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Abstract: The combined use of synthetic aperture radar (SAR) and optical images for
surface observation is gaining increasing attention. Optical images, with their distinct
edge features, can accurately classify different objects, while SAR images reveal deeper
internal variations. To address the challenge of differing feature distributions in multi-
source images, we propose an edge enhancement network, OSNet (network for optical and
SAR images), designed to jointly extract features from optical and SAR images and enhance
edge feature representation. OSNet consists of three core modules: a dual-branch backbone,
a synergistic attention integration module, and a global-guided local fusion module. These
modules, respectively, handle modality-independent feature extraction, feature sharing,
and global-local feature fusion. In the backbone module, we introduce a differentiable
Lee filter and a Laplacian edge detection operator in the SAR branch to suppress noise
and enhance edge features. Additionally, we designed a multi-source attention fusion
module to facilitate cross-modal information exchange between the two branches. We
validated OSNet’s performance on segmentation tasks (WHU-OPT-SAR) and regression
tasks (SNOW-OPT-SAR). The results show that OSNet improved PA and MIoU by 2.31%
and 2.58%, respectively, in the segmentation task, and reduced MAE and RMSE by 3.14%
and 4.22%, respectively, in the regression task.

Keywords: multimodal neural networks; multi-source fusion; attention mechanism

1. Introduction
Optical and synthetic aperture radar (SAR) images are widely used in remote sensing,

serving critical roles in environmental monitoring, natural disaster assessment, and re-
source management [1]. Optical images, with their rich color, boundary, and texture
information, can effectively distinguish different objects and edges. However, optical im-
ages are susceptible to weather conditions such as clouds and fog. In contrast, SAR images,
with their excellent penetration capability, can capture internal information of objects even
in adverse weather conditions. Therefore, researchers have increasingly focused on inte-
grating optical and SAR images to leverage their complementary advantages, providing a
more comprehensive and accurate land surface analysis [2].

With the rapid development of deep learning techniques, the joint application of
optical and SAR images has become a mainstream trend to improve the accuracy of remote
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sensing tasks [3]. Li et al. [4] first proposed the land cover segmentation dataset based on
optical and SAR images, which served as a foundational dataset for deep learning models.
Since then, researchers have conducted extensive work around efficient feature extraction
and fusion methods, significantly improving the accuracy of land cover classification.
Additionally, optical and SAR images have also achieved groundbreaking applications in
snow depth estimation. Daudt et al. [5] were the first to combine SAR and optical images for
snow depth retrieval by employing neural networks to explore the nonlinear relationships
between optical images, SAR images, and snow depth.

However, while existing studies have designed detailed models to decouple the overall
features of the two modalities, they often overlook crucial edge information [6,7]. Edge
information is crucial in both of these tasks. In land segmentation, edges are essential
for identifying the boundaries between different land cover types, such as forests, water,
and urban areas [8]. By detecting these edges, segmentation models can more accurately
classify distinct land features and reduce misclassification. In snow depth estimation,
optical edges clearly mark the boundaries between snow-covered and non-snow-covered
areas [9], assisting SAR in reducing the misclassification of snow-free regions as deep snow.
Regions such as ridges and bare ground often have little snow, and accurately identifying
these areas can help reduce redundant information in SAR images [10].

Obtaining accurate boundary information through optical and SAR images still faces
challenges. Despite SAR images’ ability to penetrate surfaces and reveal internal edges,
they often suffer from blurred edges due to scattering noise [11]. To address the above
issues, this study made the following contributions:

(1) This study introduces OSNet (network for optical and SAR images), a bidirectional
feature exchange network that leverages the strengths of both optical and SAR images
to achieve complementary edge information fusion.

(2) This study introduces a Laplacian convolution designed for neural networks, incor-
porating a differentiable Lee filter and a Laplacian edge detection operator. This
approach effectively suppresses SAR noise while enhancing edge features.

(3) We construct the SNOW-OPT-SAR dataset, which integrates optical and SAR images
for snow depth inversion. This dataset combines regional optical images (RGB and
near-infrared bands) with SAR images to perform regression predictions of snow
depth at central location, using station measurements as the ground truth.

The rest of this paper is organized as follows: Section 2 introduces related work of land
segmentation and snow depth estimation. Section 3 introduces land cover classification
dataset called WHU-OPT-SAR and snow depth inversion dataset, which we created and
called SNOW-OPT-SAR. Section 4 presents the structure of OSNet. Section 5 outlines
a comparison and ablation experiments that we performed on WHU-OPT-SAR [4] for
a quantitative analysis to validate the effectiveness of OSNet. In Section 6, we conduct
experiments on SNOW-OPT-SAR to verify the performance of OSNet in a regression task.
Section 7 summarizes our paper’s contributions and limitations. The flowchart of the
methodology for OSNet validation is shown in Figure 1.
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Figure 1. Flowchart of the methodology for OSNet’s validation.

2. Related Work
2.1. Land Segmentation

Currently, research on land segmentation using the joint images of optical and SAR is
rapidly developing [12]. Optical sensors capture electromagnetic radiation in the visible
spectrum, are highly sensitive to color information, and can directly reflect land objects.
However, they are susceptible to weather and lighting conditions. In contrast, SAR collects
radar signals reflected by land surface to generate backscatter images, effectively identifying
specific land objects (such as water and snow) even under adverse weather or dim lighting
conditions. Therefore, extracting information from optical and SAR images to improve
land classification holds great research value.

Li et al. [4] established the first deep learning-based optical and SAR joint land classifi-
cation dataset, WHU-OPT-SAR, and proposed MCANet, used for feature extraction from
multi-source data with Siamese networks. It demonstrates that the complementarity be-
tween optical and SAR images can significantly enhance the accuracy of land classification.
After this, various fusion strategies have been explored in recent studies, which can be
broadly classified into pixel-level fusion and feature-level fusion. Pixel-level fusion, as ex-
emplified by methods like PSCNN [6], directly combines the two modalities by stacking
them at the pixel level. However, this approach tends to be sensitive to noise and suffers
from instability during training. In contrast, feature-level fusion has become the dominant
approach in recent studies, with researchers also investigating multi-scale feature fusion
techniques [4,13–15]. Hu et al. [7] proves that feature-level fusion is more effective than
pixel-level fusion in terms of performance and robustness. Accordingly, in this work, we
adopt a feature-level fusion strategy to construct a dual-branch neural network.

2.2. Snow Depth Estimation

The retrieval of snow depth mainly depends on the ability of synthetic aperture radar
to penetrate the snow surface and obtain the internal information of the snow [16]. Snow
is a poor conductor of heat and acts as an insulator, providing thermal insulation to the
ground [17]. During the transition from fall to winter, the cooling of the near-surface
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air increases the temperature gradient between the ground and the air, resulting in more
longwave radiation from the ground and a decrease in ground temperature [18]. Changes
in ground temperature affect moisture and liquid water, which change the ground dielectric
constant, which is closely related to the backscatter coefficient in SAR imagery. The insu-
lating effect of snow is proportional to its depth; deeper snow provides better insulation,
resulting in less energy loss, a smaller decrease in ground temperature, and a lower mois-
ture and dielectric constant [19]. This results in a decrease in the backscatter coefficient in
SAR images. By establishing a quantitative relationship between the backscatter coefficient
and snow depth, snow depth can be estimated [20–22]. Daudt et al. [5] are the first to
combine SAR and optical images for snow depth inversion by employing neural networks
to explore the nonlinear relationships between optical and SAR images, and snow depth.

Although optical remote sensing cannot penetrate snow, it can accurately distinguish
between snow-covered and snow-free areas. This capability can assist SAR in reducing
misclassification of snow-free and shallow snow areas as deep snow. Additionally, there is
a correlation between snow cover extent and snow depth; a larger snow cover extent often
indicates a greater average snow depth [23]. Therefore, Zhao et al. [23] combined regional
optical and SAR images to retrieval the snow depth at a center single point, with optical
images providing information on snow cover location, color, and texture to assist SAR
in prediction.

3. Datasets
In this study, we use the WHU-OPT-SAR dataset [4] for the semantic segmentation

task and create the SNOW-OPT-SAR dataset, which combines optical and SAR images,
for the snow depth regression task. For both datasets, we allocate 80% of the data for
training and 20% for testing.

3.1. WHU-OPT-SAR Dataset

WHU-OPT-SAR dataset: WHU-OPT-SAR is a publicly available dataset that matches
optical images with SAR images to train and test the effectiveness of models in the task of
semantic segmentation, available at [24]. The dataset originates from Hubei Province, China,
covering a wide range of remote sensing images with varying terrains and vegetation.
The dataset is annotated with seven main categories: farmland (brown), urban (red), village
(yellow), water (blue), forest (green), road (cyan), and others (white).

In this study, 100 sets of image from the dataset are cropped to a size of 256 × 256.
We carefully examine the cropped dataset, removing samples with only a single category,
resulting in a total of 22,409 datasets.

3.2. SNOW-OPT-SAR Dataset
3.2.1. Study Area and Dataset

The study area of SNOW-OPT-SAR is located in the Tibetan Plateau (ranging from
26°00′N to 39°47′N in latitude and from 73°19′E to 104°47′E in longitude). The Tibetan
Plateau is the highest region in the mid-latitudes of the Northern Hemisphere and the area
with the most extensive snow cover. Figure 2 presents a topographic map of the Tibetan
Plateau in China, along with the distribution of meteorological stations used in this paper.

We create SNOW-OPT-SAR by merging data from three sources: VV-polarized SAR
images from Sentinel-1, optical images from Landsat-8 covering four bands (RGB, NIR),
and daily snow depth observations from the National Meteorological Information Center.
Since the station’s data span from 2014 to 2017, we select Landsat-8 for optical images
instead of Sentinel-2.
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Figure 2. A topographic map of the Tibetan Plateau and the distribution of stations used in this paper.

3.2.2. Sentinel-1

C-band SAR images obtained by Sentinel-1 are robust to variations in solar illumina-
tion, cloud cover, and other meteorological events, which makes them a reliable, timely
tool for observing the Earth at regular intervals.

We preprocess Sentinel-1 VV-polarization images by ESA’s SNAP toolbox, including
orbit correction, thermal noise removal, radiometric calibration, terrain correction and
conversion to decibel scale.

3.2.3. Landsat-8

Landsat-8 provides seasonal coverage of the global landmass at a spatial resolution
of 30 meters. We select only optical images taken in clear, cloud-free weather conditions.
The RGB and NIR bands are then selected for layer stacking and resampled to 10 meters to
match the resolution of SAR images. All these processes are implemented in ENVI.

3.2.4. Ground Observation

The daily snow depth observation data are obtained from the National meteorological
Information Center, available at [25]. We selected stations that are displayed in Figure 2,
covering the period from 2014 to 2017, specifically from November to March of the following
year. We selected the data in winter to minimize the impact of snow melting. The site
observation values are used as labels to annotate the optical and SAR images. The snow
depth values range from 0 to 42 cm, and the data distribution is displayed in the Figure 3.

Figure 3. Data distribution of SNOW-OPT-SAR. The snow depth range from 0 to 42cm.
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3.2.5. Creation Process

To effectively combine these diverse data sources and create a cohesive dataset, we
follow a detailed preprocessing and alignment procedure.

Firstly, we obtain cloud-free optical and SAR images based on the time and location of
ground observations. To ensure data accuracy, we select remote sensing images acquired
on the same day as the measurements. We collect the observational data during winter to
minimize changes in snow cover, thereby reducing the impact of temporal displacement.
Then, we preprocess the image pairs, as mentioned previously, and align them using the
registration tool in ENVI. Subsequently, we crop a 64 × 64 pixel area centered on the site
location and annotate it with ground observation data. Finally, we expand the original
4000 samples to 8000 sample sets by applying random rotations and flipping.

This approach involves using optical and SAR images of 640 m × 640 m as inputs
to determine snow depth at the central location. Unlike point-to-point snow estimation,
this method leverages the spatial distribution and edge information of snow in the optical
images to distinguish between snow-covered and snow-free areas, aiding the SAR analysis.
Furthermore, edges in snow images, such as ridgelines, typically indicate snow-free zones
and can be ignored in SAR backscatter analysis, thereby eliminating redundant information
and improving snow depth prediction accuracy in SAR images.

Figure 4 displays a group of images pairs in SNOW-OPT-SAR.

Figure 4. Partial dataset display: Each column represents a set of images for which alignment has
been completed. The first row corresponds to optical images, and the second row corresponds to the
VV-polarization SAR image.

4. Methodology
4.1. Architecture of OSNet

We proposed a joint framework called OSNet (network for optical and SAR images)
in Figure 5, which can be divided into Backbone, synergistic attention integration module
(SAIM), and global-guided local fusion module (GLFM).

The entire network can be viewed as an encoder-decoder structure. The backbone
and SAIM serve as the encoder to extract features, while the GLFM acts as the decoder
to transform these features into the desired output format. OSNet takes a pair of optical
and SAR images as input. Depending on the task type, we can switch output by simply
modifying the final part of the GLFM. For segmentation tasks, we use upsampling to
restore the features to their original dimensions. For regression tasks, we flatten the features
and use a fully connected network to output the predicted snow depth. In following
subsections, we will introduce the details of each module.
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Figure 5. Framework of OSNet.

4.2. Backbone

We proposed an asymmetric dual-branch backbone and each branch is modified
based on ResNet [26], which is a classical model in deep learning for extracting features
at multiple scales. ResNet introduces residual structures to address the issues of gradient
explosion and vanishing gradients in deep networks [8]. ResNet-50 is divided into five
layers, with the first layer being the Stem and the remaining four layers consisting of 3, 4, 6,
and 3 residual modules, respectively, as described below:

xi
′ = Conv3

i

{
σ
[
Conv1

i (xi)
]}

(1)

xi+1 = xi + σ
{

Conv1
i+1[σ(xi

′)]
}

(2)

where xi is the matrix input, xi
′ is the output of the intermediate block, and xi+1 is the

output of the entire residual module. Convj
i denotes the convolution with kernel size j of

the ith residual module. σ(·) denotes the BatchNorm and the activation function ReLU.
Table 1 displays the design of each branch. Specifically, we remove the pooling layers

in L3 and L4 of the original ResNet50, resulting in the final feature map size being reduced
to only 1/8 of the input size. Since the original ResNet is designed for classification tasks,
this change is more suitable for segmentation tasks [27]. Additionally, given that SNOW-
OPT-SAR has a small input size of 64 × 64, using an 8-folder down-sampling will not
result in significant feature loss. In the SAR branch, we introduce a Laplacian convolution
(detailed in Section 3.2.1) to suppress noise and strengthen edge information. The multi-
source attention fusion module (MAFM) is introduced at L2 and L3 (in Section 3.2.2) to
enhance the mutual representation of features between the two branches.
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Table 1. Comparison between original ResNet50 and backbone of OSNet. The left is original ResNet50
and the right is the modified two-branch backbone we proposed. Size indicates the scale change
compared to the original input size. (n × n, m) represents m convolutional kernels of size n. Max
denotes the max pooling.

Original Modified

Layer 50-Layer Size Opt-branch SAR-branch Size

Stem 7× 7, stride=2 1/2 7× 7, stride=2 Laplacian-Conv 7× 7, stride=2 1/2

L1

3× 3, Max, stride=2 1× 1, 64
3× 3, 64
1× 1, 64

× 3 1/4

3× 3, Max, stride=2 1× 1, 64
3× 3, 64
1× 1, 64

× 3

3× 3, Max, stride=2 1× 1, 64
3× 3, 64
1× 1, 64

× 3 1/4

MAFM→ Exchange←MAFM

L2

 1× 1, 128
3× 3, 128
1× 1, 512

× 4 1/8

 1× 1, 128
3× 3, 128
1× 1, 512

× 4

 1× 1, 128
3× 3, 128
1× 1, 512

× 4 1/8

MAFM→ Exchange←MAFM

L3

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6 1/16

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6 1/8

L4

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3 1/32

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3 1/8

4.2.1. Laplacian Convolution

We propose a Laplacian convolution composed of a differentiable Lee filter and a
Laplacian edge detection operator, which can be fully integrated into neural networks for
enhanced performance.

The Lee filter is a commonly used method for suppressing speckle noise in SAR
images [28]. Its basic principle involves using local statistical characteristics to estimate the
filtered pixel values. The standard Lee filter formula involves nonlinear operations, which
are not fully differentiable. We approximate these nonlinear operations with differentiable
functions, making the Lee filter more suitable for integration into neural networks.

The differentiable Lee filter is used as follows:
Initially, the image is divided into multiple 3× 3 windows. For each window, we

calculate the mean m̂(x, y) and variance s2(x, y) of the pixels. The mean variance of
all windows σ̂2 is used to estimate the noise variance, reflecting the noise level in the
image. These calculations can be efficiently implemented using Pytorch’s 2D convolution
as follows:

m̂(x, y) = F.conv2d(I, mean, pad) (3)

s2(x, y) = F.conv2d(I2, mean, pad)− m̂2(x, y) (4)

σ̂2 =
1
N

N

∑
i=1

s2(xi, yi) (5)

where F.conv2d is the 2D convolution function in PyTorch. I denotes the input image,
and pad is short for padding indicating window size. x and y represent the position of the
window in the image, and N is the number of windows.

We then calculate the signal-to-noise ratio (SNR) for each window as

SNR =
m̂(x, y)√

σ̂2
(6)

Traditionally, a manually set threshold T is used for a SNR comparison. If the SNR
< T, filtering is needed; otherwise, the original pixel values are retained. We replace T
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with a trainable parameter adaptively adjusted through backpropagation. Since traditional
comparison is not differentiable, we use the Sigmoid function σ with a trainable parameter
b, which adapts the slope of the Sigmoid function to output the filtering coefficient c(x, y):

c(x, y) = σ(b× (SNR− T)) (7)

When the SNR exceeds T, the filtering coefficient approaches 1; otherwise, it nears
0. The final filtered pixel value, L(x, y), is calculated using Equation (8). This equation
integrates the local mean and the original pixel value within each window, weighted by
the filtering coefficient.

L(x, y) = m̂(x, y) + c(x, y)× (I(x, y)− m̂(x, y)) (8)

In SAR images, boundaries are identified by rapid changes in grayscale values [29].
To detect these edges, we apply the Laplacian operator, following the differentiable Lee fil-
ter.

Common edge detection operators, such as Roberts, Prewitt, and Sobel, detect edges
primarily in horizontal and vertical directions [30]. However, remote sensing images often
feature irregular edges. To address this, we use the Laplacian operator, a second-order
gradient operator that identifies edges by calculating pixel curvature in all directions.

Xu et al. [31] uses Laplacian edge detection tools integrated in MATLAB to extract
image edges before feeding them into a deep learning network. This method does not
allow for end-to-end optimization and training. Zhang et al. [32] implement the Laplacian
operator by entirely adjustable convolution kernels, without any preset parameters. This
method relies entirely on network training, which may deviate from the intended effect,
especially in the presence of significant noise. We implement the Laplacian operator with a
fixed 2D convolution kernel via PyTorch:1 1 1

1 −8 1
1 1 1

 (9)

Finally, we enhance SAR images by adding edge features extracted by the Laplacian
operator to the filtered images using a residual connection.

Since most parameters are preset and not involved in training, it introduces only a few
trainable parameters. We listed the FLOPs in Table 2, showing that this module has a low
computational cost but delivers good performance.

Table 2. Statistics of ablation experiment results on WHU-OPT-SAR. (a) ResNet-50; (b) ResNet-50 +
SAIM; (c) Laplacian + SAIM; (d) Laplacian + MAFM + SAIM; (e) Laplacian + MAFM + SAIM + GLFM.
Bold and underlined indicates the best result.

Method PA (%) MIoU (%) Params (M) FLOPs (G)
P (%)

Farmland City Village Water Forest Road Others

a 77.27 51.83 52.7 40.1 79.88 56.23 48.07 68.46 78.77 27.87 17.21
b 79.25 53.43 71.9 57.29 81.73 59.86 53.52 69.75 80.51 28.28 21.54
c 80.31 54.61 71.9 59.52 82.59 60.02 53.24 69.89 82.17 29.02 22.94
d 80.71 55.06 81.7 71.80 83.61 62.18 54.50 74.24 83.15 29.71 22.81
e 81.32 55.70 85.1 78.54 84.02 62.21 55.07 76.30 86.91 30.16 23.00
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4.2.2. Multi-Source Attention Fusion Module

In the multi-level features extracted by the backbone network, there exists both com-
plementary information and redundant information. Before feature fusion, it is essential
to identify valuable feature channels and filter out redundant ones. SENet [33] proposed
a channel attention mechanism that squeezes features along the channel dimension and
employs a multi-layer perceptron (MLP) to model the importance of each channel. The ob-
tained channel weights will be weighted channel-by-channel to the original features.

However, SENet is limited to a single-modal mode. We designed the multi-source
attention fusion module (MAFM) in Figure 6 to overcome this limitation. The MAFM
enriches the feature representation by expanding the receptive field and increasing the
feature squeeze methods. In the end, a cross-fusion of the weighted channel features is
needed to better utilize the complementary information between modalities.

Figure 6. Structure of the multi-source attention fusion module. The architecture can be divided into
two main components: the multi-source attention refine unit and the cross-collaboration unit.

Compared to the single squeeze method in SENet, the MAFM utilizes both global
average pooling (GAP) and global maximum pooling (GMP) for each modality. GAP
performs an averaging operation on the feature map of each channel, extracting overall
trends and global information. GMP, on the other hand, extracts the most salient features
from each channel’s feature map. The mathematical expressions for the two squeeze
methods are as follows:

GAPc =
1

H ×W

H

∑
i=1

W

∑
j=1

X(i,j,c) (10)

where H and W are the height and width of the feature map, respectively, and X(i,j,c)
denotes the value of the cth channel of the feature map at position (i, j).

GMPc = maxcX(i,j,c) (11)

where maxc(·) indicates that the maximum value is taken at all positions of channel c.
GAP and GMP generate two one-dimensional vectors of size c× 1× 1 for each modal-

ity. These four one-dimensional vectors are then concatenated along the channel dimension
to form a vector of 4c× 1× 1, representing the global distribution of feature channels and
providing a comprehensive global receptive field of two modalities. Then, this concatenated
vector is fed into a multi-layer perceptron (MLP), described by the following expression:

z(l) = σ(ω(l)z(l−1) + b(l)) (12)

where l denotes the position of layers of the current multi-layer perceptron, σ(·) denotes the
activation function, ω denotes the weight coefficients, and b denotes the bias coefficients.
The MLP has three layers with output dimensions of 2c, c, and 2c, respectively. This design
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explicitly models the importance of feature channels, resulting in a channel attention weight
of size 2c× 1× 1.

Finally, we split this channel attention weight into two vectors of c× 1× 1 for each
modality, applying them to the original features for channel-wise weighting. The weighted
features are then cross-fused into the other modality, enabling effective inter-modal infor-
mation sharing. The process can be expressed as

Outopt = (Inputsar ⊗Wsar) + Inputopt (13)

Outsar = (Inputopt ⊗Wopt) + Inputopt (14)

where Inputopt and Inputsar represent the original input features. Wopt and Wsar denote the
previously obtained channel attention weights, and ⊗ signifies channel-wise multiplication.

Both the first layers of L2 and L3 in the backbone introduce the MAFM module. This
facilitates the multiscale enhancement and cross-modal transmission of domain-shared
features, achieving complementary features at different scales.

4.3. Synergistic Attention Integration Module

Attentional mechanisms are extensively employed in computer vision tasks to exploit
correlations between features [27,34–36]. Optical images provide rich information, such as
color, boundaries, and texture, which can be used to classify different objects. These features
are distributed across various feature channels. In contrast, synthetic aperture radar (SAR)
has the capability to penetrate objects and capture internal edge information. Based on
these characteristics, we designed the synergistic attention integration module, illustrated
in Figure 7. The module employs a channel attention mechanism to integrate land cover
classification information from optical images into SAR features, enhancing SAR’s ability
to model the relationship between backscatter and various target types. Simultaneously, it
utilizes a positional attention mechanism to incorporate SAR’s internal edge information
into optical features. This dual approach improves the model’s capability to differentiate
between objects with similar colors and textures.

In the optical branch, we take a three 1× 1 convolution with shared weights to extract
the optical input into three feature vectors Q , K, and V of shape (C, H, W), and we then
reshape Q and K into (C, H×W) and (H×W, C), respectively, denoted as A and B. Finally,
a Softmax operation is performed on the result of multiplication of A and B to obtain the
channel attention weights, which can be expressed as follows:

A = reshape[Conv1(opt), (C, H ×W)] (15)

B = reshape[Conv1(opt), (H ×W, C)] (16)

Fchannel = So f tmax(A⊗ B) (17)

where reshape(a, b) denotes the deformation operation, a denotes the deformed object,
and b denotes the target shape. Convi() denotes the convolution operation with kernel i,
and ⊗ is the matrix inner product operation.

In the SAR branch, K and V are reshaped to (H×W, C) and (C, H×W), respectively, to
calculate the positional attention weights. The remaining operations are similar to those in
the optical branch. The entire process can be expressed as follows:

C = reshape[Conv1(SAR), (H ×W, C)] (18)

D = reshape[Conv1(SAR), (C, H ×W)] (19)
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Fpos = So f tmax(C⊗ D) (20)

However, the positional attention mechanism may encounter difficulties when dealing
with irregular objects (such as forests, villages, etc.). For example, the transition between
trees and bare land is abrupt rather than gradual. This discontinuity makes it challenging
for positional attention to find consistent similarity or distance metrics to identify these
features effectively. To address this limitation, we incorporate the edge detected by the
Laplacian operator from the optical images into the positional attention feature maps to
assist in object localization. This operation can be expressed as follows:

FLaplacian = Laplacian(GAP(optraw)) (21)

FLap+pos = So f tmax(Fpos ⊕ f latten(FLaplacian)) (22)

where Laplacian(·) denotes Laplacian edge detection, GAP(·) denotes global average
pooling operation, ⊕ denotes element-by-element summation, and f latten(·) denotes
spreading the matrix.

Figure 7. Synergistic attention integration unit, where ⊗ denotes tensor multiplication operation and
⊕ is element-wise addition operation.

Subsequently, the attention weights from each branch are cross-weighted, and residual
connections are used to retain the original information in each branch. The expression for
this operation is as follows:

Outsar = SAR + Fchannel ⊗ {reshape[Qsar, (C, H ×W)]} (23)

Outopt = Opt +
{

reshape[Vopt, (C, H ×W)]
}
⊗ Flap+pos (24)
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The outputs from the dual branches are fused into a pyramid structure. Through
dilated convolutions with varying dilation rates, the convolutional receptive fields are
altered to integrate features from different scales [37,38].

4.4. Global-Guided Local Fusion Module

An upsampling module global-guided local fusion module (GLFM) (Figure 8) is
designed to fully utilize deep and low-level feature information.

Figure 8. Structure of the global-guided local fusion module. “up” represents the upsampling
operation, ⊗ denotes the tensor multiplication operation, and ⊕ signifies the element-wise summa-
tion operation.

Using both scales would lead to feature redundancy [39], increasing computational
complexity. Therefore, we need to select appropriate scales that represent both shallow and
deep features while considering the computational efficiency. Taking a 256× 256 image as
an example, Figure 9 illustrates the extracted feature information at different scales:

Figure 9. Feature visualization results at different scales. Part (a) is the original image, and parts (b),
(c), (d) are the results of down-sampling 2, 4, and 8 times, respectively.

Features at the 1/2 scale exhibit a high degree of similarity with those at the 1/4 scale.
However, shallower-level features increase the model’s sensitivity, which fails to enhance
the model’s generalization ability [40]. The 1/4 scale features capture the high-frequency
details of the image, reflecting its fundamental structural information. Additionally, the
1/4 scale is more computationally efficient than the 1/2 scale.

The features at a 1/8 scale are more abstract, and the deeper semantic information is
less sensitive to small changes [41], enhancing the model’s generalization capabilities when
faced with new data [42].

Therefore, features that are down-sampled by factors of 4 and 8 are selected for
multiscale fusion. We discard shallow SAR features, although we designed modules to
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suppress SAR noise, but it is necessary to ensure that noise impact is isolated in the fusion
close to the output layer.

The deep features are first processed through a 1× 1 convolution, creating a new
feature map that retains the same number of channels as the shallow features. This is
followed by global average pooling to generate channel attention weights with a size of
1× 1× C. These weights are then applied channel-wise to the shallow features, which
were processed by a 3 × 3 convolution, thereby enabling a global guiding effect [43].
Furthermore, deep features are upsampled by a factor of two to align with the size of the
shallow features. After the element-wise addition of multi-scale features, different decoders
are selected depending on the specific downstream tasks; for instance, a fully connected
network is used to flatten the features for final output when estimating snow parameters.

5. Experiments on WHU-OPT-SAR
To verify the effectiveness of OSNet in the segmentation task, experiments were con-

ducted on the publicly available WHU-OPT-SAR dataset [4]. The final fully connected layer
of the model was replaced with an upsampling layer to adapt to the semantic segmenta-
tion task.

5.1. Experimental parameter setting

All experiments are conducted using an Intel Core i5-12400F CPU (2.50 GHz) sourced
from Intel Corporation, Santa Clara, California, USA, and an NVIDIA RTX 3080 GPU
sourced from NVIDIA Corporation, Santa Clara, California, USA. The deep learning
framework employed is PyTorch (version 1.10.0), and the optimizer used is Adaptive
Moment Estimation (Adam).

CrossEntropyLoss is used as the loss function, and precision (P), pixel accuracy (PA),
and mean intersection over union (MIoU) are used as the evaluation indexes. The formula
for each evaluation index is as follows:

P =
TP

TP + FP
(25)

where TP, true positive, represents the number of pixels correctly predicted as positive
class; FP, false positive, represents the number of pixels incorrectly predicted as positive
class.

PA =
∑k

i=0 p(i,i)
∑k

i=0 ∑k
j=0 p(i,j)

(26)

where p(i,i), diagonal elements, represents the number of pixels correctly predicted as class
i; p(i,j), non-diagonal elements, represents the number of pixels belonging to class i but
predicted as class j; k is number of classes (excluding the background).

MIoU =
1

k + 1

k

∑
i=0

∑k
j=0 p(i,j)

∑k
j=0 p(i,j) + ∑k

j=0 p(j,i) − p(i,i)
(27)

where p(i,j) represents the number of pixels correctly predicted as class i and actually
belonging to class j; p(j,i) represents the number of pixels correctly predicted as class j and
actually belonging to class i; p(i,i) represents the number of pixels correctly predicted as
class i; and k is number of classes (excluding the background).

5.2. Ablation Experiments on WHU-OPT-SAR Dataset

The proposed modules (modified backbone (Laplacian convolution + MAFM), SAIM,
and GLFM) are integrated into the model step by step, and network performance is
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evaluated using MIoU, PA, and Params, with the computation cost presented in Table 2.
Params refer to the model’s total number of trainable parameters used to measure the
model’s complexity and scale. FLOPs refer to the floating-point operations required for a
single forward pass, representing the model’s computational complexity.

Each module improves the model’s accuracy but inevitably increases the computa-
tional cost. Among them, SAIM and MAFM are the main contributors to the increased
computing cost, with an increase of 17.19 G and 12.28 G in FLOPs, respectively. The reason
is that these two modules use the attention mechanism in the high-dimensional feature
space, and many dot product operations lead to increased computing costs. However,
these two modules significantly improve model performance: SAIM increases accuracy
by 5.45% in the village category, and MAFM increases accuracy by 4.35% in the water
category. Laplacian convolution has low computational costs due to preset parameters and
simple calculations, but it improves the feature quality of SAR branches and shows good
improvement in various categories. In the decoding stage, GLFM integrates multi-scale
features with fewer parameters and computational costs, among which low-scale features
include shallow information, such as edge and surface color, effectively improving the
accuracy of forest classification.

Through heat maps in Figure 10, we can visualize the effect of each module more
intuitively. The heat map demonstrates how much attention the model pays to different
categories of regions. The intensity of the red region indicates the model’s primary focus,
followed by the yellow-green area, with the blue representing areas of lower attention.

Figure 10. Heat maps of ablation experiments. (a) Optical image. (b) SAR image. (c) ResNet50.
(d) ResNet-50 + SAIM. (e) Laplacian + SAIM. (f) Laplacian + MAFM + SAIM. (g) Laplacian + MAFM
+ SAIM + GLFM.

Heat maps of attention for water and roads are purposely selected and presented in
rows one and two of the figure. Water and roads usually have a variety of scales, shapes,
and texture variations, as well as complex boundaries and features similar to those of
their surroundings. Therefore, accurately detecting and identifying watersheds and roads
is challenging.

Ablation of SAIM:Compared to ResNet, SAIM corrects the wrong area of the water
(rectangle in the bottom left corner of the first row). However, its outline shape is slightly
rough (round in the first row, square in the bottom right corner of the second row). Further-
more, too many yellow and green areas almost cover the entire image, which means that
the model still focuses on too much redundant information.

Ablation of Laplacian Convolution: We find that in the optical image of the second row,
the color of the road looks similar to the surroundings, and in the SAR image, the location
of the road has an obvious edge over the surroundings. Laplacian convolution helps the
model to capture the location of the feature boundaries better, so Column e has a sharper
outline of the region of interest compared to the previous heat map. The black box of the
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first row in the lower right corner shows that the Laplacian operator’s introduction makes
the model notice the slender bridge.

Ablation of MAFM: The MAFM module eliminates unnecessary regions of interest
by dynamically adjusting the weights between different modal channels. It selectively
emphasizes feature channels that are critical to the task while suppressing responses from
task-irrelevant or noisy channels. Column f clearly shows the decrease in the yellow–
green area.

Ablation of GLFM: The deep features of the model encapsulate the overall structure
and semantic information of the entire image, whereas the shallow features focus on local
details. The GLFM enables the model to comprehend local information from a global
perspective. As depicted in the figure, the multi-scale module effectively eliminates unnec-
essary regions of interest, preserving and optimizing the details of the relevant regions.

Figure 11 visualizes the impact of the introduction of different modules on the seg-
mentation results.

Figure 11. Segmentation result for ablation experiments. (a) Optical image. (b) SAR image. (c) Labels.
(d) ResNet-50. (e) ResNet-50 + SAIM. (f) Laplacian + SAIM. (g) Laplacian + MAFM + SAIM. (h) Lapla-
cian + MAFM + SAIM + GLFM. The dataset is annotated with seven main categories: farmland
(brown), urban (red), village (yellow), water (blue), forest (green), road (cyan), and others (white).

In the first set of images, the lakes are fragmented and scattered, with complex contour
shapes. The SAR images are almost covered by scattering noise, with only part of the
waters showing clear contours. The second set of images shows a typical complex scene of
a river running through a village. The river and the road are clearly distinguishable in the
SAR image.

The segmentation results of ResNet-50 in Column d have the problem of blurred
edges. The scattered water area in the middle of the image in the first row is not correctly
identified, and the water area in the second row is much smaller than the label, resulting in
many misidentifications. After the introduction of SAIM, the accuracy of the water area is
improved. However, there is still much misidentification, indicating that only the fusion
of deep features cannot significantly improve the model performance. After introducing
Laplacian convolution in Column f, the road recognition in the second-row image is
improved, and the contour information is more precise. Column g introduces the MAFM
module, which allows multi-scale features in the backbone network to be fused, improving
the accuracy of roads and waters. It can also be seen from the heat map that the MAFM
module effectively weakens the influence of redundant information, so the false recognition
area is reduced in the segmented image. There is a forest area in the lower right corner of
the second line image, darker than the surrounding color in the optical image but similar
to the surrounding backscattering in the SAR image. The GLFM module combines deep
semantic and shallow information to distinguish this area from the surrounding land and
improve the recognition rate of forest area. Although some areas are still not identified, this
reflects GLFM’s necessity.

However, the model exhibits an excessive association between low backscattering and
classification as the water category. In the first row of Figure 11, several scattered farmland



Remote Sens. 2025, 17, 505 17 of 29

areas are misclassified as water, typically corresponding to regions with low backscatter.
In the upper right corner of the second row, indicated by the red circle, the model accurately
identifies only the low backscattering area as water.

5.3. Comparison Test of WHU-OPT-SAR Dataset

MCANet [4], ACNet [44], RDFNet [45], V-FuseNet [46], CMGFNet [47], and DeepLab
v3+ [48] were selected for comparative experiments. Figure 12 shows four groups of
segmentation results.

Figure 12. Comparison results on the WHU-OPT-SAR dataset. (a) Optical image. (b) SAR image.
(c) Labels. (d) OSNet. (e) MCANet. (f) ACNet. (g) RDFNet. (h) V-FuseNet. (i) CMGFNet. (j) DeepLab
v3+. The dataset is annotated with seven main categories: farmland (brown), urban (red), village
(yellow), water (blue), forest (green), road (cyan), and others (white).

It is evident that Columns e, h, and i are seriously affected by noise, and many error
pixels are scattered in the picture, demonstrating that the noise problem cannot be ignored.

In the red circle of the first row, the optical images show an obvious outline. However,
due to the low backscattering coefficient of the water area, the SAR image can accurately
determine that this region is not water. In the lower right corner of the second line,
the SAR image shows a low backscatter, but the optical image can determine that the
area is farmland. Through a comprehensive analysis of optical images and SAR images,
the combination makes the judgment more accurate. However, other models produce
many misjudgments in these two regions, proving that our model effectively utilizes the
difference between the two modalities. Notably, the failure of forest areas in the second line
to be correctly identified is a common problem for all models. There is no obvious outline
in the optical image and SAR image. In this case, distinguishing forest and farmland is still
a problem that needs to be solved in the future.

In the third row, the backscattering in the red-boxed area is significantly lower than in
the surrounding areas, and OSNet misclassifies it as water.

In the WHU-OPT-SAR dataset, water labels constitute 38% of the total, leading to class
imbalance that affects model training. We addressed this by setting the cross-entropy loss
weights based on the proportion of each class. Despite the model correctly identifying
some road areas (e.g., the upper left corner of the third row in Figure 12 and the roads in
the second row of Figure 11), the red-boxed area is still misclassified as water. This suggests
that weight adjustment alone may not completely resolve the issue of class imbalance.

We analyze the distribution of three low-backscattering categories in the labels (water,
road, and farmland), which are 51.35%, 1.36%, and 47.29%, respectively. For these pixels,
the predicted proportions are 53.8%, 1.17%, and 43.2%. Compared to the true values,
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the proportion of predicted water pixels increases, while the other two categories decrease.
This indicates that the model has a tendency to classify low-backscattering areas as water,
leading to misclassification of some farmland and road pixels.

To understand the model’s misclassification tendencies, we analyze the pixel values
representing backscattering intensity in the SAR images. The average values for water,
road, and farmland in the true labels are 27.87, 44.26, and 57.46, respectively; in the pre-
dictions, they increase to 28.38, 52.07, and 59.54. The significant rise in the road category’s
value, nearing that of farmland, suggests that some road and farmland areas with lower
backscattering intensity (potentially due to surface cover or soil type) are misclassified
as water. Consequently, roads and farmlands in the predictions appear only when the
backscattering intensity is relatively high, highlighting the model’s bias towards classifying
low-backscattering regions as water.

In addition, although our model performs well on contour detection, small areas
within large outlines are not accurately captured. The small edges in the farmland area in
the city (last line) are challenging to distinguish for current models.

A quantitative evaluation is performed to compare the effectiveness of these methods
presented in Table 3.

Table 3. Comparison statistics on the WHU-OPT-SAR dataset. Bold and underlined represent the
best results.

PA MIoU Params (M) FLOPs (G)
P

Farmland City Village Water Forest Road Others

MCANet 0.7901 0.5312 95.92 102.38 0.8111 0.624 0.5235 0.7299 0.8573 0.2293 0.2585
ACNet 0.7820 0.5252 116.60 53.10 0.8256 0.6115 0.4935 0.7155 0.8559 0.2451 0.2126

RDFNet 0.7891 0.5291 443.86 178.70 0.8102 0.5843 0.5261 0.7126 0.8708 0.2764 0.2337
V-FuseNet 0.7487 0.4850 58.90 81.48 0.7829 0.5510 0.4695 0.7027 0.8263 0.1796 0.0672
CMGFNet 0.7693 0.5055 85.21 38.45 0.8107 0.5687 0.4784 0.7250 0.8326 0.2323 0.1886

DeepLab v3+ 0.7760 0.5194 59.34 40.80 0.8087 0.5709 0.4786 0.7179 0.8629 0.2563 0.1783
OSNet 0.8132 0.5570 85.1 78.54 0.8402 0.6221 0.5507 0.7630 0.8691 0.3016 0.2300

In Table 3, we compare the computational cost of the MCANet model (proposed by the
authors of WHU-OPT-SAR) and its baseline Deeplab V3+ model. It can be observed that
the FLOPs of MCANet have nearly doubled compared to the baseline model, with MIoU
and PA metrics increasing by 1.5%. In contrast, our model, OSNet, is more computationally
efficient than MCANet, achieving a % improvement compared to the baseline model.

OSNet achieved the highest pixel accuracy (PA) of 81.32% and the highest MIoU
of 55.7% with a moderate computational cost. Compared to other methods, our model
significantly outperforms in accuracy for farmland, village, water and road, attaining
84.02%, 55.07%, 76.3%, and 30.16%, respectively. In the city and forest metrics, OSNet is
slightly lower than the best model by 0.19% and 0.17%, respectively.

6. Experiments on SNOW-OPT-SAR
In this section, we will first explore the contribution of different modalities to snow depth

prediction in the SNOW-OPT-SAR dataset. Subsequently, we will verify the performance of
OSNet on the regression task through comparative experiments and ablation studies.

6.1. Experimental Parameter Settings

The experimental configuration is the same as in the previous section. The experiments
utilized the Huber loss function, which behaves like Mean Squared Error (MSE) for small
errors and resembles Mean Absolute Error (MAE) for large errors. This loss function is
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more robust to data outliers. The experiment involved training for 150 epochs, with 80% of
the data allocated for training and 20% for testing. The experiment is repeated ten times
and the average was taken as the final result.

Mean absolute error (MAE) and root mean squared error (RMSE) were used as evalua-
tion indexes, and the mathematical expressions are as follows:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (28)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (29)

where yi denotes the ith predicted value, ŷi denotes the ith labeled value, and n is the
amount of data. The smaller the two parameter indicators, the higher the accuracy.

6.2. Ablation Experiments on Data Combination

In this section, we conduct data ablation experiments with the ResNet-50 network. We
split the optical images into four combinations: RGB, RGB + NIR (RGBN), SAR, and RGBN
+ SAR. This approach allows us to discuss the contribution of different band at various
snow depth levels and demonstrate that data fusion improves prediction accuracy.

Table 4 shows results of data ablation. It demonstrates the sensitivity of the sensors
involved in retrieving snow depth. Due to the limited penetration ability of optical images,
it cannot obtain internal information of snow, making the overall performance of RGB and
RGBN inferior to SAR. The optical band can extract the snow cover range, and the snow
cover and color information are more suitable for retrieving very shallow snow (0–10 cm),
which is difficult to distinguish further on in deeper snow. It can be seen that only in the
prediction of 0–10 cm can the optical images reach an MAE below 0.3. Compared with
RGB, adding NIR slightly improves the accuracy, but the improvement is limited. SAR
is more advantageous than the optical band in acquiring the internal information of the
snow layer. It is significantly better than the optical combination in different snow depth
levels, especially in the 20–30 cm prediction, where it achieves 26% lower MAE than the
optical band.

Table 4. Ablation experiment of data combination (bold and underlined represent the best result).

Data Combination Metric 0–10 cm 10–20 cm 20–30 cm >30 cm

RGB MAE 0.2694 0.3446 0.4947 0.4198
RMSE 0.3608 0.4399 0.5570 0.4993

RGB + NIR MAE 0.2753 0.3368 0.4572 0.3759
RMSE 0.3661 0.3902 0.5360 0.4953

SAR MAE 0.1811 0.2262 0.2338 0.2771
RMSE 0.2633 0.2747 0.3534 0.3752

RGB + NIR + SAR MAE 0.1425 0.1780 0.1959 0.2185
RMSE 0.2080 0.2427 0.2971 0.3303

The combination of SAR and optical images achieved optimal prediction results.
SAR plays a primary role in snow depth prediction, and the integration of optical images
significantly enhances the accuracy across various snow depth levels. Optical images
clearly delineate the boundaries between snow-covered and snow-free areas, helping SAR
reduce misclassifications in snow-free regions. As a result, incorporating optical images
improves the mean absolute error (MAE) in shallow snow layers by 3.86% compared to
using SAR alone.
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Ridges segment the snow-covered areas into discrete snow patches, and we believe
these regions exhibit different pattern characteristics. Optical images accurately iden-
tify these scattered snow areas, aiding SAR in learning features from different patterns.
The ridges typically have shallow or no snow, helping SAR to focus on deep snow regions.
This combined approach significantly enhances the accuracy of deep snow area predictions.

6.3. Comparative Experiments on SNOW-OPT-SAR

In the comparative experiment, we tested the prediction accuracy of each model on
the same training and testing datasets. VGG [49], ResNet [26], ResNeXt [50], Inception [51],
Xception [52], and SENet [33] are selected as the comparison models. Since all these models
are single-modal networks, we adopt the stacking of optical and SAR images as input.

Table 5 presents the performance of various classical deep learning models on the
SNOW-OPT-SAR dataset. After conducting ten rounds of cross-validation, the metrics’
average, best (upper), and worst (lower) values indicate that our proposed model demon-
strates higher accuracy and excellent robustness. The mean MAE and RMSE of our model
are higher by 3.14% and 4.22%, respectively, compared to the second-best model. The dif-
ference between the best and worst values is 1.65% for MAE and 2.6% for RMSE, indicating
that our model demonstrates stronger robustness compared to other models.

Table 5. Performance comparison of each model in snow depth estimation with SNOW-OPT-SAR
(bold and underlined represent the best result).

Model
MAE RMSE

Average Upper Lower Average Upper Lower

Vgg19 0.2940 0.2832 0.3132 0.5555 0.5215 0.5992
ResNet50 0.1710 0.1609 0.1854 0.2612 0.2544 0.2778
ResNeXt 0.1563 0.1511 0.1620 0.1659 0.1625 0.1697
Inception 0.2091 0.1957 0.2281 0.3565 0.3417 0.3933
Xception 0.3612 0.3569 0.3643 0.4109 0.3916 0.4241

SENet 0.1510 0.1462 0.1635 0.1757 0.1559 0.2002
Ours 0.1196 0.1116 0.1281 0.1335 0.1179 0.1439

Figure 13 visualizes the predictions made by each model in comparison to the station
observations, providing a clear visual assessment of their accuracy.

VGG’s simple network structure design fails to fully comprehend modal features,
resulting in poor performance. Inception and Xception, despite having complex architec-
tures, lack sufficient parameters to ensure thorough decoupling of the modalities. ResNet
and ResNeXt produce large errors in some samples. SENet, incorporating an attention
mechanism, achieves relatively good results, demonstrating that attention mechanisms are
rational for modal fusion tasks. They highlight important features and reduce the focus on
irrelevant information. Our model surpasses others in prediction accuracy, with fewer gross
errors. The following section will further discuss the model through ablation experiments,
discussing how each module in our model enhances snow depth retrieval accuracy.
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Figure 13. A scatter diagram of station measurements versus predictions by each network. The green
line is the y = x line.

6.4. Ablation Experiments on SNOW-OPT-SAR Dataset

We conducted a series of ablation experiments to investigate the impact of each module
on snow depth estimation. We will discuss the effect of the modified backbone (Laplacian
convolution and MAFM) compared to ResNet50, followed by the incremental addition of
SAIM and GLFM modules. Table 6 shows the impact on metrics at different snow depths
by introducing each module. Figure 14 shows the density distribution of the model’s
prediction results on the test set by each module. Brighter colors indicate higher data point
density in that area. A target line is provided in the figure to help assess the deviation
between prediction and true value. The closer the data points are to this line, the more
accurate the predictions are.

Table 6. Ablation experiments of modules of OSNet on SNOW-OPT-SAR (bold and underlined
represent the best results).

Model Metric 0–10 cm 10–20 cm 20–30 cm >30 cm

ResNet50 MAE 0.1425 0.1780 0.1959 0.2185
RMSE 0.2080 0.2427 0.2971 0.3303

Modified-Backbone MAE 0.1219 0.1653 0.1399 0.1486
RMSE 0.1321 0.2057 0.1425 0.1418

Modified-Backbone + SAIM MAE 0.1130 0.1549 0.1307 0.1256
RMSE 0.1291 0.1780 0.1404 0.1337

Modified-Backbone + SAIM + GLFM MAE 0.1093 0.1505 0.1260 0.1127
RMSE 0.1218 0.1750 0.1297 0.1264
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Figure 14. Two-dimensional histograms for reference data versus predicted snow depth values for
each ablation experiment.

The predictions from ResNet are relatively scattered, with density regions not being
concentrated. The results show a downward trend in the 10–35 cm range, indicating
that the model often underestimates snow depth in this range. The introduction of the
modified backbone significantly improves the prediction accuracy for depths above 20 cm,
resulting in an overall improvement. This improvement is due to modified backbone’s
dual-branch design that allows the model not to fuse the features from the input but to
weight channels after extracting corresponding features in their respective branches via
MAFM, emphasizing features that are more effective for snow depth prediction and then
fusing them.

Introducing SAIM at the end of the backbone enhances the semantic information in
the optical branch and the positional information in the SAR branch. The deep-scale fusion
moves the prediction distribution closer to the target line, especially in the 0–20 cm range.
For deep snow, SAR images mainly provide effective features, so the improvement through
fusion is moderate. For shallow snow, the complementarity of optical and SAR images is
utilized, improving accuracy through fusion. Finally, GLFM introduces low-scale and deep-
scale fusion during decoding, correcting the data distribution and aligning predictions
more closely with actual values.

The weaker prediction results for snow depths in the 10-30 cm range may be due to
the model’s inability to extract sufficient features in this range. Since the dataset’s SAR
images only use VV polarization, we suggest that adding more polarization modes in the
future, along with incorporating traditional methods, could help improve predictions in
this range.

Additionally, in the design of SAIM, we propose using channel attention mecha-
nisms and positional attention mechanisms on the optical and SAR branches, respectively.
To verify the optimality of this combination, we conducted comparative experiments un-
der the same experimental conditions to evaluate different combinations. The results are
shown in Table 7. “Exchange” in the table indicates whether cross-weighting calculations
were performed.
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Table 7. Comparison of different combination of attention mechanism in SAIM. Bold and under-
lined represent the best combination. The checkmark symbol represents the category of attention
mechanism used for each scheme.

OPT SAR
Exchange MAE RMSE

Channel Position Channel Position

✓ ✓ ✓ 0.1363 0.1559
✓ ✓ ✓ 0.1196 0.1336

✓ ✓ ✓ 0.1334 0.1449
✓ ✓ ✓ 0.1381 0.1534

✓ ✓ 0.1510 0.1603
✓ ✓ 0.1288 0.1333

✓ ✓ 0.1485 0.1895
✓ ✓ 0.1357 0.1405

We find that the positional attention mechanism is essential for optimal performance.
The worst results are observed when only channel attention is used without cross-weighting,
yielding an MAE of 15.1%. This outcome occurs because our regression task requires pre-
dicting snow depth in center from its surrounding region. Without attention to the relevant
area, the substantial amount of irrelevant information in the region can distort the esti-
mation. Furthermore, the cross-weighting method proves effective in most combinations,
indicating that exchanging weighted features is advantageous.

6.5. Visual Analysis

We present the heat maps before and after the application of the SAIM module in
Figure 15. The redder the color, the more the model focuses; the darker the color, the less
the model focuses. The SAIM module is located at the end of the encoder, where it fuses
the boundary features of optical and SAR images before passing the output to the decoder.
Consequently, the heat maps output by the SAIM module show the model’s final focus.
Parts (a) and (b) are the reference optical and SAR images, respectively. Part (c) shows
the heat map before the application of SAIM, while part (d) shows the heat map after the
application of SAIM.

We primarily rely on SAR images to detect snow depth. Optical images accurately
distinguish between shallow or snow-free areas and deep snow regions, often revealing
clear edges. In the SAIM module, we integrate optical features into SAR images. As shown
in Figure 15, with the assistance of optical images, SAR’s focus on snow-free and shallow
snow areas is reduced, while attention to deep snow regions is increased. This approach
decreases the likelihood of misclassifying shallow or snow-free areas as deep snow and
filters out redundant information for SAR.

The images show that in areas with prominent edges, such as ridges and roads, the at-
tention of SAR is diminished. These regions appear to be free of snow, the integration of
optical images reduces the misclassification of snow depth in snow-free areas. Additionally,
the successful detection of scattered black areas demonstrates that the color information
from optical images helps SAR eliminate redundant information from snow-free regions.
These edges divide the snow into several sections, each potentially influenced by the same
weather pattern, leading to higher correlation in backscatter within these sections. Identi-
fying these individual sections through optical images also helps SAR locate backscatter
regions more relevant to the predicted locations, enhancing the model’s utilization of
useful information.
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Figure 15. Heat maps before and after SAIM. Parts (a,b) are the reference optical and SAR images.
Parts (c,d) are the heat maps before and after the application of SAIM. The first two rows are typical
urban areas, while the remaining rows depict typical mountainous landscapes.

We find that in regions where both optical and SAR images exhibit distinct edges,
our model can accurately identify these areas. Examples in the third and fourth rows
demonstrate the effectiveness of the module in cross-fusing edge information from different
modalities. However, the primary information for determining the boundaries between
snow-covered and snow-free areas still comes from the optical images. In the red box at
the bottom left of the last row, we can see that in areas where the SAR edges are blurry,
the model relies solely on the optical edges to make an accurate judgment. In the middle
section of the third row, the SAR image shows an additional branch compared to the optical
image, which the model does not focus on. The optical image reveals that this extra branch
is still snow-covered and should not be ignored. This highlights the importance of optical
images in assisting SAR in predicting snow depth.

Figure 16 shows the snow depth map predicted by our model through optical and
SAR images. We cut the optical and SAR into 64-by-64-sized samples with a step size of one
pixel. The model predicts the snow depth at the center of each sample and then rearranges
these predictions into a snow depth map.
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Figure 16. Snow depth mapping by OSNet. The first row displays the snow depth prediction map for
mountainous areas, while the second row shows the prediction for urban areas.

The first row are snow depth prediction maps in mountainous areas. Ridges and
bare ground are more accurately detected, and the predictions have distinct edges [53].
The continuity and texture of the predicted snow depths show the advantages of combining
optical and SAR images to predict snow depths. This demonstrates that our method of
using edge features to identify snow-free and snow-covered areas significantly enhances the
model’s performance, especially in shallow snow layers and snow-free regions. The red box
in first row shows that the information of the optical image helps the model to effectively
determine the presence or absence of snow, which is beneficial in shallow snow prediction.

The second row of images shows a typical urban scene, where the prediction results
indicate that most snow-covered areas are predicted with reasonable accuracy, but the
performance is relatively poorer compared to mountainous regions, as reflected in the
following aspects: snow patches on roofs are scattered, and some snow-free roads are
incorrectly predicted to being snow-covered.

By analyzing the heat map, we observe that in densely populated urban areas with
multiple roads and buildings, the model’s performance in recognizing fine edges is subop-
timal. Unlike in mountainous regions, urban edges are more complex and discontinuous,
making it more challenging to extract dense edges from optical images. Furthermore, SAR
struggles to provide effective edge information, as shown by the red boxes in the first and
second rows in Figure 15, where SAR images reveal almost no edge information.

We attribute these issues to several factors. Firstly, in cities, frequent human activities
and higher temperatures cause snow to melt more readily. As the water content in the snow
increases, the reflectivity of wet snow rises significantly, resulting in brighter backscatter
and making it harder to distinguish snow from snow-free edges such as roads. This leads
to incorrect estimates of snow depth on some roads.

Additionally, the relationship between snow depth and backscatter becomes more
complex in urban areas. One reason we select winter data is to reduce the uncertainty
caused by melting snow and ice. However, unavoidable human activities and temperature
factors in cities accelerate the melting rate. The increase in wet snow means that both
humidity and depth affect SAR backscatter, adding to the uncertainty in predictions. More-
over, urban buildings typically have highly reflective surfaces. Their complex structures,
such as walls and roofs, cause multiple reflections and scattering of electromagnetic waves,
resulting in multipath effects. The combined electromagnetic waves lead to signal distor-
tion, interfering with prediction results. This can be seen in the SAR images in Figure 15,
where finding regular patterns is almost impossible.
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7. Conclusions
Heterogeneity and complementarity are always critical issues in the application of

multi-source data. In this study, we proposed the OSNet model to extract modality features
and achieve effective fusion. By utilizing different attention mechanisms, we explored
the heterogeneity between optical and SAR images. Additionally, we strengthened the
complementary edge features through edge enhancement methods. The results show
that OSNet can obtain high-quality features from optical and SAR images, learn their
recognition patterns and objects’ edges, and achieve higher accuracy than existing models
in both segmentation and regression tasks, demonstrating a good generalization ability.

We also identified some limitations in our study, which future research should focus
on:

1. In both segmentation and regression tasks, OSNet can effectively identify edges in
images. However, the model often treats objects within enclosed edges as a single class.
When small objects of different types are present within the same class, the recognition
accuracy is relatively low. Future research should focus on improving the model’s
ability to detect heterogeneous objects within same-class regions.

2. All optical images used in this study are in RGB and NIR bands, while the SAR
images are all VV-polarized. In future studies, it is essential to expand the dataset to
include more bands. Particularly in snow depth studies, the 1.57–1.65 µm shortwave
infrared band is sensitive to snow. At the same time, other polarizations in SAR can
provide more informative representations. Adding more spectral features will further
deepen the study of multi-source data fusion. Additionally, our current snow depth
dataset is relatively limited to the 0–42 cm range. In the future, we plan to expand the
depth range of the dataset to explore the performance of C-band SAR under deeper
snow conditions.

3. OSNet has shown high accuracy in both segmentation and regression tasks, but we
suppose that its advantages in regression tasks are not as significant as in segmentation
tasks. Segmentation tasks require classifying each pixel in the image and accurately
detecting boundaries. In regression tasks, while reliable feature extraction is also
necessary, the need for boundary detection is less critical, thus reducing the depen-
dency on OSNet’s design of enhanced edge representation. Therefore, future research
should focus on adjusting the network structure and feature extraction methods for
regression tasks to better adapt to the different tasks.

4. The dual-branch network effectively extracts features from both modalities, but this
comes at the cost of higher computational demands [54,55]. Therefore, in our future
work, we plan to focus more on improving the model’s efficiency and computational
speed. Lastly, ss OSNet’s design primarily focuses on the encoder, enhancing the
efficiency of the decoder could be a promising direction for reducing the overall
computational cost.
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