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Abstract: The fusion of LiDAR and photogrammetry point clouds is a necessary ad-
vancement in 3D-modeling, enabling more comprehensive and accurate representations
of physical environments. The main contribution of this paper is the development of an
innovative fusion system that combines classical algorithms, such as Structure from Motion
(SfM), with advanced machine learning techniques, like Coherent Point Drift (CPD) and
Feature-Metric Registration (FMR), to improve point cloud alignment and fusion. Experi-
mental results, using a custom dataset of real-world scenes, demonstrate that the hybrid
fusion method achieves an average error of less than 5% in the measurements of small
reconstructed objects, with large objects showing less than 2% deviation from real sizes.
The fusion process significantly improved structural continuity, reducing artifacts like
edge misalignments. The k-nearest neighbors (kNN) analysis showed high reconstruction
accuracy for the hybrid approach, demonstrating that the hybrid fusion system, particularly
when combining machine learning-based refinement with traditional alignment methods,
provides a notable advancement in both geometric accuracy and computational efficiency
for real-time 3D-modeling applications.

Keywords: LiDAR; photogrammetry; point cloud fusion; machine learning; augmented
reality

1. Introduction
With the advent of 3D-mapping technologies, the ability to capture detailed and precise

representations of the physical world has transformed various fields, including urban
planning [1], environmental monitoring [2], autonomous navigation [3], and augmented
reality [4]. Two of the most well-known technologies in this field are photogrammetry [5]
and Light Detection and Ranging (LiDAR) [6]. Each method excels in generating point
clouds, which are three-dimensional depictions of spatial data, but they also possess
inherent limitations [7]. This study addresses the fusion of LiDAR and photogrammetry
point clouds to combine their strengths, overcoming their individual shortcomings to
produce high-quality 3D models.

LiDAR gathers exact distance measurements by emitting laser pulses and recording
the time it takes for them to return, generating highly accurate point clouds that excel in
representing the geometry of objects [6]. Due to the importance of spatial accuracy, LiDAR
has been widely used in urban planning [8], autonomous vehicles [9], and topographical
surveys [10]. However, while LiDAR provides geometric precision, it lacks the ability to
capture detailed textures or colors, which are important for applications such as visual
inspection and Augmented Reality (AR) [11]. Furthermore, the high cost and complexity
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of LiDAR systems limit their use in consumer-level applications. On the other hand, by
processing 2D photographs from various perspectives, photogrammetry provides high-
quality surface texture information while reconstructing 3D models [12]. Photogrammetry
is extensively used in fields like architecture, cultural heritage preservation, and media
production, where visual detail is paramount [13]. However, its spatial accuracy is often
less reliable, being influenced by factors such as lighting, camera quality, and lack of
precise distance measurements [14]. Furthermore, photogrammetry struggles in low-light
or low-contrast conditions and takes a long time to analyze [15].

In order to create more complete 3D models that combine the geometric accuracy of
LiDAR with the rich visual information offered by photogrammetry, there is an increasing
need to fuse LiDAR and photogrammetry data due to the advantages and disadvantages of
both technologies [5,6]. Technical difficulties in this fusion process include aligning point
clouds created from sources of data that range in scale and quality, removing redundant or
noisy data, and ensuring that the resulting model is both geometrically precise and visually
detailed [16]. Point clouds are often aligned and fused using traditional methods such as
Simultaneous Localization and Mapping (SLAM) [17] and Iterative Closest Point (ICP) [18].
However, these methods frequently falter when handling datasets with several resolutions
or when real-time processing is necessary. Furthermore, inaccurate point-cloud alignment
is hampered by data inconsistencies, such as gaps or noise from external factors. Therefore,
in order to effectively handle these issues, more advanced algorithms are required [19].

This research aims to develop a novel framework for fusing LiDAR and photogramme-
try point clouds using a combination of traditional methods and cutting-edge techniques
like Structure from Motion (SfM) [20], Neural Radiance Fields (NeRF) [21], and 3D Gaus-
sian Splatting [22]. SfM enables the reconstruction of 3D models from 2D images, while
NeRF and 3D Gaussian Splatting employ neural networks to generate highly detailed 3D
objects from sparse image datasets. These approaches, combined with machine learning-
based algorithms such as Coherent Point Drift (CPD) [23] and Feature-Metric Registration
(FMR) [24], aim to enhance the efficiency, accuracy, and scalability of the point cloud
fusion process. By addressing the key challenges in point cloud fusion, we believe that
this research can contribute to the advancement of applications in geographic information
systems (GIS) [25], autonomous systems [26], AR [27], and urban modeling [28].

Our approach presents a comprehensive approach to point cloud registration, focusing
on the integration of LiDAR and photogrammetry data to enhance both geometric accuracy
and visual quality. The novelty lies in an innovative fusion strategy that addresses the
challenges posed by combining point clouds of differing resolutions, particularly when
high-resolution photogrammetry is combined with low-resolution LiDAR scans. The use
of voxel-based down-sampling, while effective in reducing redundancy, was carefully
balanced to minimize the loss of fine details. Furthermore, advanced algorithms such as
Coherent Point Drift (CPD) and DeepGMR were exploited to align datasets with varying
densities and non-rigid transformations, overall advancing the field by improving the
efficiency and precision of point cloud fusion.

The subsequent sections of this manuscript are organized as follows: Section 2 provides
an exploration of related works. Section 3 details the proposed methodology and dataset
used. Section 4 presents the experimental results. Section 5 offers a discussion. Finally,
Section 6 concludes the manuscript.

2. Related Works
Point cloud generation and fusion have garnered significant attention due to their

crucial role in creating accurate 3D models for applications such as urban planning and GIS.
The evolution of methods such as LiDAR, photogrammetry, SfM, NeRF, and 3D Gaussian
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Splatting has significantly improved the ability to generate high-fidelity 3D representa-
tions. Due to variations in resolution, accuracy, and computing demands, the problem
of combining point clouds from several modalities such as LiDAR and photogrammetry
remains a crucial field of study. Table 1 summarizes the more popular current approaches
in point cloud generation and fusion and their limitations. LiDAR technology excels
in geometric accuracy, making it indispensable for precise spatial mapping applications,
although its real-time capabilities are limited due to high computational and hardware
requirements [6,8,10]. In contrast, photogrammetry provides richer visual fidelity but
struggles with real-time processing due to its intensive computational needs [5]. Structure
from Motion (SfM) offers a middle ground with moderate real-time capability and spatial
accuracy, but its performance diminishes in large-scale environments [20]. NeRF is noted
for producing photorealistic visual quality, although its computational demands make it
impractical for real-time applications [21]. The method of 3D Gaussian Splatting provides
a faster alternative to NeRF, achieving high visual fidelity with a moderate level of spatial
accuracy, making it suitable for real-time applications in less geometrically demanding
tasks [22]. Finally, SLAM stands out for its real-time localization and mapping abilities,
although its texture reconstruction is limited, making it more appropriate for environments
that prioritize spatial awareness over visual detail [29,30].

Table 1. Comparison of common 3D-reconstruction and fusion models in terms of real-time perfor-
mance, accuracy, and computational cost.

Technology/Method Real-Time
Capability Geometric Accuracy Visual Fidelity Computational

Requirements

LiDAR Limited High Low High (average)

Photogrammetry Low
(time-consuming) Moderate High (rich textures)

High (extensive
computational
resources)

SfM (Structure from
Motion) Moderate Moderate High (rich visual

details)

High (intensive
processing for large
objects)

NeRF (Neural
Radiance Fields)

Low (requires
training) Low Very High

(photorealistic)

Very High
(significant
computational
resources)

3D Gaussian
Splatting High (fast rendering) Moderate Moderate (less

detailed than NeRF)
Moderate (more
efficient than NeRF)

SLAM (Simultaneous
Localization and
Mapping)

High Moderate Low (focused on
geometry)

Moderate-High
(depending on the
scale of the
environment)

Recent advancements in deep learning and machine learning for point cloud data
fusion have seen significant progress across various domains, particularly in robotics,
autonomous driving, augmented reality, and 3D-mapping. Quite a few approaches were
offered over time towards specific challenges, such as data sparsity, dynamic environments,
and real-time processing. Probably the most popular are still those aimed at capturing geo-
metrical features, popularized with PointNet [31]/PointNet++ [32], which were suggested
for point-cloud processing by directly working with unstructured point clouds. PointNet++
extends the basic PointNet by introducing a hierarchical structure, enabling the network
to capture local geometric features across scales, which is crucial for dense point cloud
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fusion tasks. Based on PointNet, Frustum PointNet [33] focused on 3D object detection by
combining 2D image features with point clouds in a frustum region of interest, fusing im-
age and point cloud data for robust object detection. The MultiView CNN (MVCNN) [34]
approach applied CNNs to multiple 2D projections of a 3D scene or object. By fusing
point clouds from various views, the network learns to capture geometric properties from
different perspectives, improving overall performance in classification and reconstruction
tasks. PointFusion [35] explicitly merged RGB images with the corresponding point clouds,
allowing the model to utilize texture information from the images alongside geometric
data from the point clouds for better object recognition and 3D localization. Another
point-based convolution method, ConvPoint [36] used spatial convolution filters designed
specifically for point clouds. It focuses on direct processing of point sets, bypassing the
need for voxelization, and improves both accuracy and efficiency in point cloud fusion
tasks. The VoteNet [37] architecture applied a voting mechanism to point cloud fusion for
3D object detection. It generates multiple votes for each point in the cloud, and then aggre-
gates them to identify potential object locations, making it robust to occlusions and noise.
RangeNet++ [38] was designed to directly process LiDAR point clouds using spherical
projections, allowing it to scale efficiently with the size of the data. It uses these projections
to fuse data from various viewpoints, improving object segmentation and detection.

Other researchers focused on different ways of achieving 3D data fusion. LatticeNet [39]
was suggested for efficient 3D data fusion using a sparse lattice representation that simpli-
fies computations in large point clouds. It effectively handles data fusion across multiple
scales, making it suitable for large-scale 3D-mapping and localization. 3D Siamese net-
works [40] were designed for 3D object tracking by fusing temporal point cloud data from
consecutive frames. Siamese networks align point clouds using a shared architecture to
track objects over time with high accuracy. SPLATNet [41] introduced a sparse lattice
approach for fusing 2D and 3D data. The lattice-based network efficiently projected and
fused point clouds into a structured domain, allowing for more scalable operations while
preserving accuracy. DenseKPNET [42] (Dense Kernel Point Convolution) replaced stan-
dard grid-based convolutions with point convolutions, enabling the network to process
unstructured point clouds more effectively. It is used for dense 3D reconstruction and
fusion of point-cloud data. PointPillars [43] divided point clouds into vertical columns,
or “pillars”, and processed them using a 2D CNN. This method simplifies the point cloud
structure, making it highly efficient for fusing data in real-time applications, such as au-
tonomous driving. Designed for multisensor fusion, FusionNet [44] used both LiDAR point
clouds and camera images to improve understanding of 3D scenes. The method uses a deep
neural network to integrate multi-modal data into a single coherent representation. 3D-
LMNet [45] was proposed as another multimodal network that fuses point cloud data and
images using attention mechanisms, refining the fusion by focusing on the most relevant
parts of each modality, improving detection in cluttered environments. DenseFusion [46]
is still widely used in robotic manipulation tasks and was suggested to fuse dense RGB
image features with corresponding point clouds, refining 6D pose estimation and object
recognition tasks by combining fine-grained texture and shape information. VoxelNet [47]
was introduced as a voxelization process that converts point clouds into 3D grids, allow-
ing convolutional neural networks (CNNs) to be applied. It effectively fuses data from
multiple sensors and compresses information into manageable voxelized representations.
DeepVoxel [48] implemented voxel-based representations for the learning-based fusion of
point clouds, combining multiple views into a single coherent 3D model. It uses multi-scale
voxel grids to capture fine geometric details and long-range dependencies. Point-GNN [49]
was suggested as a graph-based approach that applies graph neural networks (GNNs) to
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fuse point cloud data, treating each point as a node in a graph. Point-GNN captures the
spatial relationships between points and is highly effective in 3D object detection tasks.

There are also different hybrid approaches competing with the contribution of the
authors of this paper. For example, PV-RCNN [50] is a hybrid approach combining point-
voxel representations (PV-RCNN) that enables efficient and accurate 3D object detection in
point cloud data, and by merging features from voxelized grids and raw points, it improves
detection precision, especially in sparse areas. LiDAR-RCNN [51] was suggested to fuse
camera and LiDAR data through region proposals generated from images, which are then
refined using 3D point cloud data. This method enhances object detection by combining
high-resolution image features with precise geometric point cloud information.

3. Materials and Methods
3.1. Dataset

For 3D reconstruction and analysis, point clouds were generated using NeRF and
3D Gaussian Splatting photogrammetric methods. These samples were then used for 3D
model refinement, validation, and reduction experiments to ensure accurate alignment
and fusion. For comparative analysis and hybrid data fusion, we incorporated LiDAR
data obtained from the National Digital Scan dataset of Lithuania, made available by the
National Land Service under the Ministry of Environment of the Republic of Lithuania [52].
The LiDAR dataset provides highly accurate spatial measurements, allowing us to evaluate
our fusion methods by combining its precise geometry with the details captured in the
photogrammetric data.

For validation, we created a custom dataset of real-world scenes, specifically focused
on capturing benches in varied urban and natural environments, with a variety of envi-
ronmental perturbations frequently encountered in practice. These include the presence of
nearby distracting objects (such as bins, bushes, or park furniture), transient movements of
the camera due to manual operation, and subtle shifts in framing from scene to scene. This
variability in the dataset enhances its robustness and suitability for validating algorithms
that aim to align and reconstruct complex geometries and textures in both controlled and
natural outdoor environments.

This dataset is divided into six different types of scene, with 10 iterations per object,
resulting in a comprehensive collection of perturbated representations of the data. Each
scene was captured using a handheld device, maintaining a roughly forward-facing orien-
tation. The number of frames per scene varied between 450 and 990 frames, depending on
the complexity and occlusion within the environment. The resolution for all scenes was set
at 1920 × 1080 pixels, with a frame rate of 30 frames per second to ensure consistent and
smooth motion capture. The GPS coordinates for one of the example test locations for these
bench scenes are 54.9044999495203, 23.95789681875333.

Additionally, to test scalability and performance in larger structures, we included a set
of significantly larger objects, with 10 iterations per object, recorded using the same hand-
held device and with identical settings in terms of frame rate and resolution. The GPS coor-
dinates for one of the example test locations for these larger objects are 54.91597817284841,
23.969593733766242.

3.2. Hybrid Methodology

This work aims to address the limitations of existing point cloud fusion methods by
developing a more robust and efficient system for fusing LiDAR and photogrammetry
data. The proposed method fuses traditional methods, such as SfM and SLAM, with
advanced methods, i.e., NeRF, 3D Gaussian Splatting, and machine learning (ML)-based
methods, such as Coherent Point Drift (CPD) and Feature-Metric Registration (FMR), with
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the aim of improving the accuracy of point cloud alignment and validation, overcoming
the limitations of ICP and traditional SLAM-based methods.

In Structure-from-Motion (SfM) models, scale ambiguity is a fundamental challenge,
as the reconstruction process from images typically results in a model without an inherent
scale, which means that the SfM-generated point cloud is accurate in relative distances but
lacks an absolute scale, rotation, and translation with respect to the real-world coordinates.
To resolve the scale in SfM point clouds, external data, such as LiDAR or ground control
points (GCPs) are commonly integrated. LiDAR, which captures 3D measurements directly
with absolute scale, can be fused with SfM data through an alignment process. The fusion
of LiDAR and SfM point clouds starts with an initial alignment phase, usually using
algorithms such as RANSAC (Random Sample Consensus) or ICP (Iterative Closest Point).
These algorithms identify corresponding points between the two datasets and compute a
transformation matrix that minimizes the alignment error between the LiDAR data, which
have a known scale, and the SfM data, which do not. Once initial alignment is achieved,
the scale of the SfM model is corrected by transforming the SfM point cloud using the scale
derived from the alignment process, as this transformation ensures that the SfM model now
aligns both in scale and position with the LiDAR data. Algorithms such as Generalized ICP
(GICP), which consider local geometric structures, or probabilistic methods like Coherent
Point Drift (CPD), are applied to further refine this alignment by minimizing residual errors.
The final outcome is a fused point cloud where the SfM data have been accurately scaled
and aligned to match the real-world measurements provided by LiDAR.

The output of our approach creates fused models with high geometric and visual
fidelity and speed of generation. Our approach is visualized in Figure 1.

Figure 1. Process for fusing LiDAR and photogrammetry data.
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3.2.1. Point Cloud Alignment

Precise point-cloud alignment is necessary to construct a cohesive 3D model from
disparate sources of LiDAR and photogrammetry. Our alignment process ensures that the
fused model accurately represents the real-world geometry by eliminating misalignments
between the datasets. We employ a hybrid methodology that combines traditional geomet-
ric algorithms with modern machine learning (ML)-based techniques to achieve global and
local alignment. The goal is not only to achieve precision in alignment, but also to enhance
computational efficiency, making the process scalable for large datasets.

Initially, alignment starts with geometric algorithms that provide an effective foun-
dation for global registration. One of the foundational techniques is the Random Sample
Consensus (RANSAC) algorithm, which operates by selecting a random subset of points
from the source point cloud. RANSAC can be sensitive to point density; however, our
approach mitigates this issue by using RANSAC as a preprocessing step to provide a rough
initial alignment before refining it with more precise algorithms like ICP. The combined
use of RANSAC for coarse alignment followed by ICP for fine-tuning uses the strengths
of both methods. ICP’s high accuracy in point cloud registration is well documented and,
as correctly noted, is not heavily impacted by point density. Our two-stage approach
ensures that the potential point density sensitivity of RANSAC does not undermine the
final accuracy of the registration, as the role of RANSAC is only to provide an initial esti-
mate. The subsequent application of ICP compensates for any density-related discrepancies
introduced during the initial stage.

A transformation matrix, T, is computed to minimize the error between these points
and their corresponding counterparts in the target point cloud. Mathematically, this is
expressed as:

T = arg min
T

N

∑
i=1

∥Tpi − qi∥2, (1)

where pi and qi represent corresponding points in the source and target clouds, respectively,
and N is the number of correspondences. RANSAC is particularly efficient in situations
where the point clouds exhibit significant noise or outliers. Although sensitive to initial
point selection, RANSAC provides a crucial foundation for further refinement.

Building upon this initial alignment, we apply the Iterative Closest Point (ICP) algo-
rithm, which iteratively refines the transformation by minimizing the Euclidean distance
between the corresponding points. In its simplest form (point-to-point ICP), the objective
function to minimize is:

EICP(T) =
N

∑
i=1

∥Tpi − qi∥2. (2)

The applied direct minimization yields effective results when the point clouds are
already roughly aligned. However, for more sophisticated surface reconstructions, a point-
to-plane ICP variant is employed. Here, the error function is augmented by including
surface normals:

EICP-plane(T) =
N

∑
i=1

((Tpi − qi) · ni)
2, (3)

where ni represents the surface normal at point qi. We empirically determined that this
variant was most suited for fine-tuning in local alignment tasks as it significantly reduces
local errors where surface curvature plays a key role.
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To further enhance the alignment accuracy between LiDAR and photogrammetry data,
which often have different resolutions and densities, the generalized ICP (GICP) algorithm
was employed. GICP extends ICP by considering not only the point-to-point distances
but also the local geometric structure through covariance matrices. The error function is
given by:

EGICP(T) =
N

∑
i=1

(Tpi − qi)
⊤Σ−1

i (Tpi − qi), (4)

where Σi is the covariance matrix at each corresponding point pair. This covariance-
based approach provides robustness in cases where the resolution between datasets varies,
ensuring better alignment of geometric structures with differing point densities.

For scenarios where probabilistic alignment is required, Coherent Point Drift (CPD)
is used. CPD interprets the alignment task as a maximum likelihood estimation problem,
where a point cloud is modeled as a probability distribution (Gaussian Mixture Model,
GMM). The likelihood function is maximized to align the point clouds. The mathematical
formulation for the CPD’s energy function is:

ECPD =
N

∑
i=1

log p(pi|T, qi), (5)

where p(pi|T, qi) is the probability density function representing the probability that the
point pi is generated by qi. This probabilistic method is particularly advantageous for
aligning point clouds with different resolutions or non-uniform densities.

Although these traditional methods provide robust initial and fine-tuning solutions,
we extend the methodology with ML-based approaches to further improve accuracy,
especially in complex real-world environments. One such approach is the RPM-Net [53],
a neural network that learns to predict the transformation matrix T directly. RPM-Net
was trained on synthetic point cloud data (e.g., ModelNet40) and fine-tuned with project-
specific data to improve performance. The transformation predicted by the network is
computed by minimizing a learned loss function:

TRPM = arg min
θ

L(Tθ , p, q), (6)

where θ represents the parameters learned by the neural network. RPM-Net demonstrates
significant improvements in handling complex geometric transformations and non-rigid
deformations, although it requires considerable computational resources during training.

Finally, the Deep Gaussian Mixture Registration (DeepGMR) model [54] is introduced
for robust alignment in the presence of noise and missing data. This method models each
point cloud as a Gaussian mixture, with each point represented by a Gaussian distribution.
The alignment is performed by minimizing the divergence between these distributions:

EGMR(T) = −
N

∑
i=1

log

(
M

∑
j=1

πjN (Tpi|µj, Σj)

)
, (7)

where N denotes the Gaussian distribution with mean µj and covariance Σj, and πj are the
mixture weights. This approach is robust to noise, and after domain-specific training, the
model demonstrates superior accuracy in fusing complex datasets.

3.2.2. Pointcloud Validation

After aligning the point clouds from LiDAR and photogrammetry, we need to validate
the quality of the fused data to ensure that the resulting 3D model is accurate and free from
inconsistencies. The validation process involves both traditional geometric methods and
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advanced machine learning (ML)-based algorithms to assess various aspects of point cloud
quality. This combination of traditional methods, such as nearest-neighbor distance and
covariance matrix analysis, with ML-based approaches, such as COPP-Net and IT-PCQA,
allows us to effectively assess both the geometric and visual accuracy of the fused 3D
model, ensuring that the final result meets high standards of quality and consistency.

One of the primary techniques used for validation is the nearest-neighbor distance
metric, which quantifies the spatial distribution of points. This method evaluates the
density of points by calculating the distance between each point pi in the point cloud and
its nearest neighbor qnn(i) in the same cloud or the corresponding cloud. The validation
metric is expressed as:

dnn =
1
N

N

∑
i=1

∥∥∥pi − qnn(i)

∥∥∥, (8)

where N is the total number of points in the cloud. A low value of dnn indicates a dense,
well-aligned region, while higher values can signal sparse areas or misalignment between
LiDAR and photogrammetric data. This method is especially useful in identifying regions
of interest where the fusion process might have introduced errors, such as overlapping or
discontinuous surfaces.

To complement the nearest-neighbor distance, we also employ covariance matrices to
validate the local structure and variability within the point clouds. Covariance matrices, Σi,
are computed for the neighborhoods around each point pi, capturing the geometric distri-
bution of its surrounding points. These matrices provide insight into the local anisotropy
and planarity of the point cloud. The eigenvalues λ1, λ2, λ3 of the covariance matrix Σi

describe the spread of points in the neighborhood, where the ratio of the eigenvalues can be
used to detect planar regions (e.g., λ1 ≫ λ2 ≈ λ3 indicates a flat surface). Such statistical
measures are vital for identifying regions where data from different sources (LiDAR and
photogrammetry) may not blend seamlessly.

While these traditional geometric validation techniques provide a strong foundation
for assessing the quality of the fused point clouds, we extend this process by incorporating
ML-based validation methods, as these methods leverage deep learning models trained on
large datasets to predict point cloud quality, offering enhanced accuracy and robustness,
particularly in complex or noisy data scenarios, as is often the case in UAV-gathered data.
We have adapted our approach from COPP-Net [55] (Coarse-to-Fine Object-Point Pair
Network), which uses learned features to predict the accuracy of object alignment in point
clouds. COPP-Net is designed to detect subtle misalignments that may not be apparent
using traditional metrics. Given a fused point cloud, the network evaluates object-pair
correspondences, refining the transformation and alignment at both coarse and fine levels
and provides a probabilistic assessment of the alignment accuracy, thereby ensuring that
the fusion process is geometrically consistent.

Mathematically, the COPP-Net quality assessment is modeled as minimizing a loss
function LCOPP, which evaluates the deviation between predicted and actual object-pair
correspondences:

LCOPP =
1
N

N

∑
i=1

∥∥∥Tpredpi − qi

∥∥∥2
, (9)

where Tpred is the predicted transformation matrix, pi and qi represent corresponding
points, and N is the number of object-pairs evaluated. By leveraging this deep learning
approach, COPP-Net can significantly improve the detection of small misalignments that
would otherwise go unnoticed.
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For additional validation, we used the Image-Transferred Point Cloud Quality As-
sessment (IT-PCQA) [56], which bridges image quality metrics and point cloud validation.
IT-PCQA models the problem by transferring knowledge from image-based quality as-
sessments to point clouds. It exploits the idea that, since photogrammetry generates point
clouds based on image data, any distortions or errors in the source images can be trans-
ferred and mapped to the point cloud. This method assesses the consistency between
point clouds and their corresponding image-based models, ensuring both geometric and
visual fidelity.

The IT-PCQA metric involves mapping image features, f (I), to point cloud features,
g(P), and comparing them through a feature-space distance:

dIT-PCQA = ∥ f (I)− g(P)∥. (10)

This final feature-based comparison helps identify discrepancies introduced during
the fusion process and provides a holistic validation metric that aligns the visual quality of
the photogrammetric model with the geometric accuracy of the LiDAR-based point cloud.

3.2.3. Point Cloud Fusion

The final step in creating a cohesive 3D model involves combining the aligned point
clouds into a single coherent representation. The fusion process integrates the above
processed point clouds from different sources. A key challenge in this step is to preserve
the geometric accuracy and visual fidelity of the model while reducing the computational
overhead. To address this, a voxel-based reduction method is employed, which optimizes
the point-cloud structure by down-sampling redundant or densely clustered points without
compromising essential details.

In the voxel-based reduction approach, the 3D space is subdivided into a grid of cubic
cells or voxels. Each voxel in the grid contains a set of points from the point cloud, and only
a representative point is retained for each voxel. This representative point can be selected
in several ways, such as choosing the centroid of the points within the voxel, which ensures
that the reduced point cloud still accurately reflects the overall geometry of the original
model. Mathematically, if pi represents a point within a voxel vk, the representative point
pcentroid for that voxel is computed as:

pcentroid =
1
|vk| ∑

pi∈vk

pi, (11)

where |vk| is the number of points within voxel vk. This method ensures that regions with
high point density are adequately down-sampled, reducing the total number of points
while maintaining geometric fidelity.

This voxelization strategy is used for fusing point clouds that in almost all cases differ
in resolution. LiDAR data typically have a high point density, especially in areas close to
the sensor, whereas photogrammetric point clouds may have a more uniform but lower
resolution. The size parameter of the voxel grid, ∆v, controls the resolution of the fused
point cloud, balancing the need for detail and computational efficiency. A smaller voxel size
retains more detail but increases the number of points in the final model, whereas a larger
voxel size leads to greater data reduction. Adjusting ∆v according to the characteristics of
the input data, the voxel-based reduction ensures an optimal trade-off between accuracy
and efficiency.

In cases where multi-resolution point clouds need to be fused, weighted averaging
techniques can be employed to better integrate the differing resolutions of LiDAR and
photogrammetry data. A weighted centroid approach may be used, where each point pi in
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voxel vk is assigned a weight wi based on its source and resolution. The weighted centroid
pweighted is then computed as:

pweighted =
∑i wipi

∑i wi
, (12)

where wi reflects the relative importance of the point, often influenced by factors such as
data quality, resolution, and sensor type.

Our approach ensures that high-resolution LiDAR data do not overly dominate the
final fused model, and the photogrammetric data are given proportional importance
on the basis of their geometric contribution. Voxel-based reduction also improves the
computational efficiency of subsequent processes, such as visualization, rendering, and 3D
model manipulation. Memory usage is minimized by reducing the total number of points.
The final output of the fusion process is a 3D model that is not only geometrically accurate
but also computationally efficient.

3.2.4. NeRF and 3D Gaussian Splatting Integration

In this work, we integrated NeRF and 3DGS into the point cloud fusion process
to achieve enhanced visual and geometric consistency in the final fused model. NeRF
improves visual detail in areas where surface texture and appearance are important, while
3DGS improves geometric representation and efficiency.

NeRF reconstructs scenes by representing the volumetric scene as a continuous func-
tion that maps 3D coordinates and viewing directions to color and density values. The key
advantage of NeRF lies in its ability to capture fine details in both geometry and appear-
ance, which makes it suitable for enriching point clouds derived from photogrammetry
data with high-resolution textures. In our methodology, the 3D scene is reconstructed by
training an NeRF model on input images. The resulting volumetric representation is then
sampled at discrete points to generate a dense point cloud, which is aligned with LiDAR
data. Mathematically, NeRF is defined as:

fθ(x, d) = (c, σ), (13)

where fθ is the neural network parameterized by θ, x is the 3D coordinate, d is the viewing
direction, c is the predicted RGB color, and σ is the predicted volume density. The point
cloud is generated by sampling fθ over a grid of 3D positions, and the output is integrated
with LiDAR point clouds during the fusion process.

The method of 3D Gaussian Splatting (3DGS), on the other hand, represents scenes
using Gaussian ellipsoids, which allow for more efficient rendering and reconstruction.
The advantage of 3DGS lies in its ability to handle large-scale scenes and capture global
geometry more efficiently than NeRF. In our approach, 3DGS serves as a complementary
method to NeRF, providing a more lightweight representation of the 3D structure while
maintaining essential geometric features. The 3DGS-based point cloud is generated by
fitting Gaussians to the scene and adjusting their parameters to match the input data, using
the following optimization:

L3DGS = ∑ i = 1N |Tipi − qi|2, (14)

where Ti represents the Gaussian parameters (mean and covariance), pi is the point in
the scene, and qi is the corresponding point in the input image or the point cloud. The
optimized Gaussian splats are then converted into point-cloud representations for fusion
with LiDAR data.
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The fusion process between the NeRF-generated point clouds and 3DGS involves
aligning the point clouds using registration techniques such as Iterative Closest Point
(ICP) and Generalized ICP (GICP), as previously described. Let the point clouds be
represented as PNeRF and P3DGS, where the goal is to minimize the alignment error between
the corresponding points, which is achieved by iteratively optimizing the transformation
matrix T such that the cost function is minimized

E(T) = ∑
i
∥T · pNeRF

i − p3DGS
i ∥2, (15)

where pi are the points in the respective point clouds. By preserving both geometric and
visual features, the hybrid approach results in a final point cloud with better fidelity in both
surface texture and geometry, overcoming the limitations of traditional fusion methods.

3.2.5. Adaptive Sampling Rate

Given the disparate densities and resolutions typical in the input data, our approach
exploits an adaptive sampling rate methodology that balances the trade-off between the
data sampling rate and processing speed. Adaptive sampling is achieved through a voxel-
based reduction technique, which adjusts the sampling rate of the point cloud data based
on the density of points in different regions. The higher the point density, the higher
the sampling rate reduction, and vice versa, which is particularly important when fusing
LiDAR data, which often have a high point density, with photogrammetric data that may
have a lower, but more uniform, resolution, as the adaptive sampling mechanism ensures
efficient processing without compromising the geometric accuracy of the fused model.

The key to this adaptive method is the dynamic adjustment of the voxel size ∆v, which
determines the level of down-sampling applied to regions of varying point densities. The
voxelization process subdivides the 3D space into a grid of cubic voxels, and the points
within each voxel are reduced to a representative centroid point. The voxel size ∆v is
controlled by a parameter that varies according to the local point density. Therefore, voxel-
based reduction is defined as follows: For a given voxel vk with a set of points {pi}, the
centroid pextcentroid is computed as:

pextcentroid =
1
|vk| ∑

pi∈vk

pi, (16)

where |vk| represents the number of points within the voxel, which, in turn, ensures that
regions of higher point density are adequately down-sampled to reduce the total number
of points in the final fused model while maintaining geometric fidelity.

In cases where point clouds of varying resolutions are fused, a weighted centroid
method is used to assign a higher importance to high-resolution points. For a voxel vk

containing points pi with weights wi, the weighted centroid is computed as:

pextweighted =
∑i wipi

∑i wi
, (17)

where wi reflects the importance of each point based on its source, quality, and resolution.
The primary indicators for balancing the sampling rate and the processing speed

are the point density and voxel size. In high-density regions, a larger voxel size is used
to reduce the number of points while maintaining accuracy. In contrast, in low-density
regions, a smaller voxel size is used to preserve important details. The balance between
these factors ensures an efficient fusion process that scales well for large datasets without
sacrificing the quality of the 3D model.
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4. Results
This section presents the evaluation performance of our hybrid method used for

point-cloud generation, alignment, and fusion.
The results of our experiments validate the efficacy of the hybrid fusion methodology

outlined in Section 3.2, using the custom dataset introduced in Section 3.1. We selected six
types of scenes of benches in urban and natural environments to illustrate the accuracy
of our approach to assess spatial accuracy, visual fidelity, and processing efficiency under
real-world conditions, as well as the additional type of large object scenes (sculptures).
Examples of the objects are provided in Appendix A. Photogrammetric methods inherently
capture relative scales due to their image-based nature. Our hybrid approach mitigates
this (see Table 2), achieving an average error in the lengths of the reconstructed bench
of approximately 5% in six types of smaller-scale scenes (object types 1 to 6) and around
2% in larger scenes (object type 7). The results show that when combining LiDAR’s
precise geometric measurements with the data from photogrammetry, the resulting models
consistently captured fine environmental details, which are difficult to achieve using a
single modality. The fused models demonstrated notable improvements in structural
continuity, particularly in complex areas with occlusions or intricate geometry. The hybrid
methodology helped reduce artifacts, such as edge misalignments and surface noise, which
are commonly observed when using photogrammetry or LiDAR alone.

Table 2. Comparison of size measurements between real and hybrid approach objects.

Object (Type) Real Size (cm) Hybrid Size (cm) Absolute Difference (cm) Percentage Difference (%)

1 500 508 8 1.60%
2 500 476 24 4.80%
3 500 501 1 0.20%
4 254 257 3 1.18%
5 254 289 35 13.78%
6 254 286 32 12.60%
7 1500 1530 30 2.00%

The comparison of the real and fusion sizes presented in Table 2 highlights the accuracy
of the hybrid methodology in preserving the dimensions of the object during the integration
process. For objects with larger dimensions, such as Object 1 and Object 2, the percentage
difference remained below 6%, indicating a high level of size preservation. Similarly, for
an even larger object type, Object 7 (example of 15 m object is illustrated in Figure 2), the
percentage difference was 2.00%, showing the method’s capacity to maintain geometric
accuracy even near the upper bounds of its practical application. In contrast, smaller objects,
such as Object 5 and Object 6, exhibited higher percent differences of 13.78% and 12.60%,
respectively. This difference can be attributed to the higher sensitivity of smaller-scale
objects to resolution differences in the LiDAR data. The results show that, while the fusion
process effectively maintains geometric integrity for larger objects, further refinement is
necessary to handle scale variations and local inconsistencies to improve accuracy for
smaller features.

Figure 3 presents hybrid point clouds generated using NeRF and 3D Gaussian Splat-
ting. NeRF delivers more dense (∼250 k points) and detailed point clouds, excelling in
capturing smooth transitions and surface textures. This is evident in the accurate reconstruc-
tion of curves and geometric details. In contrast, 3D Gaussian Splatting prioritizes speed,
resulting in sparser (∼100 k points) representations while maintaining structural accuracy.
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Figure 2. Example of the fountain statue (object category 7) with a diameter of 15 m.

Figure 3. Examples of hybrid point clouds based on NeRF (left) and 3D Gaussian Splatting (right).

Figure 4 illustrates the graph of k-nearest neighbors (kNN) mean values for fused
point clouds generated using two different methods: 3D Gaussian Splatting and NeRF
(Neural Radiance Fields). In this context, the kNN metric indicates how well the point
clouds, created by each method, represent the underlying 3D structure of the scene. Lower
kNN mean values indicate a more accurate reconstruction of the scene, as the nearest
neighbors in the fused point cloud are closer to each other, thereby reflecting less noise and
higher precision in the 3D geometry.

Figure 4. Graph of kNN mean values of fused point clouds based on 3D Gaussian Splatting and
NeRF methods (less is better).

4.1. Computational Analysis of the Hybrid Approach

The findings also imply that the greatest balance between accuracy and efficiency
is achieved by using a hybrid strategy that combines ML-based methods for refinement
with traditional algorithms for initial alignment, particularly valuable for applications
requiring both geometric precision and the ability to handle multiresolution datasets.
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Table 3 highlights the computational and structural differences between the NeRF and 3D
Gaussian Splatting-based hybrid methodologies. The NeRF neural network model, with
22 M parameters, is six times larger than the 3.6 M parameters Gaussian neural network
model. Consequently, NeRF’s training time averages 1260 s, approximately seven times
longer than Gaussian’s 180 s. Furthermore, the Gaussian model shows a significant increase
in the interface speed, 230 ms/frame, compared to the NeRF, 1190 ms/frame. The resulting
hybrid approach demonstrates the computational efficiency of 3D Gaussian Splatting,
reducing processing times by nearly five times compared to conventional NeRF methods.
The integration enables rapid point cloud generation, making the approach highly suitable
for near real-time applications and scenarios where scalability and precision are essential.

Table 3. Comparison of model size of NeRF-based and 3D Gaussian Splatter hybrid models.

Model Model Size Average Training Time (s) Average Interface Speed
(ms/frame)

NeRF-based Hybrid 22 M parameters 1260 1190
3D Gaussian Splatter Hybrid 3.6 M parameters 180 230

4.2. Ablation Study

The ablation study was conducted to evaluate the effects of individual SfM, NeRF,
and 3D Gaussian Splatting for point cloud generation, as well as traditional and ML-based
algorithms for point cloud alignment.

4.2.1. Performance of SfM

To assess the performance of SfM in generating point clouds from 2D images, we
used the COLMAP library, running the method on images acquired with a 2020 iPhone SE
model. Numerous image sizes are tested to determine the optimal balance between speed
and quality. The performance of SfM in point cloud generation using different image sizes,
comparing CPU and GPU processing times, are illustrated in Table 4.

Table 4. Performance of SfM in point cloud generation using different image sizes, comparing CPU
and GPU processing times.

Image Size CPU Time (s) GPU Time (s) kNN Mean
Distance

kNN Standard
Deviation

Original (1.8 MB) 77,335 10,429 0.7944 4.522
2× Reduced (800 KB) 20,514 8185 0.7685 6.060
4× Reduced (200 KB) 7830 4453 0.4320 1.822
8× Reduced (70 KB) 6662 2392 0.4896 2.391

The results in Table 4 show that reducing the size of the image significantly improves
the processing speed, especially on the GPU, with minimal degradation in point cloud
quality. A 4× reduction in image size provided the best trade-off between speed and
accuracy, making it the most efficient option to generate point clouds without compromising
visual detail. Additionally, mean distance and standard deviation values of kNN (k-Nearest
Neighbors, k = 50) quantify the geometric consistency of the generated point clouds.
In particular, the variation in geometric consistency, as indicated by the kNN standard
deviation, decreases with smaller image sizes, suggesting that lower-resolution images may
produce more uniform point clouds, providing a reliable trade-off between computational
efficiency and geometric stability.
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4.2.2. Speed and Quality Trade-Offs: NeRF vs. 3D Gaussian Splatting

To compare the performance of NeRF and 3D Gaussian Splatting to generate 3D point
clouds, we measured the training times for each method using a GeForce RTX 3050 Mobile
GPU. Both methods are applied to the same image set, reduced to 4× for consistency.
Table 5 shows the comparison of the training times and visual quality of the NeRF and 3D
Gaussian Splatting methods in the generation of point clouds.

Table 5. Comparison of training times and visual quality for NeRF and 3D Gaussian Splatting
algorithms in point cloud generation.

Algorithm Training Time (min) Visual Quality

NeRF (Nerfacto) 36 High
3D Gaussian Splatting 8 Moderate-High

The results in Table 5 illustrate that 3D Gaussian Splatting is more than four times
faster than NeRF, although NeRF produced higher-quality visuals. Both methods are
capable of generating detailed point clouds, but NeRF’s output had finer control over
lighting and occlusions, making it more suitable for applications requiring high visual
fidelity. Figures 5 and 6 illustrate the training speed of NeRF and 3D Gaussian Splatting
using GPU, respectively.

Figure 5. NeRF training speed ∼36 min using GPU.

Figure 6. 3D Gaussian Splatting training speed ∼8 min using GPU.

Table 6 provides a sensitivity analysis regarding how key parameters impact both
the transformation error and texture quality during the fusion of NeRF-generated point
clouds and 3DGS data. We empirically determined that the optimal range for the ICP
threshold (ϵ) lies between 10−5 and 10−4, effectively minimizing the error but leading to
slower convergence. The GICP maximum iteration value performs best between 200 and
300, where the transformation error is reduced, though performance plateaus beyond this
range. NeRF resolution should ideally be set between 2563 and 5123, as higher resolution
significantly improves both geometric alignment and texture quality. For the 3DGS point
density, a medium-to-high density is optimal, providing better geometric precision and
enhanced texture fidelity. Finally, the learning rate (α) performs best in the range of 0.01 to
0.05, as it ensures faster convergence without causing instability in the system.
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Table 6. Parameter sensitivity analysis for NeRF-3DGS fusion.

Parameter Optimal Value Range Effect on Transformation Error Effect on Surface Quality

ICP Threshold (ϵ) 10−5 to 10−4 Minimizes error,
slow convergence No significant effect

GICP Max Iterations 200 to 300
Lower error within optimal
range, beyond that
results plateau

Slight improvement

NeRF Resolution (r) 2563 to 5123 Higher resolution leads to
finer alignment Major enhancement

3DGS Point Density Medium to High High density improves
geometric precision

Enhanced quality with
higher density

Learning Rate (α) 0.01 to 0.05 Faster convergence
without instability No significant effect

Overall, there is a clear trade-off between speed and visual quality when comparing
NeRF to 3D Gaussian Splatting. NeRF continuously generated 3D reconstructions of
superior quality, resolving fine-grained visual elements including lighting and occlusions.
However, its computational intensity made it slower, especially when working with large
datasets or high-resolution images. In contrast, 3D Gaussian Splatting demonstrates
significantly faster performance than NeRF, requiring training times that were more than
four times shorter.

4.2.3. Object Clipping: Convex Hull vs. Camera Plane

The experiment on clipping point clouds outside the camera plane focused on extract-
ing the redundant data points captured in regions not visible to the camera. Two methods
are tested: a basic clipping method and a convex hull-based method. Table 7 illustrates the
comparison of the effectiveness and execution time of camera plane clipping and convex
hull clipping techniques, indicating the higher success rate of convex hull clipping in
retaining key object details at the cost of slightly increased processing time.

Table 7. Comparison of camera plane clipping and convex hull clipping methods for removing
redundant data points.

Clipping Method Success Rate Execution Time (ms)

Camera Plane Clipping 80% 90
Convex Hull Clipping 95% 120

As seen in Table 7, the convex hull clipping method displayed the higher success rates
in retaining key object details while removing extraneous points. However, it required
slightly more processing time, making it more suitable for detailed 3D-modeling where
visual consistency is important.

Figures 7 and 8 demonstrate the difference between convex hull clipping and basic
camera plane clipping of point clouds, illustrating how the convex hull approach more
effectively removes redundant points while preserving the key object details. The results
demonstrate that the convex hull-based clipping technique removed unnecessary backdrop
points more precisely while maintaining important object details, outperforming the more
straightforward camera plane clipping approach.
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Figure 7. Example of a convex hull used for clipping points outside the camera area. The blue dots
indicate the positions of the chambers. The bright black line indicates the resulting shape.

Figure 8. Example of a point cloud clipped using the convex hull algorithm.

4.2.4. Point Cloud Alignment: Traditional vs. ML Algorithms

We also tested traditional alignment algorithms from the Open3D and probreg li-
braries, focusing on the performance of the RANSAC, ICP, and GICP algorithms. Table 8
illustrates the performance comparison of traditional point-cloud alignment algorithms
with execution times and alignment accuracy.

Table 8. Performance comparison of traditional point cloud alignment algorithms (RANSAC, ICP,
GICP), showing execution times and alignment accuracy.

Algorithm Min Execution Time (ms) Avg Execution Time (ms) Accuracy

RANSAC 474.775 902.880 97.7%
ICP (point-to-point) 5.580 6.076 100%
ICP (point-to-plane) 5.740 6.200 99.5%

GICP 5.800 6.490 99.8%

As seen in Table 8, ICP (point-to-point) shows the best balance between speed and
accuracy, consistently achieving near-perfect alignment in minimal time. However, GICP is
more accurate in handling complex geometries but requires slightly more processing time.
RANSAC, while effective for initial alignment, is slower and more prone to inaccuracies
depending on the selection of points. The evaluation of alignment quality is quantified
using the fitness metric, which measures the fraction of inlier correspondences relative
to the total number of points in the source point cloud. A higher fitness value reflects
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better alignment, directly representing the geometric accuracy of the registration process
and providing a clear measure to compare different algorithms. Figures 9 and 10 show
point-cloud alignment using the Open3D and probreg libraries, respectively.

Figure 9. Point cloud alignment using the Open3D library.

Figure 10. Point cloud alignment using the probreg library.

The effectiveness of ML-based techniques like RPM-Net and DeepGMR in aligning
point clouds at various resolutions is also evaluated. Table 9 illustrates the comparison of
ML-based algorithms, i.e., RPM-Net and DeepGMR, for point cloud alignment, evaluating
the training time, execution time, and alignment accuracy.

Table 9. Comparison of ML-based algorithms (RPM-Net and DeepGMR) for point cloud alignment,
evaluating training time, execution time, and alignment accuracy.

Algorithm Training Time (epochs) Execution Time (ms) Alignment Accuracy

RPM-Net 17 epochs 20 Moderate
DeepGMR 200 epochs 35 High

As seen in Table 8, the DeepGMR method shows higher alignment accuracy, especially
in cases where traditional methods struggled with varying resolutions or noisy data. RPM-
Net provides reasonable accuracy, but requires further training to enhance the results.
However, both ML-based methods were slower to train compared to traditional algorithms.
Figure 11 and Figure 12 show the point cloud alignment using the RPM-Net and DeepGMR
algorithms, respectively.

Figure 11. Point cloud alignment using the RPM-Net algorithm with the addition of a small random
point movement during training.

Figure 12. Point cloud alignment using the DeepGMR algorithm.

Both traditional and ML-based techniques were effective in aligning point clouds. In
particular, when the point clouds are already closely aligned, traditional approaches, such
as RANSAC and ICP, performed well. ICP (point-to-point) delivers near-perfect accuracy
with minimal execution times, making it ideal for enhancing alignments once an initial



Remote Sens. 2025, 17, 443 20 of 27

match is established. Although useful for coarse alignment, RANSAC was slower and
more prone to errors. In contrast, ML-based algorithms, such as CPD and DeepGMR,
showed higher accuracy in aligning point clouds with different resolutions or noisy data
with longer training times and greater computational resources required.

4.2.5. Quality Assessment of Fused Point Clouds

We also investigated the accuracy and completeness of the fused point clouds through
density metrics and ML-based quality assessment models. The nearest-neighbor distance
and covariance matrix algorithms were applied to evaluate the density of the resulting
point clouds. In our implementation, we used a voxel size of 0.1 for initial down-sampling,
ensuring consistent density across the point clouds. The fused point clouds were further
refined using a voxel down-sampling parameter of 0.05 to enhance geometric accuracy.
These parameters ensured that the resulting point clouds maintained geometric consistency
while being computationally efficient. Table 10 illustrates the quality analysis of the point
clouds that shows the average execution times and quality ratings.

Table 10. Quality assessment of point clouds using nearest-neighbor and covariance matrix methods,
showing average execution times and quality ratings.

Metric Avg Execution Time (ms) Quality Assessment

Nearest-neighbor 12 High
DeepGMR 15 High

From Table 10, both methods provided reliable estimates of the density and quality
of the point clouds, with covariance matrix-based evaluations offering more significant
insights into areas of lower density or incomplete data.

FMR was demonstrated to be most accurate in evaluating the geometric integrity of the
fused point-clouds; however, one key challenge in point cloud validation is determining
the right balance between visual quality and geometric accuracy. LiDAR offers high
accuracy in spatial measurements but often lacks the detailed surface textures captured
by photogrammetry. We have noticed that combining the data from the two sources
and ensuring that visual richness is preserved without compromising geometric integrity
remains an issue.

4.2.6. Merging Point Clouds of Different Resolutions

Both visual quality and computational efficiency were evaluated for the final fused
point cloud that combined information from both LiDAR and photogrammetry sources.
Voxel down-sampling is used in the fusion process to lower the point count while preserving
essential information. Table 11 illustrates the performance of voxel-based down-sampling
for point cloud fusion.

Table 11. Performance of voxel-based down-sampling for point cloud fusion, with average execution
times and quality ratings.

Fusion Method Avg Execution Time (ms) Quality (1–10)

Voxel Down-sampling 8 ms 9

Table 11 shows that the voxel-based reduction algorithm effectively fuses the two point
clouds, ensuring a high-quality 3D model that is computationally efficient for real-time
applications. The overall quality of the fused point cloud is rated 9 out of 10, with the
most significant improvements observed in combining LiDAR’s spatial accuracy with
photogrammetry’s visual detail. Figures 13–15 illustrate the effect of voxel down-sampling
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on the fused point cloud at different voxel sizes (0.2 m, 0.1 m, and 0.05 m units). The
visualized object is the bench from above (second picture from the top in Appendix A,
Figure A1).

Figure 13. Image with 0.2 m unit voxels.

Figure 14. Image after selecting voxels of size 0.1 m units.

Figure 15. Image with 0.05 m unit voxels.

A main challenge encountered was combining point clouds with different resolutions,
particularly when combining high-resolution photogrammetry data with low-resolution
LiDAR scans. In many cases, LiDAR provided the structural geometry, while photogramme-
try added surface texture. However, misalignment between datasets with vastly different
point densities often led to inaccuracies or redundant points in the fused models. The
use of voxel-based down-sampling proved effective in reducing point cloud redundancy;
however, it also introduced the risk of losing the fine details.

4.2.7. Testing Robustness on Third Party Dataset

We also analyzed how our approach performs on public datasets by adding an evalua-
tion of common objects from the Objectron dataset [57] in the ablation study. The dataset
contains the necessary elements for our methodology, including video footage and point-
cloud representations of the objects. We used four objects: bike, chair, laptop, and shoe for
this evaluation, which are illustrated in Figure 16. The reconstructed point clouds of this
dataset are of good accuracy, preserving sufficient levels of fine-grained geometric details
and maintaining consistent spatial coherence across the surfaces of the object.
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Figure 16. Our approach as tested on the Objectron dataset.

5. Discussion
In this study, the fusion of LiDAR and Structure from Motion (SfM) point cloud data

was explored, with a particular focus on the inherent differences in geometric accuracy and
surface texture richness between these techniques. LiDAR is known for its high accuracy
in spatial measurements, but typically lacks the fine surface texture details provided by
photogrammetry. SfM, on the other hand, excels at capturing detailed surface textures,
producing dense point clouds rich in surface detail but often suffers from slightly less geo-
metric precision compared to LiDAR, particularly in complex environments. As discussed
in [58], the challenge lies in preserving both the geometric accuracy of LiDAR and the
visual detail of SfM during data fusion, while avoiding excessive redundancy or noise.

The clipping experiments revealed important insights into balancing geometric and
visual quality. The convex hull-based object clipping technique significantly outperformed
simpler methods like camera plane clipping by reducing unnecessary backdrop points
more effectively. Specifically, the convex hull approach managed to remove over 35% of
the extraneous points, while maintaining over 90% of the critical object detail, resulting
in a more streamlined point cloud, as shown in the results achieved. This technique was
particularly useful for UAV-based photogrammetry applications, such as surveying and
urban planning, where minimizing superfluous data is critical to improving both model
quality and computational efficiency. In contrast, camera plane clipping resulted in an
unnecessary retention of up to 50% of background points, thereby increasing computational
load without significantly enhancing the visual quality of the fused model.

A key challenge addressed was the fusion of point clouds with differing resolu-
tions, particularly when combining high-resolution SfM data with lower-resolution LiDAR
scans [59]. LiDAR generally provided the underlying structural geometry, while SfM
contributed surface texture information. However, differences in point density between the
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datasets often resulted in misalignment or redundancy in the fused models. For example,
the voxel-based down-sampling method, which reduced point cloud redundancy by ap-
proximately 40%, led to a noticeable loss of fine details from the SfM data. This reduction
in point density, though beneficial in decreasing computational demands, resulted in the
loss of detailed textures that are crucial for certain applications, such as cultural heritage
documentation or architectural modeling.

Another key observation is the redundancy issue when combining LiDAR and SfM
data. The geometric precision of LiDAR often leads to the generation of redundant points
when combined with dense SfM point clouds, as observed in [60]. Without adequate
filtering, this redundancy can reduce the final model’s quality. The use of more advanced
filtering techniques, such as convex hull clipping, was successful in reducing up to 30%
of these redundant points, significantly improving the overall clarity of the model. How-
ever, further refinement of point-cloud clipping and filtering methods is still required to
ensure that the fusion process retains essential geometric details without introducing noise,
especially when dealing with high-resolution SfM datasets.

The introduction of machine learning (ML)-based point cloud alignment algorithms,
such as Coherent Point Drift (CPD) and DeepGMR, showed promising results in aligning
datasets with different resolutions or noisy data [61]. These algorithms demonstrated high
accuracy in complex scenarios, particularly when dealing with datasets with different sizes
and non-rigid transformations. For example, CPD achieved an accuracy improvement of
25% in aligning point clouds with different resolutions compared to traditional iterative
closest point (ICP) algorithms. However, the increased computational complexity and
longer training times required by these ML-based approaches pose significant challenges,
particularly in real-time or resource-constrained environments, such as processing directly
in UAVs.

6. Conclusions
This study demonstrated the effectiveness of fusing LiDAR and photogrammetry

point clouds to create accurate and detailed 3D models, overcoming the limitations of
each individual technique. The evaluation of the suggested approach combining LiDAR’s
precise geometric measurements with photogrammetry’s rich surface texture information,
showed that the resulting models are both visually detailed and geometrically accurate.
The use of ML algorithms, particularly CPD and FMR, greatly improved the alignment and
quality of fused point clouds compared to traditional methods such as RANSAC and ICP.
Furthermore, the integration of 3D Gaussian Splatting proved a faster alternative to more
traditional NeRF approaches, without sacrificing too much in terms of visual quality.

Future work will focus on further enhancing method accuracy, particularly for han-
dling multi-resolution data and reducing computational overhead. We will also explore the
integration of more data sources, such as satellite imagery or radar, to further improve the
richness and accuracy of the 3D models. Moreover, research into enhancing the scalability
of ML models through transfer learning (TL) or lightweight neural networks (LNNs) could
open new solutions for real-time applications.
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Appendix A
Figure A1 illustrates objects from each category analyzed (left real-life photo, right -

reconstruction). From top to bottom: 1. Simple bench (6 m); 2. Bench (6 m), footage briefly
pans away from the subject; 3. Bench (6 m), footage includes close-ups of the bench and the
bottom; 4. Smaller bench (2.54 m); 5. Two smaller benches (2.54 m each); 6. Large square
bench (2.54 m × 2.54 m); 7. Sculpture.

Figure A1. Example of objects from each category analyzed.
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