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Abstract: The dynamics of vegetation changes and phenology serve as key indicators of
interannual changes in vegetation productivity. Monitoring the changes in the Nanling
grassland ecosystem using the remote sensing vegetation index is crucial for the rational
development, utilization, and protection of these grassland resources. Grasslands in
the hilly areas of southern China’s middle and low mountains have a high restoration
efficiency due to the favorable combination of water and temperature conditions. However,
the dynamic adaptation process of grassland restoration under the combined effects of
climate change and human activities remains unclear. The aim of this study was to conduct
continuous phenological monitoring of the Nanling grassland ecosystem, and evaluate its
seasonal characteristics, trends, and the thresholds for grassland changes. The Normalized
Difference Phenology Index (NDPI) values of Nanling Mountains’ grasslands from 2000 to
2021 was calculated using MOD09A1 images from the Google Earth Engine (GEE) platform.
The Savitzky–Golay filter and Mann–Kendall test were applied for time series smoothing
and trend analysis, and growing seasons were extracted annually using Seasonal Trend
Decomposition and LOESS. A segmented regression method was then employed to detect
the thresholds for grassland ecosystem restoration based on phenology and grassland cover
percentage. The results showed that (1) the NDPI values increased significantly (p < 0.01)
across all grassland patches, particularly in the southeast, with a notable rise from 2010 to
2014, and following an eastern to western to central trend mutation sequence. (2) the annual
lower and upper NDPI thresholds of the grasslands were 0.005~0.167 and 0.572~0.727,
which mainly occurred in January–March and June–September, respectively. (3) Most of
the time series in the same periods showed increasing trends, with the growing season
length varying from 188 to 247 days. (4) The overall potential productivity of the Nanling
grassland improved. (5) The restoration of the mountain grasslands was significantly
associated with the grassland coverage and mean NDPI values, with a key threshold
identified at a mean NDPI value of 0.5 for 2.1% grassland coverage. This study indicates
that to ensure the sustainable development and conservation of grassland ecosystems,
targeted management strategies should be implemented, particularly in regions where
human factors significantly influence grassland productivity fluctuations.

Keywords: grassland restoration; phenological threshold; Normalized Difference Phenology
Index; Nanling mountain area

1. Introduction
The grassland ecosystem in China acts as a vital green ecological barrier, providing

essential ecological services such as climate regulation, water conservation, soil improve-
ment, wind prevention, sand consolidation, and biodiversity preservation [1]. Covering
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approximately 2.64 million km2 and accounting for over 27.5% of the country’s land area [2],
China’s grasslands can be classified into four distinct ecological functional regions based
on their geographical differences, which are driven by differing climates and other natu-
ral conditions [3]. Nanling, one of the four ecological regions, has experienced long-term
grassland degradation as a result of various natural and anthropogenic factors [4]. This degra-
dation not only impacts the development of animal husbandry and the livelihoods of farmers
and herders, but it also poses a serious threat to national ecological security by potentially
triggering various natural disasters [5].

Studying vegetation phenology plays a pivotal role in understanding interannual
changes within terrestrial ecosystems. It serves as a critical indicator of climate–vegetation
interactions, variations in land vegetation cover, and changes in vegetation productiv-
ity over multiple years [6]. Satellite remote sensing data are widely employed for
monitoring vegetation phenology across large geographical regions. In particular, the
Moderate Resolution Imaging Spectroradiometer (MODIS) has emerged as a valuable tool
due to its high temporal resolution (daily) and moderate spatial resolution (250–500 m). Vege-
tation indices, which consider various spectral signals, are valuable for quantifying vegetation
dynamics [7,8]. The Ratio Vegetation Index (RVI), first proposed by Jordan in 1969 [9], pro-
vides relatively stable information for vegetation monitoring [10]. The Normalized Difference
Vegetation Index (NDVI), developed through nonlinear processing of the RVI, stands as
the most widely utilized vegetation index [11]. The NDVI effectively addresses irradiance
biases associated with instrument calibration, solar zenith angle, terrain, cloud shadows, and
atmospheric conditions, thereby enhancing its sensitivity to vegetation [12]. A significant
improvement is the Enhanced Vegetation Index (EVI), introduced by Liu and Huete, which
incorporates feedback terms to mitigate soil and atmospheric effects, thereby giving it an
improved performance compared to the NDVI [13].

In vegetation phenology monitoring, the Normalized Difference Infrared/Water In-
dex (NDII/NDWI) is commonly used to explain the impact of leaf moisture content [14].
Gonsamo et al. proposed the Phenology Index (PI), which combines the NDVI and NDII, to
mitigate surface greenness effects, especially snow-mixing effects [15], significantly improving
vegetation phenology monitoring [16]. Recently, Wang et al. introduced the Normalized Differ-
ence Phenology Index (NDPI), which incorporates RED, NIR, and SWIR bands, enhancing the
spatial and temporal scalability of vegetation phenology monitoring [16]. Xu et al. conducted
extensive field surveys in Inner Mongolia’s natural grasslands and demonstrated the NDPI’s
superior spatial and temporal scalability for estimating aboveground fresh biomass (AGB) [17].
The NDPI is valuable for estimating the AGB in grasslands by reducing differences between
soil backgrounds and distinguishing soil from vegetation. These advantages are particularly
pronounced in grassland ecosystems, as the NDPI remains unaffected by snowmelt and ex-
hibits sensitivity to initial vegetation growth during the greening period in spring, thereby
enhancing the monitoring of spring phenology [18]. High-spectral-resolution data, such as
hyperspectral data, are valuable for identifying herbaceous plant species within communities,
enabling major species proportional area estimation and providing structural indicators for
grassland ecosystems [19].

The distribution of grassland resources in Nanling is fragmented due to significant varia-
tions in elevation and steep slopes, resulting in low utilization rates [20]. The poor soil conditions
lead to inferior grass quality compared to that of the northern grasslands [21]. Therefore, the
key challenge in developing and utilizing grassland resources in mountainous areas is to protect
the environment while ensuring sustainable grassland production [22]. This study aimed to
fully capitalize on the advantages of the NDPI in grassland vegetation detection to conduct
continuous phenological monitoring of the grassland ecosystem in the Nanling region and
evaluate the change trend of the grassland biomass and the transition points of the time series
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in order to detect the spatial differentiation and time evolution of the southern mountain grass-
land ecosystem. To this end, we further explored the relationship between and thresholds of
grassland coverage and NDPI values in the process of regional grassland landscape restoration,
providing data support for ecological management oriented toward grassland restoration.

2. Materials and Methods
2.1. Study Area

The Nanling region spans parts of Hunan, Jiangxi, Guangdong, and Guangxi (Figure 1a).
The area encompasses 4 provinces, 9 cities, and 70 counties, covering a total area of ap-
proximately 166,054 km2 (Figure 1b). The predominant landforms in Nanling are hills and
mountains, with an overall relative elevation difference of about 2000 m across the region [23].
Nanling serves as the watershed for two major river systems, namely the Pearl River and the
Yangtze River, with a combined length of approximately 7750 km (Figure 1c). The Nanling
mountain range significantly influences the local climate, acting as a barrier during winter to
weaken the impact of dry and cold waves as they cross the ridge [24]. The Nanling region
experiences an average annual precipitation of approximately 2037 mm and an average annual
temperature of around 19.41 ◦C. The favorable hydrothermal conditions, extended grass period,
and high productivity make Nanling a region with great production potential [25,26]. In order
to facilitate the study and analysis, the study area in the Nanling region was divided based on
the administrative divisions of the provinces and counties in China. Based on land use/land
cover data, the identified grassland area in this region is about 11,000 km2, accounting for
approximately 6.6% of the total area (Figure 1d).

2.2. Methods

A comprehensive study was undertaken to examine the variations in NDPI values within
the grasslands of the Nanling region (Figure 2). The investigation analyzed the interannual
trends at 70 sites across the study area. Data were collected over a span of 22 years, from
January 1st to December 27th each year, with the exception of missing data for the years 2000
and 2001. For each site, average NDPI values were calculated for roughly the same dates
every year, creating a consistent time series of NDPI values spanning 22 years. To assess the
trends in these time series, the Mann–Kendall (M-K) trend test was employed.

2.2.1. NDPI

The NDPI is defined by red (Band 1, 620~670 nm), NIR (Band 2, 841~876 nm),
and SWIR (Band 6, 1628~1652 nm) bandwidths as follows:

ρ = α× RED + (1 − α)× SWIR = 0.74 × RED + 0.26 × SWIR (1)

NDPI =
NIR − ρ

NIR + ρ
(2)

where ρ is the weighted sum of the red and SWIR reflectance in order to minimize the
difference between soil and snow, which are the main components of the land surface
in the non-growing season, and α is a weighting coefficient that was set to 0.74 based
on existing research [25]. In this study, the MODIS Surface Reflectance 8-Day 500 m
product (MOD09A1), which is widely used in phenology monitoring studies [27–30],
was utilized in TIMESAT 3.3 software to extract phenological parameters. The algorithm
of the adaptive Savitzky–Golay filter employs a sliding window approach to linearly
approximate the upper envelopes of vegetation index time series in a piecewise manner,
gradually and accurately eliminating noise through iteration [30,31]. TIMESAT 3.3 includes
the Seasonal Trend Decomposition by LOESS (STL) method, which utilizes the Locally
Weighted Regression Smoother (LOESS) technique [32–34].
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2.2.2. M-K Trend Test

The Mann–Kendall trend test method is commonly used in the study of vegeta-
tion dynamics and phenological responses [35–40]. The original hypothesis H0 of the
Mann–Kendall test is that in time series data (x1, ..., xn), there are n samples of indepen-
dent and identically distributed random variables with no upward or downward trend.
The alternative hypothesis H1 is a bilateral test indicating a monotonic trend in the se-
quence, meaning that for any k and i (k ̸= i, i ≤ n), xk and xi have different distributions.
The statistical variable S for the test is defined as follows:

S = ∑n−1
i=1 ∑n

k=i+1sgn (3)

sgn(xk− xi) =


1, xk> xi

0, xk = xi

−1, xk< xi

(4)

where sgn denotes the sign function, and xk and xi are adjacent observations in the time series.
When n > 10, the statistical variable S is approximately normally distributed. If each

number in the sequence is unique, the variance is

Var(S) =
1

18
n(n − 1)(2n+5) (5)

If there are non-unique data in the sequence, the variance is

Var(S) =
1
18

[
n(n− 1)(2n+5) − ∑g

p=1tp
(
tp − 1

)(
2tp+5

)]
(6)

In Equation (6), p is the number of repetitions, g is the number of unique numbers,
and tp is the number of repetitions for each repetition.

The statistic ZMK for M-K trend test is

ZMK =


S−1√
Var(S)

, S>0

0, S = 0
S+1√
Var(S)

, S<0
(7)

For a given significance level α in a bilateral trend test, if |ZMK| < Z1−α/2, then
the original assumption H0 holds. If |ZMK| ≥ Z1−α/2, then the original assumption is
unacceptable, indicating a significant monotonic trend in the sequence. If ZMK > 0, it
suggests an increasing trend in the sequence, and vice versa. When |ZMK| ≥ 1.645, 1.960,
2.576, it indicates that the trend has passed the significance tests with confidence levels of
90%, 95%, and 99%, respectively.

In addition, the monotonic trend can be quantified using the Kendall slope β

(Sen slope):

β = median
(xi − xj

i − j

)
, 1 < j < i < n (8)

In Equation (8), “medium” represents the median value. When β > 0, it indicates that
the variable X has an upward trend; otherwise, it shows a downward trend [40].

The Mann–Kendall method can also detect the mutation points of time series. For time
series xi, construct a rank sequence rij to represent sample statistics for xi > xj (1 ≤ j ≤ i):

rij =

{
1, xi>xj

0, xi≤xj
1≤j≤i (9)



Remote Sens. 2025, 17, 451 6 of 21

Define the sample cumulative Sk of order column rij as

Sk = ∑k
i=1∑

i−1
j rij, k = 2, 3, . . .,n (10)

Assuming that the time series is random and independent, UFk, the statistic of the
standard normal distribution, is defined as

UFk =
Sk − E(Sk)√

Var(Sk)
, k = 2, 3, . . .,n (11)

In Equation (11), E (Sk) is the mean of Sk and Var (Sk) is the variance of Sk.

E(Sk) =
k(k + 1)

4
(12)

Var(Sk) =
k(k − 1)(2k + 5)

72
(13)

At a given significance level α, if |UFk| > Uα/2, it indicates a significant trend change
in the sequence. Using the inverse UBk of the time series xi, repeat the above process.
Through further analysis of the statistical sequences UFk and UBk, the time nodes of
sequence xi mutations can be obtained, and the mutation regions of the sequence can be
displayed. If UFk > 0, it suggests an increasing trend in the sequence; otherwise, it shows
a decreasing trend. When UFk and UBk exceed any critical line, it signifies a significant
trend of an increase or decrease in the sequence. If the curves of the UFk and UBk sequences
intersect between critical lines, the moment of intersection marks the moment of mutation.

2.2.3. Segmented Regression

After the mutation point (date) of the NDPI time series was identified by Mann–Kendall
method, the maximum, average, and minimum NDPI values corresponding to the mutation
date were obtained. We then conducted segmented linear regression between the grassland
coverage of each county and the values of the maximum, average, and minimum NDPI values
at the change points. We used the “segmented” package in R 4.3.2 to fit the segmented linear
regression models described above, and then detected breakpoints for these models [41].

2.3. Data Sources

The land use/land cover data were obtained from the Resources and Environmental
Sciences and Data Center (https://www.resdc.cn/, accessed on 19 March 2023), covering
the years 2000, 2005, 2010, 2015, and 2020, with a spatial resolution of 30 m. Patches classified
as grassland in the land use/land cover data were used as grassland boundaries for this
study. The grass cover areas that persisted for at least 3 out of the 5 time points (2000 to 2020)
were identified as relatively stable grassland areas in the Nanling region, and other ubefore
25 January 2025 nstable grasslands were excluded. A total of 70 counties (districts) were
taken as statistical samples, and for each county (district), the mean, maximum, and
minimum NDPI values of grassland patches were computed.

The MODIS surface reflectance 8-Day 500 m images (MOD09A1) were obtained from
the National Aeronautics and Space Administration (https://ladsweb.modaps.eosdis.nasa.
gov, accessed on 19 March 2023). A total of 1004 MODIS images of the Nanling region
were acquired, covering the period from 2000 to 2021. The continuous time series of the
NDPI values of the grasslands in the Nanling region was calculated in Google Earth Engine
(GEE). The 8-day product can effectively reduce cloud contamination [17], but to avoid
cloud interference, we only kept those pixels without clouds, cloud shadows, and cirrus

https://www.resdc.cn/
https://ladsweb.modaps.eosdis.nasa.gov
https://ladsweb.modaps.eosdis.nasa.gov


Remote Sens. 2025, 17, 451 7 of 21

clouds. In TIMESAT 3.3, the original sequence of the NDPI grid means was reconstructed
using the Savitzky–Golay filter with the sliding window width set to 5.

3. Results
3.1. Grass Recovery Pattern During 2000–2021

There was a significant trend in the recovery of grass in the Nanling region, and 2005
marked the turning point of grassland recovery during the past two decades (2000–2021)
(Figure 3). The average NDPI values exhibited a significant increasing trend. This trend
was more pronounced in the southeast compared to the northwest (Figure 4a), aligning
with the distribution of annual average temperature in the Nanling region. The increase in
NDPI values was most noticeable around 2010 to 2014, with a sequential pattern observed
in the eastern, western, and central regions (Figure 4b).
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The average ZMK statistic for the M-K test in each county (or district) within the
Nanling region was approximately 9.198, which exceeds the significance threshold of 99.9%
(ZMK > 3.239), indicating a significant increasing trend in the NDPI values across different
sites from 2000 to 2021 (Figure 4a). Overall, there was a clear and consistent pattern of
increasing grassland biomass in the Nanling region, implying an improvement in grassland
quality and the absence of overall degradation over 2000–2021. However, there is also a
spatial difference in the significance of the NDPI increasing trend, and the significance
level in the southeast of Nanling was higher than that in the northwest (Figure 4a), which
highlights the substantial influence of thermal conditions on grassland productivity within
the region. The ZMK values exceeding 11 were predominantly concentrated in Guangdong
(mean ZMK = 10.804) and Jiangxi (mean ZMK = 10.627). In Guangxi (mean ZMK = 8.148)
and Hunan (mean ZMK = 7.756), the significance of the NDPI growth trend was relatively
low. Among all the sample sites, the NDPI trend was least significant in northern Guangxi,
especially in Ziyuan County (ZMK = 4.242).

The M-K trend test revealed relatively small magnitudes for the slope parameter β for the
NDPI values due to the long time series. The range of β values across the different sample sites
in the Nanling region was 4.8×10−5 to 11.0 × 10−5, with an average value of approximately
7.7 × 10−5. The eastern and southern parts of the region exhibited larger growth rates in the
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NDPI values, while the western region showed smaller rates (Figure 4a). The average β for
the NDPI changes across the different provinces/regions was as follows: Jiangxi (8.02 × 10−5)
> Guangdong (7.97 × 10−5) > Hunan (7.58 × 10−5) > Guangxi (7.26 × 10−5). The statistical
parameter ZMK in the M-K trend test showed good consistency with the slope parameter β.
In the regions where ZMK had a higher significance, the corresponding NDPI increasing trend
tended to have relatively larger slope values. However, the spatial differentiation pattern of
the overall NDPI trend (β) in the Nanling region was not as distinct as the regional patterns
observed regarding the significance of ZMK.
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The sequences of the mean NDPI value of the grassland in each county experienced a
turning point mainly between 2010 and 2014 (Figure 4b), indicating that these five years
are the main period for grassland recovery from disturbance. Among all the counties,
Ziyuan, Chengbu, and Jiahe stood out with the earliest change points in September and
October 2000, which significantly deviated from the other counties. These sites also ex-
hibited the lowest significance in their NDPI increasing trends (ZMK < 5.1), suggesting
relatively stable NDPI variations and a less pronounced increase in grassland biomass over
the study period. In Jiangxi province, the majority of the sites experienced change points in
2010 and 2011, while in the Guangxi region, it mainly occurred in 2012 and 2013. In the
central region, the Guangdong and Hunan provinces began to display an upward trend
between 2013 and 2015. The latest change points were situated in the central-eastern part
of the Nanling region.

3.2. Grassland Recovery Monthly Threshold

The annual variation in NDPI values showed an increasing trend, indicating improved
productivity and reduced degradation during different seasons. The months of January to
March and June to September were identified as the threshold months for these changes.
The peak of the average NDPI value primarily occurred from June to September (Figure 5a),
aligning with the peak growing season of grasslands. Throughout the 22-year study period,
June, July, August, and September were the months with the highest frequency of peak
values, occurring 8, 5, 7, and 2 times, respectively. For example, in 2001, 2003, and 2016,
nearly 50% of the regions peaked in July, more than 70% in June, and more than 50% in
August, respectively. In some areas, the peak values occurred in April or May, which may
suggest unfavorable weather conditions such as flooding or hot and dry conditions during the
typical peak season of June to September. These conditions could impede grassland biomass
accumulation, resulting in an earlier peak in the NDPI values. Conversely, peaks occurring in
October may be attributed to an extended growing season with favorable water and thermal
conditions, allowing continued grassland growth and organic matter accumulation.

The minimum NDPI values were primarily observed in January to March and Novem-
ber to December (Figure 5b). Among the 22 years, February had the highest frequency of
being the month with the minimum NDPI value in 15 years, while January and March had
the highest frequency in the remaining years. Most grasslands reached their minimum
aboveground biomass at the end of winter, resulting in the lowest NDPI values primarily
occurring in February. The NDPI value reaching its minimum in March may indicate pro-
longed periods of dry and cold climates. Conversely, the minimum NDPI values in January
may be influenced by early warming and an advancement in the grassland growing season.

The upper limit of the average grassland NDPI value in the Nanling region ranged
from 0.572 to 0.727 (Figure 6a). The highest upper limit of the NDPI variation were found
in Heping and Liannan in Guangdong, Dinnan in Jiangxi, and Longsheng in Guangxi,
indicating that these grasslands have greater potential productivity. Conversely, the lowest
upper limits were observed in Ganxian and Yudu in Jiangxi, Jiahe in Hunan, and Longchuan
in Guangdong, where the NDPI upper limits fell below 0.6 (Figure 6b), mainly in areas
with relatively low precipitation and a dense population distribution.
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3.3. Seasonal Characteristics of Grassland NDPI Changes

Using the STL decomposition method, the length of the growing season and its start and
end dates were extracted for the various grassland sites (Figure 7a). The length of the growing
season varied from 188 to 247 days, with longer growing seasons observed in the southern
regions compared to the northern regions. The interannual variation in the start and end dates
of the growing season was minimal, with the deviations within a span of 5 days. The range
of start dates for the growing season spanned from approximately March 29th to May 9th,
with the average start date ranging between April 7th and May 1st. Notably, around half of
the sites commenced their growing season on April 15th, while the site with the latest start
date was located in the northeastern part of the study area in Jiangxi. In terms of the end date
of the growing season, it typically fell between October 24th and December 27th. However,
due to the influence of mountain ranges and variations in locations on the north and south
slopes, significant differences were observed between some sites. Generally, there was a trend
in the later end dates in the southern region compared to the northern region.
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The grasslands in Guangdong and Guangxi displayed early start dates and late end
dates for the growing season, lasting for more than 210 days. This pattern was strongly
correlated with the higher precipitation and relatively higher temperatures experienced
in these regions. Conversely, the grassland sites with growing seasons lasting less than
200 days were predominantly located in Jiangxi and Hunan provinces, specifically on
the northern slope of the Nanling Mountains. In the northeastern region, there was a
delay in the start of the growing season and an earlier end, which could be attributed
to the delayed spring warming and early cooling in autumn and winter in these areas.
The shorter growing season also set an upper threshold for the NDPI variation, with some
sites exhibiting lower NDPI values during the winter degradation.

We derived the average amplitude of the annual variation in the mean NDPI values
(Figure 7b). The results reveal a distinct northwest-to-southeast gradient, which exhibited
an inverse correlation with the spatial distribution of the annual average temperatures in the
Nanling region. Specifically, sites with higher temperatures tended to display smaller NDPI
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amplitudes, suggesting that insufficient heat may contribute to significant fluctuations
in grassland productivity. In contrast, areas with ample heat experienced more stable
growth and maintained higher biomass levels, resulting in relatively weaker degradation
during the winter season (Figure 7b). The eastern regions of Jiangxi and Guangdong
encompassed the most stable grasslands, while Hunan exhibited the largest amplitude of
variation. This pattern aligned with the lower precipitation levels in Hunan compared to
the Guangxi region, indicating that the stability of grasslands in the western areas was
additionally influenced by water availability. Consequently, the average amplitude of the
NDPI variation in the Nanling region was primarily controlled by temperature, with the
western areas further affected by precipitation constraints.

3.4. Peak Value Changes in Grass NDPI

The maximum NDPI values indicated an improvement in grassland productivity in
the Nanling region. It is crucial to delve deeper into the statistical analysis of the annual
NDPI values to gain a better understanding of the potential for grassland biomass recovery
and the limits of degradation. By examining the annual NDPI values, we can assess the
variations and fluctuations in the grassland biomass. This information will help identify
the resilience of grasslands and their ability to recover from degradation, as well as provide
insights into the factors that contribute to the limits of degradation.

From 2000 to 2021, the highest NDPI values across all the sites were primarily ob-
served from May to September, accounting for 96%. Among these months, the period from
June to August represented approximately 79% (Figure 8a). The maximum NDPI values
of different sites in the Nanling region exhibited an increasing trend, with the majority
ranging from 0.7 to 0.8, indicating an improvement in grassland productivity over the past
20 years (Figure 8b). In particular, the maximum NDPI values in Guangdong and Guangxi
provinces were relatively higher compared to other areas. This can be attributed to the abun-
dant precipitation brought by the maritime moisture received on the southern slope of the
Nanling Mountains. The presence of this moisture creates favorable conditions for grassland
growth, allowing for the accumulation of aboveground biomass. However, in certain areas,
such as Yizhang, Yongxing, Jiahe, Linwu, and Xintian in Hunan Province, the growth potential
of the NDPI values was significantly lower. These five counties are situated on the northern
side of Mengzuling, Qitianling, and other surrounding mountains. This limitation in moisture
availability hampers the development of grassland productivity in these specific regions.

From 2000 to 2021, the minimum NDPI values within the Nanling region primarily
occurred in January, February, and December, accounting for approximately 67.7% of the
minimum NDPI values (Figure 8c). Among these months, January represented approx-
imately 19.3%, while February represented approximately 24.4%. The minimum NDPI
values were observed to be between 0 and 0.14 (Figure 8d). Several sample sites exhibited
minimum NDPI grid values below 0.02, indicating a relatively low level of vegetation
cover approaching completely bare soil. Examples of such sites include Ganzhou, Yudu,
Yongzhou, Ruyuan, Lianzhou, Quanzhou, and Fuchuan. These sites are predominantly
located in hilly plains or mountain passes between the mountains on the northern slopes of
the Nanling. Consequently, sample sites situated on the southern side of the mountains,
such as Anyuan, Dingnan, Quannan, Lianshan, and Liannan, experienced relatively less
severe local degradation of grassland. Overall, the variation in the minimum NDPI values
among different sites within the Nanling region can be attributed to a combination of
factors, including local weather conditions, topography, and human activities.
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grid maximum NDPI values are located from 2000 to 2021 in different counties; (b) the months where
the grid minimum NDPI values are located from 2000 to 2021 in different counties; (c) grid maximum
NDPI values in different counties from 2000 to 2021; (d) grid minimum NDPI values in different
counties from 2000 to 2021.

3.5. NDPI Thresholds for Mountain Grassland Restoration

In 63 out of 70 counties, the maximum, mean, and minimum NDPI values corresponding
to the time series turning points could be detected. We constructed piecewise linear regression
models for the grassland coverage and the maximum, mean, and minimum NDPI values
corresponding to the time series turning points in 63 counties (Figure 9). The results showed
that the mean NDPI values were significantly (p < 0.05) correlated with grassland coverage
(Figure 9a), but the maximum and minimum NDPI values were not significantly (p > 0.05)
correlated with grassland coverage (Figure 9b,c). When the grassland coverage ranged from
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0 to 2.1, the mean NDPI value of the grassland patches corresponding to the grassland
productivity recovery gradually increased to 0.5; however, when the grassland coverage
was greater than 2.1, the mean NDPI value of the grassland patches corresponding to the
grassland productivity recovery still fluctuated around 0.5 (Figure 9a). This means that
once the grassland coverage rate in the Nanling region exceeds 2.1%, the mean NDPI value
corresponding to grassland recovery will not vary significantly. This indicates that as long
as the grassland coverage in the Nanling region is maintained above 2.1%, the restoration
efficiency of the grassland landscape can be considered satisfactory. The grass landscape
restoration in the counties of the Nanling region might be mainly characterized by a low level
of disturbance from human activity during the past two decades.
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4. Discussion
4.1. Ecological Restoration of Grassland in Southern Mountainous Area of China

Remote sensing monitoring of grasslands has been used in recent years to assess
large-scale changes in grass landscapes. Many remote sensing-related indicators have been
identified as effective in detecting shifts in grassland degradation and restoration [42]. Previ-
ous studies have extensively examined the impact of soil conditions and moisture sensitivity
on remote sensing monitoring of grasslands [43–45]. These studies have demonstrated the
considerable advantage of the NDPI in estimating aboveground biomass through model
evaluations [17]. However, it is important to note that there are substantial differences
between southern grasslands and northern prairie ecosystems in China. The accuracy of
the NDPI in biomass estimation within the Nanling grasslands, as well as its superiority
over other indices such as the NDVI and EVI in biomass models [46–48], lacks validation
from ground survey measurements. Therefore, further comparisons and evaluations are
necessary to evaluate the consistency and applicability of the NDPI in monitoring changes
in southern mountainous grassland ecosystems. Additionally, it would be valuable to
establish a relationship between biomass and productivity by considering different grass-
land types and hydrothermal conditions [49]. This could involve the development of a
remote sensing estimation model for the Net Primary Productivity (NPP) in southern
grasslands based on the NDPI [50], thereby broadening the applications of the NDPI in this
region [51]. To validate the suitability and effectiveness of the NDPI in monitoring changes
in southern mountainous grassland ecosystems, we recommend conducting comparative
studies and assessments that incorporate ground-truth data and field investigations [52].
These efforts will enhance our understanding of the consistency and applicability of the
NDPI in monitoring the dynamics of southern grassland ecosystems [53].
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In this study, the investigation into the influencing factors of the NDPI was limited,
and the mechanisms behind various potential factors remain unclear. The dominant roles
of precipitation and temperature in the different regions, as well as the extent of the impact
of human activities, have yet to be determined. Specifically, further research is needed to
explore the correlation between the NDPI trend changes over years and solar activity cycles.
It is important to comprehensively consider factors such as elevation, slope, rainfall, tem-
perature [54–56], land use/land cover changes, grassland types, and human disturbances
to examine their combined influence on grassland degradation and productivity develop-
ment [57,58]. We fitted the linear relationship between the multi-year mean NDPI value series
of the grassland in each county and the spatial mean value series of the four impact factors
(Figure 10). The results show that the NDPI value was significantly (p < 0.001) negatively
correlated with population density (Figure 10a), positively correlated with precipitation and
terrain slope (Figure 10b,d), and had no significant linear relationship with temperature
(Figure 10c). This indicates that the grassland phenology in Nanling area is controlled by
both human activities and natural environmental conditions. Human activities may mainly
influence grassland coverage changes under varying levels of human disturbance intensity,
while natural environmental conditions may primarily affect grassland coverage regreening.
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Figure 10. Relationships between influencing factors and the mean NDPI of each county (“*” is
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relationship between precipitation and the mean NDPI; (c) linear relationship between temperature
and the mean NDPI; (d) linear relationship between terrain slope and the mean NDPI.
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4.2. Limitations and Perspective

There are several limitations related to the data and methods employed in this study.
Specifically, the use of the GlobeLand30 dataset as a substitute for the unavailable 2020 land
use data introduces inconsistency in the data sources, which could potentially affect the
results [59,60]. Although efforts were made to minimize the impact by extracting samples
from grids identified as grassland across multiple periods, striving for consistency in data
sources for future studies would enhance the robustness and reliability of the findings [61–63].

Furthermore, the fragmented nature of the grassland landscape in the Nanling moun-
tainous area poses a challenge for accurately capturing the dynamics of grassland growth
using 500 m resolution MODIS imagery [64,65]. To improve spatial resolution, exploring al-
ternative approaches like spatial–temporal fusion to resample the data to a finer resolution,
such as 30 m, would enable a more detailed investigation of the spatiotemporal distribution
characteristics of the NDPI values. Additionally, considering the extraction of similar bands
from Landsat imagery for comparative analysis could help assess the influence of different
image sources on the performance and superiority of the NDPI [66].

When conducting data smoothing reconstruction and phenology extraction using
TIMESAT, it is important to acknowledge that the selection of experimental methods
and parameter settings is subjective [67]. Insufficient testing and comparisons of various
processing approaches were conducted, which could potentially affect the accuracy of the re-
construction and extraction results [68]. It should be emphasized that the extracted growing
season should be considered as a reference rather than an absolute measure. To overcome
this limitation and strengthen the analysis, we recommend conducting comprehensive
sensitivity analyses that explore a range of methodological choices and parameter settings.
This approach will provide a deeper understanding of the uncertainties and variations
associated with different approaches, thereby facilitating the selection of the most suitable
methods for data reconstruction and phenology extraction [69]. Moreover, the inclusion of
ground truth data or independent validation datasets is crucial for assessing the accuracy
and reliability of the results.

Overall, this analysis offers critical insights into the trends, thresholds, and spatial
patterns of grassland ecosystem restoration in the Nanling region. The results indicate the
net effects of climatic factors and human activities on grassland productivity. These find-
ings contribute to a better understanding of the dynamics and characteristics of grassland
ecosystems in the region, which can provide guidance for agricultural development, land
management, and grassland ecosystem conservation in the Nanling region. This knowl-
edge is essential for promoting the sustainable development of grassland ecosystems and
advancing the integrated protection of ecological security barriers.

5. Conclusions
The grasslands in the hilly areas of the middle and low mountains in southern China

have high restoration efficiency and ecological value due to the favorable combination
of water and heat conditions [70]. However, our understanding of the dynamic adap-
tation process of grassland restoration under the combine effects of climate change and
human activities remains limited. Utilizing remote sensing technology to monitor its phe-
nological trends can help understand the adaptive characteristics of grassland restoration,
and the restoration threshold is a key turning point for identifying stages of change in
grassland restoration. Therefore, based on the widely distributed grasslands in the region,
we employed the NDPI to monitor their recovery process and applied statistical regression
methods to detect their change thresholds. This study yielded insights into overall trends,
seasonal variations, and their thresholds and spatial characteristics. The conclusions were
as follows. (1) Overall increasing trend: The average NDPI values exhibited a significant
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increasing trend. This trend was more pronounced in the southeast compared to the north-
west, aligning with the distribution of annual average temperature in the Nanling region.
The most notable increase in the NDPI values occurred between 2010 and 2014, with a
sequential pattern observed in the eastern, western, and central regions. (2) Seasonal
characteristics and thresholds: The annual variation range of the NDPI values showed
an increasing trend, suggesting improved productivity and reduced degradation during
different seasons. January to March and June to September were identified as the threshold
months for these changes. (3) Growing season length: The length of the growing season
varied from 188 to 247 days, with longer growing seasons observed in the southern re-
gions compared to the northern regions. (4). Spatial differentiation in productivity and
degradation: The analysis of the NDPI grid maximum values indicated an improvement in
grassland productivity in the Nanling region, with better growth conditions observed in
Guangdong and Guangxi provinces. (5) Mountain grass landscape restoration was closely
related to grassland coverage and the mean NDPI values in grassland patches during the
past two decades. When the grassland coverage was greater than 2.1%, the grassland
landscape restoration in the region was satisfactory.

The analysis of the grassland NDPI values in the Nanling region from 2000 to 2021
revealed an increasing trend and an overall improvement in productivity potential. The spa-
tial distribution of grassland productivity follows a pattern of higher values in the south-
east and lower values in the northwest. This distribution is influenced by temperature,
precipitation, and human activities. To ensure sustainable development and conservation
of grassland ecosystems, targeted management strategies should be implemented, partic-
ularly in regions where human factors contribute to significant fluctuations in grassland
productivity. These strategies should consider local climate characteristics and their impact
on grassland biomass. By leveraging favorable conditions such as water availability and
heat, and addressing challenges such as topography and grass quality, efforts can be fo-
cused on the development of grassland livestock production and the implementation of
supportive policies. Increased investment in technology and the establishment of efficient
industrial development models are crucial for the growth of grassland livestock in the
southern region.
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