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Abstract: Deep learning-based remote sensing object detection (RSOD) models have been
widely deployed and commercialized. The commercialization of RSOD models requires
the ability to protect their intellectual property (IP) across different platforms and sales
channels. However, RSOD models currently face threats related to illegal copying on
untrusted platforms or resale by dishonest buyers. To address this issue, we propose a dual-
model watermarking scheme for the copyright verification and leakage tracing of RSOD
models. First, we construct trigger samples using an object generation watermark trigger
and train them alongside clean samples to implement black-box watermarking. Then,
fingerprint information is embedded into a small subset of the model’s critical weights,
using a fine-tuning and loss-guided approach. At the copyright verification stage, the
presence of a black-box watermark can be confirmed through using the suspect model’s
API to make predictions on the trigger samples, thereby determining whether the model
is infringing. Once infringement is confirmed, fingerprint information can be further
extracted from the model weights to identify the leakage source. Experimental results
demonstrate that the proposed method can effectively achieve the copyright verification
and traceability of RSOD models without affecting the performance of primary tasks. The
watermark shows good robustness against fine-tuning and pruning attacks.

Keywords: remote sensing object detection; model watermarking; intellectual property
protection; copyright verification; leakage source tracing

1. Introduction
In recent years, deep learning-based methods have dominated research in remote

sensing object detection (RSOD); widely used examples of these methods include Faster-
RCNN [1], the YOLO series [2–4], and RetinaNet [5]. RSOD deep learning models play a
critical role in various applications of remote sensing technology, such as military surveil-
lance [6–8], traffic monitoring [9–11], sea rescue operations [12,13], and agricultural man-
agement [14,15]. Training a high-precision RSOD model is particularly challenging, as it
not only requires a substantial investment of manpower and expertise but also demands
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significant computational resources and high-quality labeled data. As a result, these models
are considered valuable commercial intellectual property (IP) and an essential asset for
their owners. Consequently, protecting the copyright of deep learning models for RSOD
has become an urgent and pressing concern.

Unfortunately, as illustrated in Figure 1, during the deployment, distribution, and
trade of models [16–18], model owners may be exposed to the threat of piracy due to
unreliable platforms, dishonest legitimate buyers, and attackers. These malicious actors
may redistribute, make secondary sales of, or steal models without authorization and may
even tamper with them, repackaging them as their own services to commit IP infringement
and extort the original model owners. Such actions pose a serious threat to the IP rights
of RSOD model owners, causing significant losses and harm. Therefore, to protect the
legitimate rights and interests of RSOD model developers, a comprehensive IP protection
scheme for models must be developed that not only can detect piracy and prove ownership
but also trace the sources of downstream pirated models—whether they originate from
unreliable platforms or dishonest legitimate buyers.

Figure 1. Threats to IP of owners of remote sensing deep learning models.

At present, the protection of IP rights with respect to deep learning models is garnering
increasing attention from both academia and industry, with significant research findings
emerging. Existing model ownership verification approaches primarily rely on model
watermarking techniques. Current model watermarking techniques can be categorized
into black-box and white-box model watermarking. Black-box model watermarking is a
data-level technique that embeds watermark triggers into training samples [19,20]. During
training, the model learns the mapping between the triggers and the watermark target
class. In later stages of copyright verification, ownership can be verified by observing the
model’s outputs on trigger samples. Although this method requires only the interface (API)
of the suspicious model for copyright verification, it is difficult to identify the source of the
leak due to the limited expressive capacity of black-box watermarking, which cannot carry
encoded messages. Furthermore, current black-box watermarking techniques in model IP
commonly embed watermarks through altering the correct labels of select samples in the
training dataset [19]. However, this approach inevitably results in a decline in model accu-
racy. To the contrary, the white-box model watermarking technique is a model-level method
that embeds watermarks into the model’s internal information, such as weights [21,22],
neurons [23,24], or the addition of new layers [25,26]. This technique minimally impacts
the model’s performance following loss optimization or model restructuring. Despite the
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strong credibility of white-box mechanisms in watermark validation, their effectiveness
is often constrained before entering the judicial procedures for forensic analysis. This
limitation arises as suspicious pirated commercial models typically expose only their APIs,
preventing model owners from accessing the internal information of models. As a result, it
significantly reduces the timeliness and efficiency of white-box watermarking.

Undoubtedly, the aforementioned watermarking algorithms offer effective technical
support for model IP protection. However, they do not fully meet the requirements for
comprehensive IP rights protection, as they lack a crucial component; that is, the ability to
trace the downstream distributors of pirated models. To address this issue, Xu et al. [27]
proposed SecureMark_DL, a traceable deep learning model ownership protection scheme
that enables the tracking of illegally distributed models through watermarking techniques
embedded with unique fingerprints. The core approach involves generating a unique
fingerprint (comprising a community relationship code and a customer identity code) for
each customer and embedding it in the model parameters. These unique watermarks are
embedded in the models before distribution or deployment to identify legitimate buyers.
When piracy is suspected, the embedded watermarks can be extracted to verify model
ownership or trace it back to a dishonest legitimate buyer. Wang et al. [28] proposed
an innovative neural network IP protection scheme. This scheme achieves user-specific
traceability through a double-key black-box backdoor watermarking technique. The core
approach involves combining the original categories of training images with data augmen-
tation techniques to generate composite backdoor feature watermarking triggers, which
are then embedded in the model’s input samples. Before distribution or deployment, each
model is embedded with a unique watermark (i.e., fingerprint) that identifies the legitimate
buyer, allowing investigators to trace ownership back to a specific distributor in the event
of piracy.

Although the above scheme has yielded positive results in protecting the IP of image
classification models, its application in the field of RSOD poses significant challenges.
First, the watermark embedding process in image classification models is characterized
by a relatively simple weight structure that outputs predictions for a single category. In
contrast, RSOD models predict multiple categories and bounding boxes simultaneously
from one sample, resulting in a more complex weight distribution. Furthermore, different
categories may share features, and embedding may interfere with the accuracy of category
predictions or bounding boxes. Therefore, it is more challenging to embed white-box
watermarks in RSOD models, compared to classification models. Second, tracing dishonest
legitimate users often involves a transparent verification process, making it challenging
to ensure the reliability and trustworthiness of forensic results due to the use of a black-
box mechanism such as the one by Wang et al. [28]. Additionally, this method relies on
constructing watermark triggers based on the original categories of images, making it
primarily applicable to models with a one-to-one single-label relationship between the
input samples and output results. As mentioned above, the RSOD model is not single
label but multi-label and may contain multiple object categories within one single training
sample. Moreover, RSOD involves not only categorizing objects but also precisely locating
them. Consequently, these factors render the IP protection method designed for image
classification models ineffective for multi-label prediction tasks such as RSOD models.

To address these issues, we propose an IP protection scheme specifically designed for
RSOD models. The scheme comprises two core modules: the model copyright verification
module and the leakage source tracing module. In the model copyright verification module,
the black-box model watermark is used to verify whether the suspicious model is pirated
by comparing the output results. If a model is confirmed to be pirated, the system will
subsequently initiate the leakage source tracing module. In the leakage source tracing mod-
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ule, white-box watermarking technology is employed to trace dishonest legitimate buyers
or terminal platforms. Specifically, the embedded fingerprint information is extracted
from the weights of the pirated model and compared with the fingerprint information of
all legitimate buyers and terminal platforms recorded before deployment. The leakage
source can be accurately identified from the matching results. This scheme can rapidly and
effectively detect and verify pirated models in practical applications and further trace the
leakage source. This double-protection mechanism provides a reliable technical means for
the IP protection of RSOD models. Therefore, the proposed method has significant practical
value for the field of RSOD model IP protection and addresses a critical gap in this domain.

The main contributions of this study are summarized as follows:

• We propose a novel scheme for verifying model ownership, tracing the leakage sources
of pirated models, aiming to protect the IP rights of RSOD models.

• We introduce a black-box watermarking mechanism that leverages object generation
triggers, which can achieve rapid copyright verification through the APIs of released
pirated models.

• We implement a white-box watermarking mechanism that embeds fingerprints repre-
senting buyers or deployment platforms into a small set of critical weights, enabling
the effective tracing of leakage sources.

• Through extensive experimental evaluation, the proposed scheme demonstrates that it
meets real-world commercial model IP protection requirements. Moreover, it exhibits
robustness against potential watermark removal attacks, including fine-tuning and
pruning attacks.

The remainder of this paper is organized as follows. Section 2 introduces the related
works of black-box model watermarking and white-box model watermarking. The pro-
posed method is discussed in Section 3. Section 4 evaluates and analyzes the results of the
experiment. Finally, Section 6 concludes the paper.

2. Related Work
Early research on remote sensing model security primarily relied on traditional secu-

rity techniques, including data encryption [29,30] and access control [31]. These methods
safeguard remote sensing data and models from unauthorized access by enforcing en-
cryption and control at the data transmission, storage, and access stages. However, the
widespread application of deep learning in remote sensing has introduced new security
challenges. Therefore, there is an urgent need for specialized protection methods to address
IP protection for remote sensing deep models.

Watermarking technology has been widely used to protect the IP of data. Inspired
by traditional media watermarking, model watermarking techniques have now been
studied to protect the IP of DNN models. Existing model watermarking techniques
can be classified into two types according to the embedding method: white-box model
watermarking [22–26,32,33] and black-box model watermarking [34–37].

2.1. White-Box Model Watermarking Schemes

White-box watermarking embeds watermark information into a model’s parameters
or internal structure to identify it. Based on the location of the embedded watermark
information, white-box watermarking methods can be categorized into three types: weight
based [22,32,33], activation based [23,24], and passport based [25,26].

Uchida et al. [22] introduced the first weight-based white-box watermarking technique,
which embeds a watermark directly into the weights of a deep neural network by employing
an embedding regularizer during model training. The ownership of the watermark is
verified by calculating the correlation score between the extracted and original watermarks.
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However, this method exhibits a significantly higher variance in the parameter values of the
watermark layer compared to those without a watermark layer, making the presence of the
watermark more detectable. To improve imperceptibility, RIGA [32] embeds the watermark
into the model weights through adversarial training, ensuring that the distribution of
the watermarked weights is very similar to that of non-watermarked models, thereby
preserving model accuracy and resisting detection. Ong et al. [33] proposed a framework
for IP protection in Generative Adversarial Networks (GANs) to resist blur attacks. This
method employs reconstruction regularization techniques to embed watermark information
within the generated images.

Among activation-based methods, DeepSigns [24] presents an end-to-end watermark-
ing framework that embeds unique binary signatures into DNN models by encoding
watermark information in the probability density functions of activation maps across
selected layers. In addition, the approach enables the robust extraction of embedded water-
marks through activation map statistics or output layer trigger keys, effectively verifying
copyright ownership.

In passport-based methods, Zhang et al. [26] introduced a method termed passport-
aware normalization (PAN) to safeguard the IP of deep learning models. This method
effectively protects IP by incorporating an additional passport-aware branch into the
existing normalization layer. Moreover, the new branch is co-trained with the target model
but is discarded during the inference phase, thereby ensuring it does not affect the model’s
performance. To improve the accuracy and reliability of ownership verification in the
context of ambiguity attacks, DeepIPR [25] embeds a passport layer within the model,
ensuring that the model’s output is directly tied to specific passport parameters.

Although the above white-box model watermarking methods effectively embed multi-
bit watermarks, the watermark extraction process requires access to the model’s internal
information. This often restricts the verification of white-box watermarks, making it difficult
for standalone white-box watermarking techniques to enable timely evidence collection.

2.2. Black-Box Model Watermarking Schemes

Black-box model watermarking techniques are implemented through the model’s
input and output, without concern for the model’s internal information. Watermark
verification can be achieved directly through the model’s API, making it more suitable for
real-world forensic scenarios than white-box watermarking methods.

Adi et al. [34] utilized a set of abstract images as triggers, which were visually very
different from the original training samples. During model training, the mapping between
the trigger and a predefined label was learned, thus achieving black-box watermarking.
Zhang et al. [35] further augmented the training dataset by integrating additional content,
noise, or unrelated class examples as triggers, embedding model-specific watermarks
through these modifications. Li et al. [36] employed a unique logo as the trigger and
integrated it with the features of the original sample to enhance the trigger’s imperceptibility.
Namba et al. [37] proposed a robust watermarking method for neural networks employing
exponential weighting, providing resistance against both model and query alterations.
This method embeds watermarks through label-altered critical samples and exponential
parameter weighting, ensuring strong verification capabilities while maintaining model
predictive accuracy.

However, although black-box model watermarking enables timely evidence collec-
tion, it is essentially a prediction behavior based on trigger patterns, making it a zero-bit
watermark. This prevents black-box model watermarking from carrying binary sequence
messages. Therefore, we propose a dual watermarking scheme that uses both black-box
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and white-box model watermarking mechanisms to enable timely infringement detection
and traceability.

3. The Proposed Method
3.1. Definitions of Notations and Parameters

In this section, we define essential technical terms that are frequently used throughout
this paper as follows:

• API: an interface enabling external applications or users to send input requests and
receive prediction outputs from a model.

• Trigger: a specifically crafted input designed to activate the model’s predetermined
function or behavior.

• Watermark trigger: a trigger that activates the watermark output.
• Sample: an individual data or instance used in the dataset for training or testing

the model.
• Multiplication: an element-wise operation applied during the embedding of the object

generation watermark trigger into input data.
• Form of pattern: the structural design of the watermark trigger, exemplified by grids

or logos, which differentiates watermarked samples.
• Bounding box: a rectangle that encloses an object in an image. It is defined by its

coordinates, width, height, and category, and is crucial for object detection tasks.
• Clean dataset: the unmodified dataset.
• Target object: the watermarked object.
• Primary task performance: the accuracy of models in predicting clean testing samples.

We will consistently adhere to these definitions throughout the remainder of the paper.
Additionally, we explain several key parameters used in the paper in Table 1.

Table 1. Definitions of key parameters used.

Parameter Definition

D The dataset used for training or testing the model

xi, yi, N
The i-th input sample, its corresponding label, and the total number

of samples in the dataset

oi, (x̂i, ŷi), wi, hi, ci
Object instance, predicted bounding box center coordinates,

width, height, and category for the i-th object

x̃i, ỹi Images and labels of the watermarked samples

⊗ Element-wise multiplication operator

Lc,Lwm,Lε Clean loss , black-box watermark loss , white-box watermark loss

φ, W̃ l , ψ
White-box watermark information, extracted weights, and constructed

critical weights

σ, λ Hyperparameters

ψ′, φ′ Critical weights embedded with watermark information and the
extracted white-box watermark information

3.2. Overview

An overview of the proposed method is presented in Figure 2, comprising three
main components: black-box model watermark embedding, identification information
embedding, and infringement detection and leakage tracing. In the black-box model
watermark embedding step, the watermark triggers representing the black-box watermark
information are embedded into randomly selected samples. After training with these
samples, the model learns the copyright watermark information. In the identification
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information embedding step, fingerprint information is embedded into the model weights
before deployment or sale. During the infringement detection and leakage-tracing step,
verification samples are first input into the API of the suspicious model, and infringement
can be confirmed by verifying its output. Once infringement is confirmed for the model,
the leakage source is identified by extracting fingerprint information from it. The details of
the method are elaborated in the following sections.

Figure 2. Overview of the proposed copyright verification and traceability scheme for RSOD mod-
els. The proposed scheme consists of three main components: (1) embedding black-box model
watermarks for copyright verification; (2) embedding identification information for traceability;
and (3) performing infringement detection and leakage tracing to verify ownership and hold
traitors accountable.

3.3. Black-Box Model Watermark Embedding

In this section, we propose a black-box model watermarking method for embedding
copyright watermark information into RSOD models through object generation water-
mark triggers.

Let the original RSOD dataset be denoted Dori = {xi, yi}Ni=1, where xi represents the
i-th image, yi denotes the annotations for all objects in that image, and N is the total number
of images in the dataset. For each annotation yi = {o1, o2, o3, . . . , on}, where oi represents
the i-th object in the image, the object is described as oi = {x̂i, ŷi, wi, hi, ci}, where (x̂i, ŷi) is
the object’s center coordinate, wi and hi denote the width and height of the bounding box,
respectively, and ci represents the category of oi.

The original dataset Dori is divided into two parts: the selected clean subset Ds, which
is used for constructing the trigger samples, and the remaining clean dataset. Next, the
object generation triggers are embedded into Ds to construct Dwm = {(x̃i, ỹi)}, where
x̃i = Gx(xi) and (xi, yi) ∈ Ds. This trigger-embedding process involves two steps: generat-
ing the trigger sample x̃i and the corresponding watermarked annotation ỹi. x̃i, which is
achieved by embedding the object generation watermark trigger into xi using Equation (1):

Gx(xi) = λ ⊗ t + (1 − λ)⊗ xi (1)

where t is the object generation watermark trigger specified by the model owner,
λ ∈ [0, 1]C∗W∗H denotes the transparency of the trigger, and ⊗ denotes element-wise
multiplication. t can take any form of pattern. Examples of samples embedded with
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different types of t are shown in Figure 3. The impact of t on the watermark performance is
further analyzed in Section 4.7.

Figure 3. Samples embedded with different types of object generation watermark triggers. The three
rows demonstrate samples embedded with triggers of White_and_Black_Grids, Red_Airplane, and
RS_Logo, respectively. The red box highlights the exact location where the triggers are embedded in
the samples.

Additionally, the watermarking rate P% = |Ds |
|Dori |

denotes the proportion of trigger
samples to the total number of samples, which is critical for the model to learn the black-
box watermark information. When constructing the annotation ỹi, we randomly select a
category from the model’s primary task prediction categories as the target category for
object generation watermark triggers. For instance, in this study, the category “airplane”
is chosen as the predicted category for t, for which the target object is defined as otarget =[

a + wt
2 , b + ht

2 , wt, ht, “airplane”
]
. (a, b) represents the coordinates of t’s upper-left corner.

wt and ht denote the width and height of t, respectively. After all samples in Ds are
embedded with t and the corresponding annotations are modified, the final trigger dataset
is obtained Dwm =

{
(x̃i, ỹi)|ỹi =

(
o1, o2, o3, . . . , on, otarget

)}
.

The trigger dataset Dwm and the remaining clean dataset are both used as input. The
training dataset is defined as Dtrain = Dwm ∪ (Dori \ Ds). During the model training
process, we optimize and converge the RSOD model using the primary task loss Lc and
black-box watermark loss Lwm, which are defined as follows:

Lc =
1
N

N
∑
i=1

L(Fθ(xi), yi) (2)
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Lwm =
1
S

S
∑
i=1

L(Fθ(x̃i), ỹi) (3)

where N and S denote the number of clean and trigger samples, respectively. L represents
a loss function, and Fθ is the RSOD model.

When model training is completes, a black-box watermarked RSOD model Fwm is
obtained. Fwm is already a trained high-performance RSOD model with an embedded
copyright watermark.

3.4. Identification Information Embedding

To implement the traceability function, we embed a unique fingerprint that represents
the identity of the deployment platform or legitimate buyer into a small subset of critical
weights within the RSOD model. As illustrated in Figure 4, the process comprises four
components: fingerprint generation, weights extraction, critical weights construction, and
fingerprint embedding.

Figure 4. Fingerprint embedding process.

3.4.1. Fingerprint Generation

We employ an RSA key generation algorithm [38] for fingerprint generation. First, the
RSA algorithm generates two keys: the public key kp and the private key ks. The private key
ks generates fingerprint information, while the public key kp is employed for fingerprint
verification. Subsequently, to enhance the security of the fingerprint and convert it into a
fixed-length format, we perform the hash function on ks.

Specifically, we employ the SHA-256 hash function [39] with ks as input to generate a
fixed-length binary output, denoted γ ∈ {0, 1}b, where b represents the number of bits in
the fingerprint information. To facilitate subsequent operations, we employ Equation (4) to
convert γ into a vector composed of 1 and −1, representing positive and negative values:

φ =
{

sgn(γi)
b
i=1

}
(4)

where the sign function sgn(·) is used to convert 0 to −1.
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Therefore, the generated fingerprint message is φ ∈ {−1, 1}b, which is recorded in the
fingerprint database D f .

3.4.2. Extraction of Weights

A small set of weights associated with the object bounding box in Fwm is extracted.
These weights are crucial to the model’s training and inference processes, precisely localiz-
ing object positions.

We extract the bounding box weights W l from the l-th layer of Fwm and convert them
to a weight matrix W̃ l , with dimensions of s∗r. An average pooling function is performed
to balance high- and low-value weights by averaging intervals within W l , yielding the
transformed W̃ l . It is defined as Equation (5):

W̃ l(i) =
i∗ m

d

∑
t=(i−1)∗ m

d +1
W l(t), i ∈ [1, d] (5)

where d represents the dimension of the transformed target matrix, m
d is the size of the

pooling window, W l(t) is the t-th element in the spread weight vector, i ∈ [1, d] is the index
position after pooling, and W̃ l(i) is the target vector after each average pooling.

Given that the dimension of φ is b∗1, the dimension of the transformed target weight
matrix W̃ l will be d = b∗b′.

3.4.3. Construction of Critical Weights

Inspired by Liu et al. [21], we adopt a “less is better” greedy strategy when se-
lecting embedding weights, prioritizing a small number of critical model weights for
fingerprint embedding.

Therefore, we only select a limited subset of critical weights from W̃ l . Specifically, we
select those weights belonging to Rb′ from W̃ l ∈ Rb∗b′ , where R represents the set of all
real numbers. Here, Rb′ represents a vector space with b′ dimensions, with each component
being a real number, and Rb∗b′ represents a b∗b′ matrix with real-valued entries. Since each
row of W̃ l contains positive and negative values, we first sort elements within each row in
descending order by absolute values and retain only the top η% as critical weights, setting
the remaining elements to 0. To align with the dimension of φ, we use Equation (6) to
average each row of the extracted weight matrix and then reshape the dimensions to form
the final constructed ψ:

ψi =
1
b′ ∑

j∈Bi

j (6)

where Bi is the set of the top η% weight values in row i after sorting W̃ l . Finally, ψ is
constructed with the dimension of b∗1.

3.4.4. Fingerprint Embedding

The fingerprint is embedded by modulating the signs of ψ to align with φ through fine-
tuning with a loss function. To achieve this, we add a constraint term through Equation (7)
to guide the fine-tuning training:

LE = λ
b

∑
i=1

ReLU(σ − φi · ψi) (7)

ReLU(x) =

x, if x > 0

0, if x ≤ 0
(8)
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where LE is the fingerprint align loss, forcing the signs of ψ to be consistent with φ. λ and
σ are hyperparameters. There are two cases for LE . When φi · ψi > 0, meaning that φ has
sign consistency with ψi, no LE occurs. Thus, no further constraints are required. However,
when φi · ψi < 0, indicating that φ has sign inconsistency with ψi, LE is incurred. At this
point, LE serves as a penalty term to align the signs of the critical weights with the signs of
the fingerprint.

To ensure that fingerprint embedding does not impact model performance, we fine-
tune Fwm using Dtrain, with the total loss Ltotal defined as follows:

Ltotal = Lc + Lwm + LE (9)

During each epoch of fine-tuning, we repeat the weight extraction and critical weight
construction steps to update ψ and calculate Ltotal based on the updated ψ. When the loss
converges, fine-tuning is complete, and the fingerprint information is embedded in Fwm,
resulting in a final watermarked RSOD model F f .

3.5. Detecting Infringement and Tracing Leakage

Detecting Infringement: To identify whether a model Fs published on a cloud plat-
form is pirated or a downstream-plagiarized derivative, we utilize the API provided by Fs

for ownership verification.
First, a verification sample set Dv is generated using the same construction method

as Dwm, outlined in Section 3.3. Subsequently, the trigger samples in Dv are input into
the API of Fs to obtain the inference results. As illustrated in Figure 5, the inference
results of the pirated model and non-pirated model concerning the trigger samples are
significantly different. The pirated model can accurately identify the object category in
the trigger samples and precisely locate the position of the object generation watermark
triggers, demonstrating apparent watermarking effects. In contrast, the non-pirated model
provides standard prediction results and exhibits no signs of watermarking.

In addition, to ensure the credibility of the verification results, we introduce the
Watermark Success Rate (WSR) metric to analyze them quantitatively. The formula is
defined as

WSR =
1
St

·
n

∑
i=0

I
(
Fwm(x̃i) = ỹi ∩ otarget ∈ ỹi

)
, x̃i ∈ Dv (10)

where St represents the total number of object generation watermark triggers embedded
in Dv, n represents the number of trigger samples, I is an indicator function that returns
1 when the conditional judgment is valid and 0 otherwise, and otarget ∈ ỹi denotes the
existence of the object generation trigger in ỹi. The validation results are considered to have
high confidence when WSR > τ. Here, τ represents the threshold for the confidence of the
verification results.

If the inference results of Fs exhibit a watermark effect, which means WSR > τ, model
infringement can be concluded.

Tracing Leakage: To further trace the leakage source, the embedded fingerprint
information is extracted from the model weights and compared. The specific fingerprint
extraction process consists of the following three steps: (i) extracting the weights containing
the fingerprint information from the model Fs; (ii) constructing critical weights ψ′ based on
the extracted weight values; and (iii) extracting the signs of ψ′, mapping positive signs to 1
and negative signs to 0, thereby generating the embedded binary fingerprint information
φ′. Here, steps (i) and (ii) correspond to the operations depicted in Figure 4.
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We match φ′ with the fingerprint database D f , which contains the fingerprints of all
buyers and deployment platforms. The buyer or deployment platform represented by the
fingerprint information with the greatest match to φ′ is identified as the leakage source.

Figure 5. Inference results of pirated and non-pirated models. (a) Pirated model. (b) Non-
pirated model.

4. Experiment Results and Evaluation
We conduct experiments to evaluate the proposed scheme with respect to the fol-

lowing aspects: (i) fidelity—the embedding of black-box watermark and identification
information should minimally affect the model’s inference accuracy (Section 4.2); (ii) effec-
tiveness—the proposed scheme should reliably enable copyright verification and tracing of
leakage sources (Section 4.4); (iii) robustness—the method’s resistance to potential attacks
(Section 4.5); (iv) comparison—a comparison with existing methods (Section 4.6); and
(v) ablation—the impact of different factors on the scheme’s overall effectiveness
(Section 4.7).

4.1. Experimental Setup

Model and Dataset Selection. In this study, we chose two classical RSOD models for
experimental simulations: the two-stage Faster-RCNN with a ResNet50+FPN backbone [1]
and the one-stage YOLOv5 model featuring a CSPDarknet53 backbone [4]. Additionally,
three widely used RSOD datasets were utilized: NWPU VHR-10 [40], RSOD [41], and
LEVIR [42].

Training configurations. Our experiments were conducted on a workstation running
the Windows operating system, equipped with an Intel i7-14700KF CPU and an NVIDIA
GeForce GTX 4090 GPU. The dataset was divided into training, validation, and test sets in
a ratio of 8:1:1. The initial learning rate was set to 0.01 during the training phase.
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Parameter Setting. The object generation watermark trigger size for all three datasets
was 25x25 pixels, with the watermarking rate consistently set to P% = 4%. Additionally,
we adjusted the relevant hyperparameters, setting λ = 0.05 and the threshold σ = 0.12.

Evaluation Metrics. To assess the performance of primary tasks, we utilized the mean
Average Precision (mAP) metric, which is calculated by averaging all average precision
(AP) values. AP represents the detection accuracy of one category. Higher mAP values
indicate superior object detection performance, demonstrating enhanced accuracy and
recall in the model. In RSOD tasks, a bounding box (bbox) represents the spatial extent of
an object within an image, delineating where the object is located. Intersection-over-union
(IoU) is a metric that evaluates the accuracy of bounding boxes by measuring the ratio of
the intersection area to the union area of the predicted and ground-truth bounding boxes.
In this study, we used mAP at IoU = 0.5 (mAP@.5) as the detection metric.

Specifically, the mAP of the clean model Fc on the clean test set Dtest is denoted as
mAPclean, and the mAP of F f on Dtest is defined as mAPwm.

Additionally, WSR was used to evaluate the performance of the black-box watermark.
The bit correct rate BCR was used to calculate the proportion of extracted fingerprint bits
that are consistent with the original fingerprint bits, thereby quantitatively evaluating the
performance of the white-box watermark.

4.2. Fidelity

Fidelity refers to assessing the impact of the proposed scheme on model performance.
In this section, we compare the primary task performance of the clean model Fc with F f .
We conducted inference experiments using both the Fc and the F f on Dtest. The results are
presented in Table 2. The experimental results show that our scheme retained the primary
task performance of F f . Specifically, the mAPwm of the Faster-RCNN model across the
three datasets shows a 0.15% reduction for NWPU VHR-10, a 0.7%, and 0.05% improvement
for RSOD and LEVIR, respectively. Similarly, the mAPwm of the YOLOv5 model on the
three datasets demonstrates reductions of 0.08% and 0.37% for NWPU VHR-10 and LEVIR,
respectively, and a 0.27% improvement for RSOD. Therefore, the proposed method will not
affect the inference performance of the RSOD models.

Table 2. Impact of proposed scheme on primary task performance.

Model Faster-RCNN YOLOv5

Dataset NWPU VHR-10 RSOD LEVIR NWPU VHR-10 RSOD LEVIR

mAPclean (%) 81.72 85.73 73.75 93.83 97.12 95.73

mAPwm (%) 81.57 86.43 73.88 93.75 97.39 95.36

Accuracy drop (%) 0.15 −0.7 −0.05 0.08 −0.27 0.37

4.3. Threshold Setting

This section establishes threshold τ based on the statistical experiments to ensure the
reliability of the copyright verification results. In these experiments, we employed the
Faster-RCNN and YOLOv5 models to make predictions on clean and trigger samples and
calculate the false positive rate (FPR) and true positive rate (TPR).

To reduce variability in the experimental results, we divided Dtest and Dwm into
five groups (D′

test1, D′
test2, . . . ,D′

test5 and D′
wm1,D′

wm2, . . . ,D′
wm5), where Dwm consisted of

trigger samples. For FPR, we employed the F f to predict the D′
test1, D′

test2, . . . ,D′
test5.

We then calculated the probability that all objects in clean samples are misclassified
as belonging to the target watermark category. For TPR, we applied the F f to predict
D′

wm1,D′
wm2, . . . ,D′

wm5 and calculate the probability that the object generation watermark
triggers in each sample were correctly identified as the target watermark category. The
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statistical results of the FPR and TPR are presented in Table 3. The findings indicate
that the Faster-RCNN and YOLOv5 models exhibit low FPRs across all D′

test. In the TPR
experimental results, despite relatively low values for the YOLOv5 model, the TPRs all
remain above 95%. Therefore, based on the observed FPR and TPR, we set the threshold to
τ = 70%, which adequately meets the practical requirements.

Table 3. FPR and TPR of F f ’s predictions.

Metrics
Model\Dataset NWPU VHR-10 RSOD LEVIR

Groups 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

FPR Faster-RCNN 0% 0% 0% 0% 0.056% 0% 0% 0% 0% 0% 0% 0.12% 0% 0% 0%

YOLOv5 0.04% 0% 0% 0.032% 0.047% 0% 0% 0.078% 0.021% 0% 0.034% 0.06% 0% 0.076% 0%

TPR Faster-RCNN 100% 99.23% 99.76% 99.85% 100% 98.54% 98.62% 100% 99.21% 99.32% 99.57% 100% 100% 100% 100%

YOLOv5 96.53% 96.75% 96.34% 95.95% 96.46% 98.23% 97.95% 98.12% 98.46% 98.34% 100% 100% 99.87% 100% 100%

4.4. Effectiveness

The effectiveness of the proposed method was evaluated in two main aspects: the
reliability of copyright verification and the effectiveness of traceability.

Effectiveness of Copyright Verification. In this section, we assess the effectiveness of
copyright verification by calculating the WSR of F f during various training epochs. The
experimental results are illustrated in Figure 6. The results demonstrate that as the training
epochs increase, the WSR of the Faster-RCNN model stabilizes, consistently remaining
above 97%. In contrast, the WSR values for the YOLOv5 model on the NWPUVHR-10,
RSOD, and LEVIR datasets are above 92%, 88%, and 99%, respectively. Therefore, after
10 epochs of training, the WSR across different models and datasets exceeds the predefined
τ, indicating that the copyright verification results are credible and successful. Figure 7
illustrates several examples of successful trigger validation results.

Figure 6. The variation in WSR under different training epochs. (a) WSR variation on Faster R-CNN
model. (b) WSR variation on YOLOv5 model.

Effectiveness of traceability. We evaluated the effectiveness of traceability by analyz-
ing BCR across various epochs of fine-tuning before deployment. Figure 8 illustrates the
specific experimental results. BCR stabilizes at 100% after five epochs of fine-tuning on
the Faster-RCNN model across three different datasets. Similarly, BCR remains stable at
100% after 10 epochs of fine-tuning on the YOLOv5 model across three different datasets.
These experimental results show that fingerprint embedding requires only a few epochs of
fine-tuning and can achieve 100% BCR. Therefore, the proposed method provides effective
support for tracing the leakage source.
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Figure 7. Examples of successful watermark validation results for trigger samples.

Figure 8. The variation in BCR during different fine-tuning epochs. (a) BCR variation on Faster
R-CNN model. (b) BCR variation on YOLOv5 model.

4.5. Robustness

Attackers may attempt to remove the watermark from the model through fine-
tuning [43] and pruning [44] to circumvent ownership verification and traceability. There-
fore, we designed the experiments to evaluate the robustness of the proposed method
against fine-tuning and pruning attacks.

Robustness against Fine-tuning. We used the original dataset Dori as the fine-tuning
dataset and conducted 30 epochs of fine-tuning on F f . The WSR of the black-box watermark
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against fine-tuning attacks is present in Figure 9a,b. It indicates that although the WSR
decreases with an increase in the number of fine-tuning epochs, it still exceeds 91% even
on the YOLOv5 and NWPU VHR-10, for which performance against fine-tuning attacks is
the worst. The BCR of the extracted fingerprints under fine-tuning attacks is presented
in Figure 9c,d. The results indicate that the BCR decreases slightly with increasing fine-
tuning epochs and all the BCR exceed 99%. Fine-tuning attacks have little effect on the
fingerprint extraction. Therefore, the proposed method demonstrates good robustness
against fine-tuning attacks.

Figure 9. Robustness against fine-tuning attacks. (a) Black-box watermark in Faster-RCNN model.
(b) Black-box watermark in YOLOv5 model. (c) Fingerprint in Faster-RCNN model. (d) Fingerprint
in YOLOv5 model.

Robustness against pruning attacks. Pruning is a widely used model compression
technique that simplifies DNN architectures by eliminating redundant parameters. In this
section, we describe the implementation of a progressive pruning method to reduce the
number of neurons in the backend network layer by gradually adjusting the pruning ratio.
In experiments, the pruning ratio of the model progressively increases from 0% to 100%.
The results are presented in Figure 10. Although a higher pruning ratio can substantially
reduce WSR and BCR, it comes at the cost of a significant decrease in mAPwm.

As the pruning ratio increases, the WSR of the black-box watermark and the BCR of
fingerprints decline more slowly than the mAPwm. For instance, in Figure 10a, mAPwm

drops below 50% at a pruning rate of 20%, whereas WSR and BCR do not fall below
50% until pruning rates of 60% and 90%, respectively, are reached. In particular, BCR
only drops below 90% when the pruning rate exceeds 70%. The embedded fingerprint is
highly robust to pruning attacks. Although mAPwm, WSR, and BCR are affected at high
pruning rates, all WSR values exceed the threshold τ, and BCR remains above 99% until
mAPwm falls below 40%, which means the RSOD model no longer holds commercial value.
These results indicate that the black-box watermark and identification information remain
effective before the model loses its commercial value. Consequently, the proposed scheme
is sufficiently robust to pruning attacks.

4.6. Comparison with Existing Methods

In this section, we compare the proposed scheme with existing copyright verification
schemes [45,46] and IP protection schemes with traceability [27,47]. It is worth noting that
most existing traceability methods are primarily designed for classification tasks, and some
of them are not applicable to RSOD tasks as they rely on specific model structures or loss
functions. Therefore, we select two traceability schemes designed using model weights and
then adapt and transfer them to the object detection task for comparative analysis.
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Figure 10. Robustness against pruning attacks. (a) Faster-RCNN model with NWPU VHR-10 dataset.
(b) Faster-RCNN model with RSOD dataset. (c) Faster-RCNN model with LEVIR dataset. (d) YOLOv5
model with NWPU VHR-10 dataset. (e) YOLOv5 model with RSOD dataset. (f) YOLOv5 model with
LEVIR dataset.

As shown in Table 4, we performed comparative experiments across three different
datasets using the Faster-RCNN model. In copyright verification, the proposed method out-
performs the BAWE [45] and CIBA [46] methods, showing a smaller decrease in the mAPwm

and achieving a higher WSR. In traceability, Deepmarks [47] and SecureMark_DL [27]
exhibit a more significant negative impact on mAPwm and have a lower BCR than our
method. In contrast, our scheme maintains a high BCR while minimizing interference on
mAPwm, thereby achieving a balance between fidelity and traceability.

In conclusion, the proposed scheme not only offers reliable and effective IP protection
in terms of copyright verification and traceability for RSOD models but also outperforms
existing methods, demonstrating its practical applicability.

Table 4. Comparative experiment results.

Datasets → NWPU VHR-10 RSOD LEVIR

Methods ↓ mAPwm WSR BCR mAPwm WSR BCR mAPwm WSR BCR
BAWE [45] 80.43% 93.64% - 84.32% 96.71% - 73.11% 98.39% -

CIBA [46] 81.36% 78.58% - 86.45% 70.65% - 73.81% 68.82% -

Deepmarks [47] 73.56% - 81.76% 69.93% - 91.45% 61.67% - 86.96%

SecureMark_DL [27] 77.59% - 87.88% 73.43% - 84.89% 63.72% - 81.54%

Ours 81.57% 100% 100% 86.43% 100% 100% 73.88% 100% 100%
“-” signifies that this method is not applicable; the directions indicated by “→” and “↓”, respectively, represent

the types of Datasets and Methods.
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4.7. Ablation Study and Discussion

This section explores various components of our proposed method by performing
ablation experiments using the Faster-RCNN model on the NWPU VHR-10 dataset. We
investigate the impact of trigger sizes, watermark rate P%, and different trigger patterns.

Effects of Trigger sizes. To demonstrate the impact of object generation watermark
trigger sizes on the primary task accuracy and WSR, we separately embedded triggers of
various sizes and conducted experimental statistics and analysis.

The impact of trigger size on mAPwm and WSR is illustrated in Figure 11a, which
shows that with an increase in trigger size, WSR slightly improves and eventually sta-
bilizes at 100%. Furthermore, the trigger size has no significant impact on the mAPwm.
Consequently, we employ a trigger with dimensions of 25×25. This configuration enables
the trigger to achieve WSR= 100% during model ownership verification, surpassing the
predefined threshold τ.

Effects of Watermarking Rate P%. To evaluate the impact of the watermarking rate
P% on the mAPwm and WSR, we conducted experiments using various watermarking
rates during the embedding process. The experimental results in Figure 11b indicate that
when the watermarking rate P% exceeds 4%, the WSR stabilizes at 100%. Additionally,
increasing the P% had minimal impact on the mAPwm. Therefore, the P% is set to 4% in
this study.

Comparison of Effects from Different Trigger Patterns. We conducted ablation
experiments to examine the impact of various trigger patterns on the generalizability of the
proposed method. We utilized three distinct trigger patterns, as illustrated in Figure 3. The
results presented in Figure 11c indicate that all three trigger patterns have minimal impact
on the mAPwm and consistently achieve 100% for WSR. These findings demonstrate that
different trigger patterns do not significantly affect the generalizability of the proposed
method. Consequently, we selected the “White_and_Black_Grids” trigger pattern as the
basis for this study.

Figure 11. Influence of different configurations on model performance. (a) Trigger sizes. (b) Water-
marking rate. (c) Trigger patterns.

5. Discussion
5.1. Factors Influencing Experimental Differences

The experimental differences observed in this study, including those in fidelity, efficacy,
robustness, comparative, and ablation studies, are shaped by several interrelated factors.
Fidelity is influenced by hyperparameters such as the learning rate and batch size, as well
as the complexity of the task and the dataset’s characteristics. Additionally, the embedding
processes of black-box and white-box watermarks affect the model’s ability to maintain
its original performance. Efficacy depends on the design of the watermark trigger, the
proportion of black-box watermarked samples, and the fine-tuning period for white-box
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watermark embedding. Robustness, which measures the watermark’s resistance to attacks,
is affected by the model architecture and the intensity of post-processing techniques like
pruning. Comparative evaluations are influenced by the choice of baselines and variations
in dataset size and evaluation metrics. Lastly, ablation studies highlight the impact of
altering key components, such as trigger size, watermarking rate, and trigger patterns,
providing insights into the contributions of individual elements to the overall performance.

5.2. Challenges and Future Directions

Although the IP protection scheme proposed in this study for RSOD models has
been elaborated and validated on both the theoretical and experimental levels, there are
still numerous challenges and limitations in practical applications, as well as space for
further improvement. Specifically, considering the advancement of technology, attackers
may adopt more sophisticated techniques to remove or tamper with watermark and fin-
gerprint information embedded in models, posing new challenges to the robustness of
existing methods. Moreover, RSOD models are often highly complex, making the process
of embedding watermark and fingerprint information resource intensive. In practical
deployments, especially in resource-constrained environments such as mobile devices or
edge computing nodes, this resource consumption could negatively impact the model’s
real-time performance and response speed.

Therefore, future algorithmic improvements will focus on integrating the latest defense
mechanisms to counter potential new attack techniques. Additionally, further research
is needed to ensure the effective detection and extraction of watermark and fingerprint
information, even when the model suffers from severe attacks, resulting in significant
performance degradation. Finally, efforts will be directed toward designing more efficient
embedding algorithms to reduce computational resource consumption and enhance the
model’s applicability in resource-constrained environments.

6. Conclusions
This study proposed a novel IP protection scheme for RSOD models that achieves

copyright verification and leakage source traceability. Our approach first embeds object
generation watermark triggers into a subset of training samples, enabling the model to
learn the black-box watermarking information from the trigger samples, thereby achieving
ownership verification. In addition to copyright verification, the scheme embeds identifica-
tion information representing the deployment platforms or legitimate buyers into a small
subset of the model’s critical weights before deployment or sale, thus facilitating leakage
source tracing for enhanced accountability in judicial verification. Extensive experiments
demonstrate that our proposed method can effectively identify infringement based on the
model’s APIs, achieving a detection rate of 100%. Moreover, traceability remains effective in
the absence of attacks and under three distinct attack scenarios. Importantly, the proposed
scheme exerts a negligible impact on the performance of the RSOD models, ensuring that
their functionality remains intact. This novel approach provides a more reliable mechanism
for the IP protection of RSOD models, promoting the healthy and sustainable development
of commercial applications for RSOD models.
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