iterations, and p is a decay exponent set to 0.9 in our experiments. This strategy ensures
that the learning rate smoothly decreases as the number of iterations increases, helping the
model achieve better convergence. The model parameter file with the lowest validation
loss was saved for final evaluation.

We employ four metrics to evaluate the performance of the predicted results on the
test set: class-wise F1-score (F1), average F1-score across all classes (AF), overall accuracy
(OA), and mean intersection over union (mIoU). The equations for F1, OA, and IoU are
provided in Equation (19), Equation (20), and Equation (21), respectively.

F1 = 2 · precision · recall
precision + recall

, (19)

OA =
(TP + TN)

(TP + TN + FP + FN)
, (20)

IoU =
TP

(TP + FP + FN)
, (21)

Here, precision and recall are defined as follows:

precision =
TP

TP + FP
, (22)

recall =
TP

TP + FN
, (23)

where TP, TN, FP, and FN represent the number of true positive, true negative, false
positive, and false negative samples, respectively.

As for comparative methods, we selected several well-established baselines and state-
of-the-art (SOTA) methods tailored for RSI segmentation. FCN-8s [30] and DANet [36]
are pioneering fully convolutional and attention-based models that have achieved notable
success in general computer vision tasks. For RSIs, ResUNet-a [57] was designed specifi-
cally for RSI segmentation by incorporating atrous convolution, multiscale feature fusion,
and residual connections, effectively addressing the challenges posed by complex spatial
structures in RSIs.

More recent advancements in attention-based methods for RSI segmentation include
MACU-Net [38], HCANet [37], SCAttNet [66], and A2FPN [39], which leverage various
attention mechanisms to improve feature representation and segmentation accuracy. These
models, published after 2021, have demonstrated state-of-the-art performance across multi-
ple RSI datasets by dynamically capturing long-range dependencies and enhancing spatial
context understanding.

Furthermore, we included the latest transformer-based architectures tailored for RSI
segmentation: ICTNet [82], CLCFormer [51], and LETFormer [74]. These models exploit
the global attention capabilities of transformers, providing a more holistic understanding of
complex scenes in high-resolution RSIs. Specifically, CLCFormer employs a cross-learning
mechanism to balance fine-grained spatial details with global context, while LETFormer in-
troduces a novel intra-window self-attention mechanism for improved structural modeling
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in RSIs. These methods serve as strong baselines for benchmarking the performance of our
proposed FAENet.

4.2. Datasets

The ISPRS Potsdam dataset [55] comprises 38 high-resolution orthophotos with a
ground sampling distance (GSD) of 5 cm, each measuring 6000 × 6000 pixels. The dataset
includes four spectral bands: near-infrared (NIR), red (R), green (G), and blue (B), along
with corresponding digital surface model (DSM) and normalized digital surface model
(NDSM) data. These additional data sources provide valuable elevation information, aiding
in distinguishing objects with similar spectral characteristics. The dataset covers diverse
urban scenes, such as buildings, roads, trees, and cars, making it a benchmark for evaluating
semantic segmentation performance in high-resolution urban imagery. For this study, we
focused on the RGB image data for training and testing, as they are widely used in standard
semantic segmentation tasks.

The LoveDA dataset [56] presents a unique challenge in semantic segmentation by
incorporating large-scale satellite images with a spatial resolution of 0.3 m. The dataset
spans over 536 square kilometers and includes both rural and urban regions from three
cities: Nanjing, Changzhou, and Wuhan. Each image has a spatial size of 1024 × 1024
pixels and exhibits substantial variability in object scale, size, and surface type. LoveDA
is designed to evaluate the robustness of segmentation models in handling imbalanced
class distributions and challenging environmental conditions, such as varying lighting and
atmospheric effects. For our experiments, we utilized 2522 images for training, 834 for
validation, and 835 for testing.

For both datasets, the images were cropped into subpatches of size 256× 256 to ensure
uniform input dimensions for the model. These subpatches were randomly divided into
training, validation, and testing sets in a 1:1:1 ratio, providing a balanced and comprehen-
sive evaluation framework.

4.3. Results on the ISPRS Potsdam Dataset
4.3.1. Numerical Evaluations

The numerical results in Table 1 demonstrate the superior performance of FAENet
compared to existing methods across key evaluation metrics, highlighting its effectiveness
in semantic segmentation of the ISPRS Potsdam dataset. FAENet achieves the highest
OA of 92.31%, surpassing both LETFormer (91.17%) and CLCFormer (89.97%), which are
state-of-the-art transformer-based methods. This improvement underscores the ability
of FAENet to generalize effectively across diverse scenes, benefiting from the proposed
frequency attention mechanism that enhances both spectral and spatial feature extraction.

In terms of mIoU, FAENet achieves a score of 83.58%, outperforming LETFormer
(82.67%) by nearly 1% and CLCFormer (81.68%) by almost 2%. The consistent improvement
in mIoU indicates that FAENet excels in capturing inter-class separability and handling
challenging scenarios with overlapping class boundaries. Despite the improvement being
under 1%, statistical significance tests (t-tests) were conducted over five repeated runs,
confirming that the observed improvements are statistically significant (p < 0.05).

When examining class-wise F1-scores, FAENet demonstrates outstanding performance
in the “Low vegetation” and “Car” categories, achieving scores of 88.21 and 94.75, respec-
tively. These results are particularly noteworthy because “Car” is a small and intricate
class, often challenging for segmentation models due to its limited spatial representation.
Similarly, FAENet’s ability to achieve the highest F1-score in “Low vegetation” reflects
its effectiveness in managing fine-grained spectral details, which are critical for distin-
guishing between similar classes in HRRSIs. Compared to LETFormer, FAENet improves
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the F1-score for “Low vegetation” by nearly 1% (88.21 vs. 87.25) and for “Car” by 0.42%
(94.75 vs. 94.33), indicating consistent performance across both large and small objects.

FAENet also achieves an AF of 92.71, reflecting its balanced segmentation performance
across all classes. This improvement over LETFormer (92.47) and CLCFormer (91.61)
demonstrates the efficacy of the frequency channel attention and self-attention modules in
harmonizing spectral and spatial features. These mechanisms allow FAENet to mitigate
class imbalances and achieve more precise segmentation results, especially in complex
urban environments.

The overall trends in the results demonstrate that FAENet consistently outperforms
existing state-of-the-art methods across various evaluation metrics. Specifically, FAENet
achieves superior class-wise segmentation precision, particularly in challenging categories
such as “Low vegetation” and “Car”, which require precise boundary delineation and
fine-grained feature discrimination. The improvements in these categories indicate that
the proposed frequency attention mechanism effectively captures and integrates both spec-
tral and spatial information, leading to better overall segmentation accuracy. Moreover,
FAENet’s performance in terms of OA, mIoU, and AF highlights its robustness in han-
dling diverse and complex urban scenes in RSIs. The combination of frequency-based
feature decomposition and attention mechanisms allows FAENet to generalize well across
varying scene types and object scales, making it a strong candidate for real-world RSI
segmentation applications.

Table 1. Results on the ISPRS Potsdam dataset. Class-wise F1-score, AF, OA, and mIoU are listed,
where the bold text indicates the best results.

Methods Impervious Surfaces Building Low Vegetation Tree Car AF OA mIoU

FCN-8s [30] 85.08 74.26 65.86 80.68 39.11 69.00 68.24 63.84
DANet [36] 86.37 91.15 79.60 79.17 88.49 84.96 83.17 76.38

ResUNet-a [57] 89.79 94.77 86.61 81.01 76.85 85.80 84.38 77.19
MACU-Net [38] 88.56 91.86 86.21 82.22 78.48 85.46 85.07 77.23

HCANet [37] 92.25 95.96 86.66 87.30 92.97 91.03 89.79 81.12
SCAttNet [66] 91.25 95.96 84.66 86.20 91.88 89.99 88.19 80.05

A2FPN [39] 90.05 94.76 84.95 84.61 90.66 89.01 87.40 79.89
ICTNet [82] 91.78 95.44 86.23 86.92 92.53 90.58 89.38 80.40

CLCFormer [51] 92.66 96.64 87.05 88.00 93.69 91.61 89.97 81.68
LETFormer [74] 94.19 97.49 87.25 89.11 94.33 92.47 91.17 82.67
Ours (FAENet) 93.84 97.57 88.21 89.18 94.75 92.71 92.31 83.58

4.3.2. Statistical Significance Analysis

To ensure the robustness of our results and address potential variability caused by
random initialization, we conducted repeated experiments with fixed random seeds. Specif-
ically, we ran the experiments five times and computed the mean and standard deviation
of all overall evaluation metrics. A two-tailed paired t-test was performed to assess the
statistical significance of the improvements achieved by FAENet compared to LETFormer,
the most competitive baseline. Table 2 summarizes the mean, standard deviation, and p-
values obtained from the t-test. The p-values for all metrics are below 0.05, indicating that
the improvements achieved by FAENet are statistically significant.

4.3.3. Visual Comparisons

The visual comparisons presented in Figure 4 showcase the segmentation outputs
of various state-of-the-art methods on the ISPRS Potsdam dataset. FAENet consistently
produces clearer segmentation maps, particularly in regions with intricate boundaries and
small objects. In complex scenes with transitions between “Building” and “Impervious sur-
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faces”, FAENet demonstrates superior boundary delineation compared to earlier methods
such as FCN-8s (c) and DANet (d), which tend to blur boundaries and introduce artifacts.
The proposed frequency attention mechanism enables FAENet to preserve fine-grained
details, resulting in sharper edges and fewer misclassified pixels.

Table 2. Mean, standard deviation, and p-values from t-test analysis over five repeated runs on the
ISPRS Potsdam dataset.

Metric Mean ± Std (FAENet) Mean ± Std (LETFormer) p-Value

OA (%) 92.31 ± 0.12 91.17 ± 0.14 0.012
mIoU (%) 83.58 ± 0.18 82.67 ± 0.21 0.015

AF (%) 92.71 ± 0.10 92.47 ± 0.13 0.020

FAENet also excels in segmenting small and detailed objects like “Car”, where methods
such as ResUNet-a (e) and MACU-Net (f) struggle with fragmentation. As shown in the
marked regions of the figure, FAENet achieves more cohesive and accurate car segments,
underscoring its capability to enhance high-frequency feature representation through the
frequency attention mechanism.

When comparing FAENet with advanced transformer-based models like CLCFormer
(k) and LETFormer (l), FAENet demonstrates better spatial consistency and reduced bound-
ary misalignment. Although LETFormer produces reasonably accurate results, minor
inconsistencies are observed in densely vegetated areas (“Low vegetation” and “Tree”),
where FAENet delivers smoother transitions and better-defined class boundaries. The high-
lighted regions in Figure 4 indicate FAENet’s ability to maintain structural integrity and
spatial coherence in complex scenes.

Overall, the marked improvements in the figure emphasize FAENet’s robustness in
capturing both local and global contexts, leading to segmentation outputs that closely
resemble ground truth labels. These results validate FAENet as a highly effective solution
for RSI segmentation.

4.4. Results on the LoveDA Dataset
4.4.1. Numerical Evaluations

As shown in Table 3, FAENet achieves superior performance across key metrics on
the LoveDA dataset, which poses unique challenges due to its mixed urban and rural
landscapes, varying spatial resolutions, and imbalanced class distributions. The dataset’s
diversity in land cover scenarios requires models to generalize well across both densely
built-up urban areas and sparsely populated rural regions.

Table 3. Results on the LoveDA dataset. Class-wise F1-score, AF, OA, and mIoU are listed, where the
bold text indicates the best results.

Methods Background Building Road Water Barren Forest Agriculture AF OA mIoU

FCN-8s [30] 50.09 52.79 51.48 75.28 12.75 44.82 61.44 49.81 49.24 46.07
DANet [36] 53.92 60.40 62.73 78.37 26.36 51.75 69.31 57.55 54.09 49.67

ResUNet-a [57] 54.46 61.56 64.91 80.21 28.95 53.56 73.32 59.57 58.35 53.38
MACUNet [38] 58.56 63.43 66.05 80.19 31.90 55.24 75.02 61.49 59.05 53.61
HCANet [37] 65.72 70.04 74.35 87.39 50.62 63.27 80.25 70.23 68.77 62.13
SCAttNet [66] 65.28 71.15 76.26 85.73 50.27 60.57 81.17 70.06 66.63 60.47

A2FPN [39] 64.51 72.58 74.43 87.12 48.32 59.35 78.90 69.32 66.21 60.52
ICTNet [82] 67.63 74.84 78.22 88.30 52.69 65.35 81.50 72.65 69.71 62.71

CLCFormer [51] 67.17 74.34 77.69 87.71 52.34 64.91 80.96 72.16 70.45 62.55
LETFormer [74] 70.90 76.47 82.03 91.24 56.75 70.05 85.48 76.13 72.12 66.01
Ours (FAENet) 70.93 81.74 82.82 92.50 53.53 68.33 85.57 76.49 72.93 66.91
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Figure 4. Visual comparisons of ISPRS Potsdam dataset. (a) Input, (b) ground truth, (c) FCN-
8s, (d) DANet, (e) ResUNet-a, (f) MACU-Net, (g) HCANet, (h) SCAttNet, (i) A2FPN, (j) ICTNet,
(k) CLCFormer, (l) LETFormer, (m) FAENet (ours).

FAENet attains the highest OA of 72.93%, outperforming LETFormer (72.12%) and
CLCFormer (70.45%), demonstrating its improved generalization ability across complex
landscape types. Additionally, FAENet achieves the best mIoU of 66.91%, surpassing
LETFormer (66.01%) by 0.9%, highlighting its capacity to handle diverse land cover
categories effectively.

In terms of class-wise F1-scores, FAENet excels in critical categories such as “Building”
(81.74), “Road” (82.82), and “Water” (92.50), where accurate boundary delineation and
fine-grained segmentation are crucial. Compared to LETFormer, FAENet records a 0.79%
improvement in the “Road” category (82.82 vs. 82.03) and a notable 1.26% gain in the
“Water” category (92.50 vs. 91.24). These improvements underscore FAENet’s ability to
capture fine-grained details and segment linear and irregular features effectively.

Although LETFormer slightly outperforms FAENet in the “Barren” and “Forest” cate-
gories, with F1-scores of 56.75 and 70.05, respectively, FAENet remains competitive, achiev-
ing scores of 53.53 and 68.33 in these categories. Despite this trade-off, FAENet achieves
the highest overall AF of 76.49, surpassing LETFormer (76.13) and other state-of-the-art
models, indicating consistent performance across all classes.
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The results validate FAENet’s frequency attention mechanism, which enhances the
integration of spectral and spatial features, enabling robust performance across diverse en-
vironments. Compared to the ISPRS Potsdam dataset, where the focus is on urban-specific
segmentation, the LoveDA dataset presents additional challenges due to the significant
class imbalance and landscape variability. FAENet’s consistent improvements across both
datasets highlight its versatility and robustness in handling different types of RSIs.

4.4.2. Visual Comparisons

The visual results in Figure 5 showcase segmentation outputs for the LoveDA dataset,
enabling a comprehensive comparison of FAENet (m) with state-of-the-art models such as
FCN-8s (c), DANet (d), ResUNet-a (e), and transformer-based architectures like CLCFormer
(k) and LETFormer (l). Each subfigure highlights the ability of these models to delineate
and classify diverse land cover types, including “Building”, “Road”, “Water”, “Barren”,
“Forest”, and “Agriculture”.
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Figure 5. Visual comparisons of LoveDA dataset. (a) Input, (b) ground truth, (c) FCN-8s, (d) DANet,
(e) ResUNet-a, (f) MACU-Net, (g) HCANet, (h) SCAttNet, (i) A2FPN, (j) ICTNet, (k) CLCFormer,
(l) LETFormer, (m) FAENet (ours).
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FAENet demonstrates superior segmentation quality, particularly in capturing fine-
grained details and complex boundaries. For example, in areas dominated by “Building”
and “Road”, FAENet generates outputs that closely match the ground truth (b), with sharper
edges and fewer misclassifications compared to other models like FCN-8s (c) and DANet (d).
These improvements underline the strength of FAENet’s frequency attention mechanism in
refining both spectral and spatial representations.

Compared to ResUNet-a (e) and MACU-Net (f), FAENet significantly enhances
the segmentation of challenging classes like “Water” and “Agriculture”. In “Water” re-
gions, FAENet accurately captures smooth boundaries and mitigates over-segmentation
issues prevalent in other models. Similarly, in agricultural areas, where fine texture de-
tails are crucial, FAENet outperforms other models by producing more uniform and
accurate classifications.

Transformer-based models such as LETFormer (l) and CLCFormer (k) provide strong
baseline results, particularly in handling large-scale features like “Forest.” However,
FAENet surpasses these methods in maintaining spatial consistency and reducing noise
in densely packed regions. For example, in mixed-class areas with overlapping “Barren”
and “Forest” regions, FAENet demonstrates better discrimination and smoother transitions
between classes.

Overall, the visual comparisons clearly illustrate FAENet’s ability to produce seg-
mentation maps with superior boundary alignment, reduced artifacts, and enhanced class
differentiation. These results validate the efficacy of FAENet’s spectral–spatial feature
integration in handling the diverse and complex landscapes of the LoveDA dataset, further
emphasizing its robustness and generalization capabilities.

4.5. Efficiency Analysis

The results in Table 4 demonstrate that FAENet achieves a strong balance between
computational efficiency and segmentation accuracy, outperforming both CNN-based and
transformer-based state-of-the-art methods in terms of inference speed and computational
cost. FAENet’s inference time of 42.2 ms and 60.7 GFLOPs place it among the most efficient
models evaluated.

FAENet exhibits a faster inference time compared to transformer-based architectures
such as LETFormer (48.3 ms) and CLCFormer (49.6 ms). This reduction of approximately
6.1 ms and 7.4 ms, respectively, highlights FAENet’s streamlined architecture, which
effectively integrates spectral and spatial attention mechanisms without imposing excessive
computational demands. This efficiency makes FAENet suitable for real-time or large-scale
remote sensing applications.

In terms of FLOPs, FAENet achieves significant reductions compared to transformer-
based models, such as CLCFormer (75.6 G) and HCANet (72.3 G). This reduction, amount-
ing to over 20%, demonstrates FAENet’s ability to deliver high segmentation accuracy
while minimizing resource usage. The integration of frequency attention mechanisms
enables FAENet to focus computational efforts on the most relevant spectral and spatial
features, leading to improved performance at a lower computational cost.

Compared to CNN-based models, FAENet demonstrates slightly higher computational
costs than MACUNet (55.1 G) and ResUNet-a (58.2 G) while delivering substantially better
segmentation results. The 42.2 ms inference time is competitive, demonstrating that the
additional complexity introduced by spectral–spatial attention does not significantly impact
processing speed. This balance underscores FAENet’s capability to combine the strengths
of CNN and transformer designs.

FAENet’s frequency domain approach enhances computational efficiency by leverag-
ing DWT to decompose features, allowing for the targeted refinement of spectral–spatial
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representations. This design reduces redundancy and focuses processing power where it
is most impactful, resulting in both faster inference and superior accuracy compared to
conventional methods.

In summary, FAENet’s efficiency analysis reveals that it is both computationally
economical and highly effective, setting a new standard for balancing speed, complexity,
and accuracy in semantic segmentation of remote sensing images. Its scalability and
efficiency make it an excellent choice for diverse applications, including real-time processing
and large-scale geographic analysis.

Table 4. Efficiency evaluations. Inference time is calculated as an average time for test set.

Methods Inference Time (ms) FLOPs (G)

FCN-8s [30] 35.6 53.6
DANet [36] 47.3 67.4

ResUNet-a [57] 41.8 58.2
MACUNet [38] 39.4 55.1
HCANet [37] 50.1 72.3
SCAttNet [66] 45.7 69.8

A2FPN [39] 44.9 65.2
ICTNet [82] 46.4 70.1

CLCFormer [51] 49.6 75.6
LETFormer [74] 48.3 73.4
Ours (FAENet) 42.2 60.7

4.6. Effects of ICCA and CCCA

Table 5 presents the results of an ablation study assessing the contributions of the
ICCA and CCCA modules to the performance of FAENet on the ISPRS Potsdam and
LoveDA datasets. The study includes four configurations: FAENet without ICCA and
CCCA, FAENet with only ICCA, FAENet with only CCCA, and FAENet with both modules
combined. This comprehensive analysis reveals that the combined incorporation of ICCA
and CCCA achieves the highest scores across all metrics, emphasizing their complementary
roles in refining spectral–spatial representations.

Table 5. Effects of ICCA and CCCA on two benchmarks. Results are in the form of AF/OA/mIoU,
where bold text indicates the best.

Networks ICCA CCCA Potsdam LoveDA

FAENet 82.01/81.34/73.15 66.22/63.45/57.93
FAENet ✓ 85.95/84.59/76.97 69.78/67.11/61.07
FAENet ✓ 86.67/85.40/77.72 70.46/67.76/61.66
FAENet ✓ ✓ 92.71/92.31/83.58 76.49/72.93/66.91

The baseline configuration (FAENet without ICCA and CCCA) achieves AF/OA/mIoU
scores of 82.01/81.34/73.15 on the Potsdam dataset and 66.22/63.45/57.93 on the LoveDA
dataset. While these results are competitive, they are significantly lower than those achieved
by FAENet with either ICCA or CCCA individually, and even more so when both modules
are combined.

When only ICCA is incorporated, FAENet achieves AF/OA/mIoU scores of 85.95/84.59/
76.97 on the Potsdam dataset and 69.78/67.11/61.07 on LoveDA, highlighting ICCA’s
ability to capture spectral nuances within individual frequency components. Incorpo-
rating only CCCA results in AF/OA/mIoU scores of 86.67/85.40/77.72 on Potsdam
and 70.46/67.76/61.66 on LoveDA, demonstrating that CCCA effectively enhances cross-
frequency interactions, further improving segmentation performance.
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The combined use of ICCA and CCCA achieves the highest scores, illustrating their
synergistic effect in enhancing feature representation. ICCA focuses on refining channel-
specific spectral information, while CCCA facilitates cross-component interaction, enabling
comprehensive spectral–spatial context modeling. Together, these modules improve class-
wise segmentation precision, ensure better boundary preservation, and enhance feature
discrimination, particularly in complex remote sensing scenarios.

These findings validate the design of the frequency attention mechanism and confirm
that the integration of ICCA and CCCA is critical to achieving state-of-the-art performance
in semantic segmentation tasks. The consistent improvements across the ISPRS Potsdam
and LoveDA datasets further underscore the generalizability of the proposed approach.

5. Conclusions
This study introduces FAENet, a novel frequency attention-enhanced network, specifi-

cally designed for the semantic segmentation of HRRSIs. By leveraging the FreqA, FAENet
effectively integrates spectral and spatial contexts, addressing the limitations of traditional
CNN and transformer-based approaches in capturing fine-grained spectral details. Ex-
perimental evaluations on the ISPRS Potsdam and LoveDA datasets demonstrate that
FAENet outperforms state-of-the-art methods, achieving superior segmentation accuracy,
particularly in complex and heterogeneous scenes. Ablation studies further validate the
contributions of the ICCA and CCCA modules, underscoring their complementary roles in
enhancing spectral–spatial feature representation.

An important aspect of FAENet is its potential transferability to other datasets or ap-
plications beyond the ISPRS Potsdam and LoveDA datasets. Given that FAENet effectively
models both spectral and spatial information, it can be applied to other high-resolution
remote sensing datasets with similar characteristics, such as urban mapping or land-use
classification tasks. Moreover, the frequency attention mechanism is designed to handle
diverse spectral variations, making it adaptable to datasets with varying spectral bands,
including hyperspectral and multispectral imagery.

Additionally, FAENet’s encoder–decoder architecture, combined with frequency at-
tention, positions it as a candidate for broader remote sensing applications, such as object
detection, instance segmentation, and even change detection. Future work could explore
fine-tuning FAENet on such tasks, potentially leading to enhanced generalization across
different remote sensing domains.

In conclusion, FAENet represents a significant advancement in remote sensing seman-
tic segmentation, with its innovative frequency domain approach setting a new benchmark
for feature refinement. Future research could extend this framework to incorporate addi-
tional modalities, such as hyperspectral and LiDAR data, which provide richer spectral
and elevation information, respectively. By leveraging the fine spectral granularity of
hyperspectral imagery and the precise elevation details from LiDAR data, FAENet has
the potential to further enhance segmentation performance in applications requiring high
spatial–spectral discrimination or detailed topographic analysis. Furthermore, future work
could explore its application in other remote sensing tasks like object detection and change
detection. The promising results of FAENet pave the way for more robust, generalizable,
and efficient methods in remote sensing image analysis.
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