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Abstract: The objective of this study is to develop a method for estimating the density of 

olive trees in delimited plots using low-resolution images from the Sentinel-2 satellite. 

This approach is particularly relevant in certain regions where high-resolution orthopho-

tos, which are often costly and not always available, cannot be accessed. This study fo-

cuses on the Extremadura region in Spain, where 48,530 olive plots were analysed. Data 

from Sentinel-2’s multispectral bands were obtained for each plot, and a Random Forest 

Regression (RFR) model was used to correlate these values with the number of olive trees, 

previously counted from orthophotos using machine learning object detection techniques. 

The results show that the proposed method can predict olive tree density within an ac-

ceptable error margin, which is especially useful for distinguishing plots with a density 

greater than 300 olive trees per hectare—a key criterion for allocating agricultural subsi-

dies in the region. Although the accuracy of the model is not optimal, an average error of 

±15.04 olive trees per hectare makes it a viable tool for practical applications where ex-

treme precision is not required. The developed method may also be extrapolated to other 

cases and crop types, such as fruit trees or forest masses, offering an efficient solution for 

annual density estimates without relying on costly aerial images. Future research could 

enhance the accuracy of the model by grouping plots according to additional characteris-

tics, such as tree size or plantation type. 

Keywords: remote sensing; crop classification; machine learning; Sentinel-2; object  

detection techniques; olive trees detection 

 

1. Introduction 

Precision agriculture has emerged as an essential tool for optimising productivity 

and sustainability in the agricultural sector. Within this field, remote sensing stands out 

for its ability to quickly and efficiently obtain accurate and up-to-date data over large ge-

ographical areas. Satellite imagery, such as that provided by the Sentinel-2 mission, ena-

bles farmers and agricultural managers to monitor and analyse the status of their crops at 

regular intervals. This facilitates the early detection of issues such as water stress, pests, 

and diseases, allowing for corrective measures to be implemented before these issues es-

calate and significantly impact production. Additionally, remote sensing is crucial for reg-

ulatory compliance and verification of conditions for receiving agricultural subsidies and 

grants, as it provides objective, verifiable data on cultivated areas and management prac-

tises. These advantages make remote sensing an indispensable tool for modern agricul-

ture, promoting both economic efficiency and environmental sustainability. 
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The application of remote sensing together with machine learning techniques has 

been used for various purposes and crops for many years. Numerous crop classification 

systems rely on satellite imagery. For instance, some studies, such as [1,2], focus on clas-

sifying crops from a single cloud-free image. Others, like [3], use multiple images to create 

a Normalised Difference Vegetation Index (NDVI) time series, which is then used for fur-

ther classification with random forests, utilising 21 images from the Landsat-8 satellite. In 

similar studies, such as [4], temporal series approaches in China were tested using differ-

ent sensor datasets, evaluated with random forests and support vector machines. In [5], 

crop classification using multitemporal images with a combination of the 12 spectral 

bands of Sentinel-2 (https://sentiwiki.copernicus.eu/web/sentinel-2, accessed on 31 Octo-

ber 2024) was shown to provide better results than using individual bands or a single 

image. Other studies, such as [6], have also demonstrated the effectiveness of using all 12 

bands in a time series. Furthermore, articles like [7] recommend the use of all 12 bands for 

optimal performance over individual bands. Some studies incorporate phenological fea-

tures from time series to improve performance, as shown by [8,9], indicating that the use 

of these complete datasets offers marginally higher accuracy than red, near-infrared 

(NIR), and shortwave infrared (SWIR) spectroscopy. 

On the other hand, the analysis of aerial images—whether from aeroplanes, drones, 

or unmanned aerial vehicles (UAVs)—in agriculture offers numerous advantages that are 

transforming crop management and resource efficiency. Orthophotos, with their high res-

olution, enable the identification and monitoring of various land features, such as crop 

distribution, the presence of weeds, the status of agricultural infrastructure (roads, irriga-

tion channels), and problem areas affected by pests or diseases. Their high spatial resolu-

tion makes possible, for instance, the detailed identification and counting of trees within 

a plot with high accuracy. This detection capability facilitates better planning and man-

agement of agricultural activities, such as pruning, irrigation, and fertilisation. Public ad-

ministrations and agricultural management agencies also benefit from aerial image anal-

ysis technology for tree counting. Accurate tree counts are essential for the fair and effi-

cient distribution of agricultural subsidies and grants. These grants are often based on 

specific criteria, such as cultivated area and planting density. Accurate data on the number 

of trees in each plot allow for authorities to verify applicants’ eligibility and accurately 

calculate the subsidy amounts. However, one of the major drawbacks of using these im-

ages is the cost associated with conducting continuous flights to capture these data. In 

many regions, flights are not conducted annually due to high costs, which can limit the 

availability of up-to-date data. Despite this drawback, orthophotos or high-resolution im-

ages remain an invaluable tool in modern agriculture, providing a solid foundation for 

decision-making and the optimisation of agricultural practises. 

Continuous advances in remote sensing technologies and machine learning algo-

rithms have significantly improved the accuracy and efficiency of tree detection from aer-

ial images. Among the most effective approaches are the integration of laser imaging de-

tection and ranging (LiDAR) with aerial images, the use of UAV-derived Canopy Height 

Models (CHM), and methods based on Convolutional Neural Networks (CNN). The most 

common object detection methods [10] are two-stage detectors and one-stage detectors. In 

the two-stage method, the first stage involves preprocessing to generate object region pro-

posals (without classification), and in the second stage, each region is classified as a pos-

sible object. This type of detector is accurate, but is computationally slower. In the one-

stage method, object classification is performed directly without preprocessing, making it 

faster and less computationally costly than the two-stage approach. The most widely used 

one-stage detection technique is You Only Look Once (YOLO) [11], with successful results 

shown in [12,13] for tree detection in static images. 
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For example, in [14], machine learning methods are used that incorporate UAV data 

from hyperspectral sensors and LiDAR to accurately classify forest tree species, improv-

ing forest inventory and ecological sustainability. In [15], photogrammetry and UAV-

based hyperspectral images are also used to effectively detect and classify individual trees 

in boreal forests, as well as for the automatic detection and delineation of tree crowns from 

passive remote sensing images. Ref. [16] achieved good results in forestry analysis applied 

to endangered tree species. Ref. [17] used CNN-based methods combined with high-spa-

tial-resolution RGB images from UAVs, achieving an average accuracy of 92% with pro-

cessing times of less than 30 s; and in [18], a similar approach reported an accuracy average 

of 91.58%. In [19], a deep neural network was used for large-scale spatial tree density es-

timation from remote sensing images, with a relative mean absolute error of 16.72% and 

a mean squared error of 77.96. Specifically applied to olive tree counting, Ref. [20] used 

very high-spatial-resolution remote sensing images, distinguishing them from other land 

cover classes and counting valid spots within a predefined size range. 

Satellite images, mainly from Sentinel-2, have been frequently used for classifying 

tree species in forests and large areas, as described in [21–24] or [25]. However, no studies 

have been found in the literature using Sentinel-2 images to identify the number or den-

sity of trees in a specific area. The reason is that the low resolution of these images (1 pixel 

equals 100 m2) renders them unsuitable for identifying objects or the size of a tree. 

The motivation for this study was to assess the feasibility of estimating the approxi-

mate number of olive trees in a plot using only Sentinel-2 images. This approach is of 

particular interest for agencies responsible for agricultural management, which requires 

olive density control in plots at times when high-resolution orthophotos are unavailable, 

whereas Sentinel-2 images can be obtained continuously. Furthermore, the administrative 

allocation of subsidies to plots based on density is typically performed in value ranges, so 

extreme precision in these values is not required. Keeping annual updates of olive plot density 

values leads to considerable cost savings by reducing the need for field inspections. 

The following approach was used in this research: the spectral band information 

from Sentinel-2 images for plots with tree plantations provided us with the data that can 

relate these values to the number of trees in the plot. By focusing on specific and well-

defined plantations, such as olive groves, which exhibit a significant contrast between the 

trees and the soil, we aimed to study the direct relationship between Sentinel-2 band val-

ues in an area and the number of planted olive trees, evaluating whether they fell within 

an acceptable error margin. To support this theory, data from olive plots were used in this 

study according to two methodologies: (a) from Sentinel-2 images for the phenological 

year, calculating the mean value of each of the Sentinel-2 bands for an olive plot, as ex-

plained in Section 2.1 (b) from aerial images, performing an accurate count of olive trees 

in the same plots using object detection techniques, as described in Section 2.2. Section 2.3 

describes how a neural network was created to predict the number of olive trees in a plot 

based on the average band values of the plot. Section 3 describes the direct relationship 

between the data from olive plots using techniques (a) and (b), which are verified with 

experimental data, and then analyses the results. Section 4 outlines the study conclusions. 

2. Materials and Methods 

The objective of this study was to establish the relationship between the values pro-

vided by the Sentinel-2 satellite for olive plots and the density of olive trees present in 

these plots. We hypothesised that by using data from Sentinel-2 satellite images and cal-

culating the average of all bands within an olive plot, it would be possible to estimate the 

number of olive trees in the plot within an acceptable error margin. To validate this hy-

pothesis, the following processes were carried out, as described in the subsequent subsec-

tions (showed in Figure 1): selection of olive plots for the study in a specific area, 
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calculation of average band values from Sentinel-2 images for the identified plots, auto-

matic counting of olive trees in the plots using object detection techniques on aerial images 

for the selected plots, and development of a neural network that integrated these data in 

the training process to predict the number of olive trees in a plot based solely on Sentinel-

2 images. It should be noted that this experiment was conducted in a delimited region 

with olive plantations of varied but not excessively different planting layouts. That is, in 

the selected region, the cultivation method was typically similar in rows of varying 

widths, without clusters of vines, but with varied densities and orientations and uniform 

soil treatment. 

 

Figure 1. Schematic representation of the methodological workflow, illustrating the key processes: 

plot selection, Sentinel-2 band value calculation, olive tree counting via object detection on aerial 

images, and neural network development for density prediction. 



Remote Sens. 2025, 17, 508 5 of 22 
 

 

2.1. Selection of Olive Plots 

The first step was to select a representative set of olive plots located in the Extrema-

dura region, Spain, at coordinates (DMS) 38°40′0″N, 6°10′0″W (Figure 2). This region has 

an average temperature of 17.9 °C, an annual average precipitation of 456 mm, and an 

average humidity of 59.08%. The highest elevation included in this study was 1112 metres 

above sea level (MASL), and the lowest was 150 MASL. The choice of this region was 

based on its high number of olive trees, providing a substantial dataset, with similar plant-

ing methods and layouts, consistent soil treatment, homogeneous soil characteristics, and 

similar climate. 

In our database, the total number of olive plots is 53,041, covering a total area of 

59,528 hectares. For this study, as mentioned earlier, olive plantations with a similar pat-

tern were selected, referring to those with an orderly layout where each olive tree is clearly 

separated from the others, maintaining a variable but defined distance between them. This 

layout is found in two types of olive plantations: traditional plantations and intensive 

plantations. 

Traditional plantations are characterised by larger distances between trees, resulting 

in a more spaced-out distribution, while intensive plantations reduce these distances to 

optimise production, although without causing tree overlaps. Due to these overlaps, all 

plots characterised by super-intensive plantations, also known as hedgerow plantations 

(olive trees very close to each other), were excluded from this study, removing a total of 

1311 plots. Additionally, to avoid potential artificial fluctuations in the calculated data 

caused by crop irrigation, only rainfed plantations were selected, excluding 3200 plots 

corresponding to irrigated systems. However, the remaining plots vary in size, providing 

a diverse dataset for analysis. The total number of plots included in this study is 48,530 

(downloadable from https://doi.org/10.5281/zenodo.14017071). Data collection was con-

ducted using the graphical delimitations of the geographic information system (GIS) dec-

larations from the Junta de Extremadura, which categorises these areas as olive plots. 

The Extremadura region has aerial surveys with orthophotos from 2022. The pheno-

logical year 2022 was chosen to link the orthophoto images with the Sentinel-2 images. 

The plots identified as olive in 2022 in Extremadura and used for this study, in total 48,530, 

with an average surface area of 1.25 hectares, are marked in red in Figure 2d and cover an 

area of 56,051 hectares. 
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Figure 2. (a) World map with the Iberian Peninsula highlighted with a red circle (40°12′30.6″N, 

3°42′46.8″W). (b) The Iberian Peninsula, Spain, is outlined in white; a marker (40°12′30.6″N, 

3°42′46.8″W) pointing to Spain and the Extremadura region is outlined in yellow. (c) The Extrema-

dura region is outlined in white, with a marker at 39°12′49.8″N, 6°05′40.7″W. (d) Olive plots used in 

the study are shown in red. 

2.2. Calculation of Mean Values of Sentinel-2 Image Bands 

The main objective of this method was to extract, process, and analyse the spectral 

information within each olive grove plot to calculate mean reflectance values for all Sen-

tinel-2 bands. These values, referred to as Plot Mean Characterisation (PMC), serve as the 

foundation for subsequent density estimation analysis. The following are the summarised 

phases related to the calculation of the values of Sentinel-2 image bands. These steps are 
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presented concisely here, but for a more detailed understanding of the processes, readers 

are encouraged to consult [6]. 

(1) Data Acquisition and Initial Processing 

Sentinel-2 images for the phenological year 2022, from 1 October 2022 to 30 Septem-

ber 2023 (a total of 61 images per plot), were downloaded via the Copernicus API 

(https://scihub.copernicus.eu/, accessed on 23 July 2024) for the 48,530 plots identified as 

olive groves. This dataset spans the entire phenological cycle of olive trees, ensuring a 

comprehensive capture of spectral changes throughout the year. 

The Sentinel-2 mission provides multispectral data at varying resolutions (10 m, 20 

m, and 60 m) across 12 bands. For this study, all bands were resampled to a uniform res-

olution of 10 × 10 m using bilinear interpolation to ensure consistency in spatial analysis. 

The raw reflectance data were pre-processed to normalise values between 0 and 1, cor-

recting for variations due to atmospheric interference and sensor inconsistencies. 

To address challenges related to atmospheric distortions and cloud cover, the 

Sen2Cor v2.12 atmospheric correction tool was employed. This tool removes the influence 

of atmospheric water vapour, aerosols, and ozone, ensuring that the reflectance values 

used in the analysis accurately represent the surface properties of the plots. Additionally, 

cloud masking was applied using both Sen2Cor outputs and proprietary algorithms tai-

lored for detecting and interpolating cloud-contaminated pixels. These algorithms relied 

on temporal consistency checks across the 61 images to flag anomalies and interpolate 

missing data. These data, once are processed, are stored in the database. 

(2) Plot Delineation and Pixel Selection 

Each plot’s spatial boundaries were defined using georeferenced polygons provided 

by local administrative datasets. It is necessary to have, at least, one day’s image of Senti-

nel-2 to perform the matching between Sentinel-2-pixel images and plot pixels. These pol-

ygons were overlaid on Sentinel-2 images to extract the corresponding pixels for each plot. 

Since plot boundaries often include edge pixels that may partially fall outside the plot, 

these pixels were excluded to avoid introducing spectral noise from adjacent areas, as 

shown in Figure 3. This refinement ensures that the PMC accurately represents the spec-

tral characteristics of the olive grove. Every plot grid calculated is stored in the database. 

The process for aligning plot boundaries with Sentinel-2-pixel grids leveraged tools 

such as Python-based geospatial libraries. The methodologies applied ensured precise 

identification and extraction of plot-specific spectral data, as detailed in [26]. 

(3) Validation and Dataset Integrity 

Images of plots with incomplete data due to persistent cloud cover or other missing 

values were flagged and excluded from the analysis to maintain dataset integrity. The 

final dataset consisted of 48,530 plots with complete PMC values, ensuring robustness and 

reliability for subsequent machine learning applications. 

(4) Temporal Aggregation and Phenological Considerations 

The Sentinel-2 images were collected across a full phenological year to account for 

seasonal variations in olive tree reflectance. For each plot, mean reflectance values were 

calculated for all 12 bands at each of the 61 time points. To reduce noise and enhance the 

reliability of the dataset, a temporal averaging process was applied, which involved com-

puting the mean reflectance values across all 61 images for each band. This approach 

smooths out anomalies caused by short-term environmental changes, such as rain or 

cloud shadows, while preserving the overall spectral signature of the plot. 

(5) Noise Reduction and Outlier Handling 

One of the critical challenges in working with low-resolution imagery is managing 

noise and outliers. Outliers were identified based on deviations from expected reflectance 
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ranges for olive trees, using statistical thresholds and domain-specific knowledge. For in-

stance, reflectance values outside the typical range for olive trees in the near-infrared 

(NIR) band were flagged and excluded. Additional filtering processes ensured that only 

high-quality data contributed to the PMC calculations. 

 

Figure 3. Example of olive grove plot, delimited in blue by the pixels that form the grey pixel mesh. 

Some pixels that are on the edges and exceed the limits of the plot are discarded. 

The resulting PMC dataset is not merely a static representation of spectral data, but 

a dynamic foundation for advanced agricultural monitoring. By incorporating temporal 

and spatial dimensions, the PMC captures nuanced variations that reflect the phenological 

and environmental conditions of each plot. This comprehensive dataset enables scalable 

analysis, offering a cost-effective alternative to high-resolution orthophotos while main-

taining sufficient accuracy for density estimation. 

Moreover, this method establishes a framework that can be extended to other agri-

cultural applications. For example, the methodology could be adapted to monitor crop 

health, identify stress factors, or estimate biomass in other perennial crops. The robust 

preprocessing pipeline, combined with Sentinel-2’s frequent revisit time, provides an op-

erationally viable solution for large-scale agricultural analysis. 
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By systematically calculating the PMC for each plot, this study bridges the gap be-

tween remote sensing data and actionable agricultural insights. The detailed prepro-

cessing steps (shown in Figure 4), combined with the integration of phenological and spa-

tial considerations, ensure that the PMC serves as a reliable input for machine learning 

models aimed at density estimation. The PMC values for the 48,530 plots are available for 

download at: https://doi.org/10.5281/zenodo.14017108. 

 

Figure 4. Flow diagram of the data acquisition and processing steps of the method. The red colour 

indicates the start and end of the processes. The yellow colour represents the data. The turquoise 

represents the data entry. The blue represents the use of external API. The grey represents the 

threads required to obtain data. The green represents the data saved in databases. Purple indicates 

the decision processes. 

2.3. Olive Tree Counting Using Object Detection Techniques 

To achieve the objective of the study, it was essential to previously have the density 

of olive trees per hectare of each enclosure, since these values would serve as a reference 

for the training of the model and the subsequent validation of the estimated densities. 

However, in the region of Extremadura, there is no official or systematic record of count-

ing olive trees, given that this practice is not carried out regularly in the area. This lack of direct 

data forced a specific process to be implemented to obtain this information accurately. 

The purpose of this process was to automatically count the existing olive trees in the 

selected plots (the same 48,530 plots mentioned in the previous section). To achieve this, 

a total of 435 aerial images of the Extremadura region from 2022 

(https://pnoa.ign.es/web/portal/pnoa-imagen/productos-a-descarga, accessed on 23 May 

2024), taken between June and July, with a combined size of 923.7 GB, were used. These 

orthophotos were downloaded in high-quality GeoTIFF format with georeferencing data, 
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necessary to determine the coordinates of each image point, crop the image according to 

the plot boundary, and link it to subsequent geospatial analyses. Using the boundary data 

from the GIS graphical declarations from the Junta de Extremadura for olive plots, a co-

ordinate projection was made to crop the plot area from the corresponding orthophoto 

image. In this way, the specific area of each olive plot in the image was accurately identi-

fied. This process is similar to the projection in Sentinel-2 images described in [6]. To per-

form the counting, the first step was to generate a neural network with the ability to detect 

the object olive tree. Once this system was generated, it was used for large-scale counting 

across all olive plots in Extremadura. 

The YOLOv7 object detection system [11] with the neural network characteristics de-

scribed in [27,28] was used to generate a model capable of detecting and counting the 

number of olive trees in the provided images. The use of this object detection algorithm 

instead of other segmentation-based methods, as employed in [29], is justified by the char-

acteristics of the olive plots selected for this study. These plots correspond to traditional 

and intensive plantations, where the trees are arranged in an orderly manner with suffi-

cient spacing between them, which prevents overlap. This configuration allows for the 

individual detection of trees, as each one can be clearly and accurately identified without 

encountering overlapping tree crowns, entire trees overlapping each other, or unions be-

tween crowns of nearby trees. 

In this context, where the tree distribution is uniform and there are no complex struc-

tures or dense planting patterns like in super-intensive plantations (also known as hedge-

row plantations), the use of a single-stage detection model such as YOLOv7 is particularly 

suitable. It is important to clarify that YOLOv7 was applied exclusively to the high-reso-

lution orthophotos, as these provide the necessary spatial detail to individually detect ol-

ive trees within the plots. Sentinel-2 images, with their resolution of 10 × 10 m, lack the 

granularity required for such object detection tasks. Thus, orthophotos were indispensa-

ble for generating the accurate tree counts necessary for subsequent density calculations 

and model training. If our dataset included super-intensive olive plots, which create 

“hedgerow plantations”, the use of segmentation methods would be essential for accurate 

detection. While the method performs effectively in traditional and intensive plantations, 

its application to super-intensive systems or irregular planting patterns presents chal-

lenges. Super-intensive plantations, characterised by dense and overlapping trees, may 

require segmentation-based approaches to accurately delineate individual trees. Simi-

larly, irregularly spaced plantations would necessitate additional training data to capture 

variability in tree distributions and ensure robust model performance. 

For the training process, images and labels of objects classified as olive trees were 

provided to the model via manual labelling using the LabelImg (https://github.com/Hu-

manSignal/labelImg, accessed on 5 July 2024) tool, as shown in the example in Figure 5. 

This software allows for the creation of labels for images in various formats, such as 

“YOLO”, “CreateML”, and “PascalVOC”. In this format, a TXT file is created that will 

contain one line for each tagged object. Each line follows the format of “class”, “x-center”, 

“y-center”, “box-width”, and “box-height”. This way, when training YOLO, it knows ex-

actly where the identified object is located. Thus, for each plot with its corresponding PNG 

images, a TXT file was generated, with the image labelled with olives marked by a square. 

The YOLO neural network configuration file “yolov7-e6e.yaml” 

(https://github.com/WongKinYiu/yolov7/blob/main/cfg/training/yolov7-e6e.yaml, ac-

cessed on 16 September 2024) and weights “yolov7-e6e.pt” (https://github.com/WongKin-

Yiu/yolov7/releases/download/v0.1/yolov7-e6e.pt, accessed on 16 September 2024), which 

have demonstrated better performance than their competitors in tree detection processes 

[30], were used, with images of 1280 × 1280 pixels and 50 training epochs. Considering 

YOLO’s configuration, from the yolov7-e6e.yaml file, the parameter nc, corresponding to 
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the number of classes, must be changed to as many classes as we wanted to train and 

identify. In this case, since we only wanted to detect olive, nc had the value of 1. 

Depth_multiple and width_multiple parameters are scalars used to control the model size 

by adjusting the number of layers (depth) and channels (width) proportionally. Values of 

1.0 indicate the default full-size YOLOv7 model. The default configuration of the YOLOv7 

neural network architecture is based on two main components: the backbone and the 

head. The backbone serves as the foundation of the network, responsible for extracting 

features from the input image. It processes the image through multiple layers of convolu-

tion, downsampling, and feature aggregation, gradually capturing patterns ranging from 

simple edges to complex shapes. The depth and width of this backbone are determined 

by parameters such as depth_multiple and width_multiple, which allow for the upscaling 

model to adjust to different computational needs. As features flow through the backbone, 

they are passed to the head, the second key component. The head is where the network 

refines these features and generates predictions. It processes information from different 

stages of the backbone using operations such as upsampling, concatenation, and feature 

fusion. By combining features at different resolutions, the head balances spatial detail and 

semantic depth, allowing for accurate detection of objects of all sizes. Specialised layers, 

such as SPPCSPC, help to further aggregate and refine features for final predictions. These 

predictions include bounding boxes, class probabilities, and confidence scores. To help 

the network detect objects of various sizes, the architecture uses anchors, which are pre-

defined bounding box dimensions. Anchors act as templates, giving the model a starting 

point for detecting objects at different scales. Each anchor is associated with a specific fea-

ture map resolution, ensuring that smaller anchors focus on detecting small objects in 

high-resolution maps, while larger anchors are used in lower-resolution maps for larger 

objects. In each test, after completing the labelling stages, the images (along with their 

labels) were divided into three sets, training, validation, and testing, in proportions of 

70%, 15%, and 15%, respectively, as suggested by the algorithm. 

 

Figure 5. Orthophoto of an olive plot where a single olive tree is manually labelled (delimited by 

four green dots) using the LabelImg tool. 
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To achieve appropriate olive tree detection, models were incrementally generated by 

increasing the number of labelled trees as input examples until the improvement in accu-

racy over the previous model became minimal. As shown in Table 1, approximately 1000 

additional labelled olive trees were provided for each partial model in each test. This pro-

cess was repeated until the improvements showed a logarithmic progression, with mini-

mal gains relative to the substantial effort required for manual labelling. 

The evaluation process was conducted iteratively, with approximately 1000 addi-

tional trees labelled in each training step. Metrics such as precision, recall, and mAPs were 

tracked after 50 epochs per iteration. Initially, rapid improvements were observed during 

models 1–5, with significant relative gains: precision increased by 0.335, recall by 0.347, 

and mAP@0.5 by 0.4173. Between models 6–13, the rate of improvement slowed, with pre-

cision increasing by 0.279, recall by 0.054, and mAP@0.5 by 0.155. During the saturation 

phase (models 14–17), the improvements became marginal, particularly between models 

15–17, where precision increased by just 0.019, recall by 0.015, and mAP@0.5 by 0.073. At 

the stopping point (models 16–17), minimal improvements were recorded: precision in-

creased by only 0.008 (0.8%), and recall increased by 0.037 (0.3%). 

Comparatively, labelling work between models 13–15 (+1970 labelled olives) yielded 

significant metric gains, including a 0.079 improvement in precision and a 0.239 increase 

in recall, making the effort worthwhile. However, between models 15–17 (+1999 labelled 

olives), the gains were smaller, with a precision increase of just 0.019 and recall of 0.015. 

With these minimal improvements it was decided to conclude this process and select 

model #17 as the olive tree counting detection model, achieving a high accuracy rate of 

0.865, which can be considered very reliable. 

Table 1. Generation of olive tree detection models by incrementally providing approximately 1000 

labelled olive trees in each test. 

Model Plots Olives Precision Recall mAP@0.5 mAP@0.5:0.95 

1 25 1102 0.131 0.279 0.0937 0.174 

2 32 2032 0.156 0.192 0.149 0.035 

3 41 3031 0.331 0.386 0.266 0.0559 

4 50 4105 0.353 0.445 0.297 0.0614 

5 56 5090 0.466 0.626 0.511 0.134 

6 68 6082 0.488 0.651 0.515 0.134 

7 83 7249 0.518 0.622 0.525 0.145 

8 86 8055 0.546 0.596 0.544 0.181 

9 93 9042 0.645 0.527 0.545 0.183 

10 49 10,055 0.671 0.557 0.587 0.193 

11 97 11,060 0.707 0.597 0.6155 0.226 

12 98 12,063 0.723 0.634 0.682 0.246 

13 108 13,044 0.767 0.597 0.67 0.247 

14 113 14,085 0.804 0.721 0.698 0.258 

15 133 15,014 0.846 0.836 0.823 0.288 

16 142 16,004 0.857 0.848 0.859 0.292 

17 159 17,013 0.865 0.851 0.896 0.315 

In summary, the model selected for large-scale olive tree counting (model #17) 

achieved, after 50 epochs, an accuracy of 0.865, a recall of 0.851, an mAP@0.5 of 0.896, and 

an mAP@0.5:0.95 of 0.315, with the learning curves shown in Figure 6. To obtain this 

model, 17,013 olive trees were manually labelled across 159 plots (approximately 118 hec-

tares), which were randomly selected from the 48,530 olive plots stored in our system’s 

database. 
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Figure 6. Learning curves of accuracy, recall, mAP@0.5, and mAP@0.5:0.95 for model #17 after 50 epochs. 

Finally, this olive tree model (model #17) was used to perform large-scale identifica-

tion of olive trees in the remaining 48,371 plots (an example is shown in Figure 7). The 

result stored in the database is the olive density, which is the plot area divided by the 

corresponding number of olive trees. This process required approximately 26 days of 

computation. 

 

Figure 7. Example of an orthophoto of an individual and delimited plot, showing olive trees de-

tected using the neural network model #17 (marked by a red square). 

This count of olive trees is a key element in the entire study, as it is essential for cal-

culating the density (olive trees/area) for each of the 48,371 plots. As previously explained, 

this process of counting and calculating density is not routinely conducted in Extrema-

dura; therefore, no ground-truth data exist for these plots. This absence highlights the critical 

role of the counting and density calculation process described earlier. Recognising that any 

error in the initial count could directly impact the quality and reliability of the developed 

model, we requested feedback from the Junta de Extremadura to validate our approach. 

The validation was conducted using the “field verification” system, wherein person-

nel physically visit plots to count olive trees on-site. To ensure representativeness, feed-

back was obtained for a diverse subset of plots, covering a range of tree densities (low, 

medium, and high). Additionally, this validation process allowed us to assess error pat-

terns more closely, identifying that errors were minimal in homogeneous plots and 
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slightly higher in regions with irregular planting. This independent verification confirmed 

the reliability of our counting method, with an average error difference of 12.37 olive trees 

per hectare. The observed accuracy highlights the robustness of the developed model, 

even when applied to diverse field conditions. Such accuracy is well within acceptable 

ranges for practical applications in agricultural monitoring and subsidy management. 

Furthermore, this level of precision supports the validity of using our model as a cost-

effective alternative to traditional field-based measurements. The supporting data and 

comparisons can be found in the annex uploaded (available for download at 

https://doi.org/10.5281/zenodo.14524441). By exclusively using YOLOv7 on orthophotos, 

we ensured the reliability of the tree count data, which are a critical input for training the 

regression model applied to Sentinel-2 data. This separation of data sources and method-

ologies was essential for the success of this study. 

2.4. Creation and Training of the Olive Density Estimation Model 

The main objective of this study was to infer olive tree density within a plot using 

only data from Sentinel-2 images. For the 48,530 olive plots, we had Sentinel-2 image data 

(obtained as described in Section 2.2) and the number of olive trees in each of these plots 

(obtained from orthophotos as described in Section 2.3), as well as the area of each plot. 

Using these data, the aim was to identify a correlation between olive density and the PMC 

of the plots. The Random Forest (RF) algorithm, which has been shown to outperform 

other machine learning algorithms applied in similar domains [31–33], was used for this 

purpose. Specifically, the random forest regressor (RFR) algorithm provided by the Py-

thon library “scikit-learn” (https://scikit-learn.org/1.5/modules/generated/sklearn.ensem-

ble.RandomForestRegressor.html, accessed on 16 September 2024) was chosen, as it is spe-

cially designed for regression problems like this one. This type of algorithm uses multiple 

decision trees to improve prediction capability and reduce the risk of overfitting. Each 

decision tree is trained with a random sample of data, and the predictions from all trees 

are averaged to produce the final result. The hyperparameters used for the algorithm are 

those proposed by [31], where optimisations are performed with Grid Search, with a RFR 

of 100 n_estimators and a max_depth of 20. 

The model was provided with all values from the 12 Sentinel-2 bands stored in the 

PMC. Although other experimental approaches could have been explored, such as select-

ing indices (NDVI, NWDI, etc.) or specific band combinations, previous experiments 

(such as [34]) have shown that models perform better when more raw data are provided, 

as the model itself is responsible for weighting the information. 

For training, the data (Sentinel images, number of olive trees, and plot area) from the 

48,530 plots were divided into training sets based on [35], which suggests that, for datasets 

with a sample size between 100 and 1,000,000, the optimal split is 70% for training and 

30% for testing. To ensure the presence of sufficient data that were not biassed by training, 

the test set was further divided into 15% validation and 15% test sets 

(https://www.v7labs.com/blog/train-validation-test-set, accessed on 2 September 2024), 

with the validation set used during training and the test set used for model evaluation. 

From the 41,250 plots in the train and validation divisions, the PMC values for each of the 

Sentinel-2 bands for all available dates during the phenological year 2022, from 1 October 

2022 to 30 September 2023, were collected, along with the number of olive trees obtained 

through the process described in Section 2.3. 

3. Results and Discussion 

The experimental results involved using RFR with PMC data (mean values from the 

61 images with the 12 Sentinel-2 bands) and olive density found in the 41,250 plots. The 

main objective of the study was to examinate the degree of concordance between the PMC 
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value and the predicted number of olive trees. The following average results were ob-

tained for the tests: 

- Mean Squared Error (MSE): 2283.3388: This metric measures the average of squared 

errors, that is, the difference between predicted and actual values squared. Squaring 

the errors magnifies them, giving more weight to larger errors and thus penalising 

them more heavily. 

- Root Mean Squared Error (RMSE): 47.7842: RMSE helps interpret MSE in the same 

units as the target variable, aiding in understanding the magnitude of errors (by tak-

ing the square root of the MSE). Like MSE, RMSE penalises larger errors. 

- Mean Absolute Error (MAE): 28.9256: This metric calculates the average of absolute 

errors, i.e., the absolute difference between the predicted and actual values without 

penalising large prediction errors. This makes MAE more robust and provides a more 

realistic interpretation of the overall performance of the model, especially in the pres-

ence of outliers. 

- R-squared (R2): 0.8105: This metric measures the proportion of variance in the target 

variable that can be explained by the independent variables of the model. An R2 value 

close to 1 indicates that the model effectively expresses the correlation between the 

input data and the predicted values. 

The interpretation of these metrics can focus on olive tree density within plots, as this 

value is critical for many administrative agencies when granting subsidies. For example, 

in the case of the Junta de Extremadura, special subsidies are available when density ex-

ceeds 300 olive trees per hectare. The plots studied had densities below 2400 trees per 

hectare (ol/ha), but only 6817 exceeded the density of 300 ol/ha (14%). Within this context, 

the MSE value of 2283.3388 was within an acceptable range, indicating a good model fit. 

It should be noted that MSE does not share the same scale as the actual data and is sensi-

tive to large errors, especially outliers, such as the 14% of plots with densities above 300 

ol/ha. The RMSE of 47.7842 indicates that predictions do not significantly deviate at this 

density range. The resulting MAE of 28.9256 ol/ha indicates an average deviation of 1.20% 

of the maximum density (2400 ol/ha), which is acceptable given that most values are below 

300 ol/ha, and this metric does not penalise large errors. The difference of 18.85 ol/ha be-

tween RMSE and MAE suggests the presence of outliers. Due to these outliers, MAE 

should be considered the more important metric because it provides a better representa-

tion of the real average error value. The R2 metric, with a value of 0.8105, suggests that the 

model captures most of the data’s trends. These metrics indicate that there is a correlation 

between the values calculated and provided by Sentinel-2, as well as the plot area in hec-

tares, with the density of the plots. 

The test set, previously separated as 15% of our total data (Section 2.4), included a 

total of 7280 plots, which were used to evaluate how the system performs with data it had 

not seen before, as these plots were not part of the training or validation processes. This 

test set allowed us to assess the model’s ability to make accurate predictions on completely 

independent data. The data used for testing are very diverse, where the randomly selected 

enclosures have a real density between 0 and 700 and an area between 0.01 ha and 78.63 

ha (Table OliveAreaRangeTable available for download at https://doi.org/10.5281/ze-

nodo.14614777, and data are represented in Figure 8). 

It is important to highlight that olive tree densities show significant variability across 

all area ranges, with the most pronounced variation observed in smaller plots (0–5 hec-

tares). In these small areas, real densities range widely from 0 to 600 trees per hectare, 

while the median density typically falls between 140 and 180 trees per hectare. Given this 

variability, it becomes essential to incorporate plantation area as a variable during both 

model training and subsequent predictions. This approach can help establish a more ro-

bust correlation not only between spectral indices (PMC) and density, but also with 
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plantation size, ultimately improving the accuracy and reliability of density estimations 

across different plot scales. 

 

Figure 8. Boxplot with the distribution of olive tree density in different ranges of plantation area 

(each range increased by 1 hectare) between 0 and 42 hectares. For each range, key statistical 

measures are highlighted: minimum (low), first quartile (Q1), median, third quartile (Q3), and max-

imum (high) values. 

For each plot in the test set, the Random Forest Regressor (RFR) model was provided 

with the plot area and all relevant data associated with the plot obtained from Sentinel-2. 

The input data included the PMC values extracted from the Sentinel-2 images (Section 

2.2). The goal was to predict the tree density for each plot using only these characteristics. 

Once the RFR model generated tree density predictions for the plots, these predic-

tions were compared to the actual density values calculated using the YOLOv7 system, as 

described and validated in Section 2.3. YOLOv7 provided an accurate count of the olive 

trees by processing high-resolution aerial images of the plots. By dividing the total num-

ber of trees detected using YOLOv7 by the area of each plot, the actual tree density was 

obtained for comparison. 

The results of the direct comparison between the predicted density (RFR) and the 

actual density (YOLOv7) are shown in the scatter plot in Figure 9. The attached table 

(downloadable at https://doi.org/10.5281/zenodo.14017156) contains, for the 7280 ana-

lysed enclosures, all the values between their prediction and their actual density. 

Upon analysing the prediction results for the 7280 plots, comparing the density pre-

dicted by the RFR model and the density obtained using YOLOv7, an RMSE of 19.97 

trees/ha and an MAE of 15.0424 trees/ha were obtained, with an R2 of 0.92. These values 

demonstrate a strong relationship between the predicted and observed densities, suggest-

ing that the model can make accurate and satisfactory predictions. These values were an 

improvement over the model training metrics, suggesting that the model had successfully 

learned the general patterns from the training data and was capable of generalising well 

with real data. Consultations with officials from the payment agency in Extremadura 
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indicated that these values are highly acceptable for determining plot density and allocat-

ing the relevant economic subsidies. 

 

Figure 9. Scatter plot showing the correlation between predicted density (Y-axis) and actual density 

(X-axis) for test data. 

When applying an error threshold of 15 ol/ha, a total of 4470 plots (61.4% of the plots) 

met this criterion. For plots with an error between 15 and 30 ol/ha, there were 1700 plots 

(23.35%). Plots with an error greater than 30 ol/ha numbered 1110 (15.25%). 

The dataset was categorised into 100-hectare ranges to explore potential improve-

ments in our model. The data are presented in Table 2 and are visualised with a boxplot 

in Figure 10. 

Table 2. Dataset divided into 100-hectare ranges, showing the trends in model predictions across 

different olive plantation real density intervals (0–100, 100–200, 200–400, and 400–700 trees per hec-

tare) with low, aperture, close, high aperture, and high values. 

Real Density Range Low Aperture (Q1) Close (Median) High Aperture (Q3) High 

0–100 20.02607737 91.53829665 100.63791 111.7480847 185.9161699 

100–200 94.37370502 129.4377352 153.1214327 173.1675677 270.48398 

200–300 154.322933 201.6940327 217.7084302 238.5834046 336.4272699 

300–400 255.9488633 308.8662211 325.5536854 344.8509101 389.2324947 

400–500 349.8323968 373.2557864 382.5139817 399.8740504 426.781692 

500–600 463.8554844 470.6864178 477.5173513 484.3482847 491.1792182 

600–700 595.0706677 597.1009745 599.1312812 601.161588 603.1918948 

The findings reveal different patterns across various density ranges. In the low-den-

sity categories, those from 0 to 100 hectares, there is greater variation, with broader 
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interquartile ranges and more spread-out values. This points to a higher level of uncer-

tainty in predictions for sparse olive orchards, where the spectral data may be more irreg-

ular or difficult to differentiate, possibly due to lower plot sizes. As the density increases 

(200–400 trees per hectare), the predictions become more consistent, with narrower inter-

quartile ranges and values that align more closely with actual measurements. This shows 

that the model is more reliable for moderately dense plantations, where the spectral data 

are more consistent. 

 

Figure 10. Boxplot illustrating the variability in model predictions across olive plantation density 

ranges (0–100, 100–200, 200–400, and 400–700 trees per hectare). 

In the highest-density ranges (400–700 trees per hectare), the prediction variability 

significantly drops, with narrower interquartile ranges and fewer extreme values. This 

suggests that the model performs more reliably and accurately in densely planted or-

chards, where the spectral and spatial patterns are clearer and more easily detected. 

This analysis demonstrates the model’s strong performance in moderate- to high-

density plantations, but also highlights higher prediction uncertainty in areas with lower 

tree density. These results underline the need to account for density-related factors when 

evaluating model performance and suggest opportunities for further refinement of pre-

dictive models in the future. 

Based on these data, the performance of the model can be considered especially sat-

isfactory, as the majority of predictions (61.4%) fell within the 15 ol/ha error threshold. 

This indicates that the model is sufficiently accurate to meet the operational and accuracy 

requirements set for density estimation in this context. 

4. Conclusions 

This study successfully develops a method to estimate olive tree density within a plot 

using only Sentinel-2 images, despite their relatively low resolution. The proposed ap-

proach is particularly useful in situations where high-resolution orthophotos are 
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unavailable for accurate tree counting, primarily due to budget constraints that prevent 

periodic flights. 

The method is suitable for applications where absolute precision is not required, al-

lowing for a margin of error below 15.04 trees per hectare (ol/ha). This makes it a viable 

solution for agencies and organisations that need annual olive density estimates, espe-

cially in situations where plots with densities of over 300 ol/ha need to be distinguished, 

as is the case for certain administrative subsidies managed in Extremadura, Spain. 

Although this study focuses on olive groves, the approach could potentially be ex-

trapolated to other types of fruit trees, forest masses, or woodlands, where tree identifica-

tion and counting follow similar patterns and where the plantations and trees are clearly 

separated from each other, as is typically observed in traditional or intensive olive plan-

tation systems. In these types of plantations, the trees are arranged in an orderly manner 

with sufficient spacing between them, ensuring that each tree can be individually distin-

guished. The novelty of this work lies in the first-time application of Sentinel-2 data and 

Random Forest Regression to estimate olive tree density at the plot level. Previous studies 

have focused on broader tasks, such as crop classification or vegetation health monitoring, 

but not on tree density estimation for specific crops. This targeted practical application 

addresses a relevant real-world gap. Additionally, this method provides an efficient alter-

native for performing this procedure annually without relying on orthophoto flights. 

It is important to note that the primary goal of this study was to establish a relation-

ship between the satellite image data of olive plots and the actual density of these plots, 

rather than experimentally identifying the most suitable algorithms to achieve this. While 

the technique employed, RFR, successfully achieved highly suitable values, other algo-

rithms should be tested if the objective is to achieve possible improvements, such as hav-

ing lower error deviations. 

We have clarified that the method presented in this study is specifically designed for 

traditional and intensive plantations, where the orderly distribution of olive trees allows 

for effective tree detection using YOLOv7 applied to orthophotos. However, the method’s 

performance is not directly transferable to super-intensive plantations (hedgerows) or 

plots with irregularly spaced trees. To apply the methodology to such scenarios, signifi-

cant adaptations would be required, including the use of segmentation algorithms to ad-

dress overlapping crowns and denser planting patterns. 

It must also be recognised that the experimentation carried out in this study is delib-

erately focused on a specific and partial case: olive groves in traditional and intensive 

plantation systems within the Extremadura region. While this provides strong evidence 

for the method’s efficacy in such contexts, it is only the beginning of its potential applica-

tions. Future research could explore its broader utility across diverse agricultural systems 

and environmental scenarios. 

Although the primary objective of this study was to estimate olive tree density using 

the Random Forest Regressor algorithm and data provided by Sentinel-2, there are areas 

where tree detection could be improved. One such area is the previously mentioned im-

plementation of segmentation algorithms, which offer a more precise approach in com-

plex situations, such as identifying trees in forests, trees hidden under others (sub-canopy 

trees), overlapping trees, or those trees that are close to each other. The use of segmenta-

tion techniques would address the limitations presented by the YOLOv7 model, such as 

those mentioned previously. By implementing these algorithms, not only could detection 

be improved in denser or more irregular olive groves, but it would also open the possibil-

ity of applying this approach to other types of plantations, such as fruit trees or forests, 

where tree distribution patterns are less uniform and more complex to analyse. 



Remote Sens. 2025, 17, 508 20 of 22 
 

 

Thus, segmentation would act as a complementary tool for tree detection, mitigating 

the weaknesses of the current approach and expanding the range of scenarios in which 

the methodology could be successfully applied. 

Additionally, incorporating LiDAR (Light Detection and Ranging) data could be a 

game changer. LiDAR technology provides precise three-dimensional information about 

the structure of vegetation and the terrain, which could significantly enhance tree detec-

tion accuracy, especially in complex or dense environments where traditional remote 

sensing methods face challenges. 

To increase the model’s accuracy and improve its applicability, additional experi-

ments should be conducted to analyse plots considering specific factors such as terrain 

slope and predominant orientation, as these elements can significantly influence tree 

growth by affecting sunlight, water, and resource availability. 

It is also important to note that certain complementary data, such as green cover, 

could not be considered in this study due to unavailability from the sources used. How-

ever, its inclusion could represent a significant turning point in future work, as this infor-

mation would improve model accuracy in various aspects, such as providing a more de-

tailed view of vegetation in plots, facilitating differentiation between real olive trees and 

other elements that may introduce noise into the data, such as the overgrowth of grasses 

or weeds. Such growth can generate anomalous values or overestimations in metrics de-

rived from Sentinel-2 images and incorrect density predictions. Grouping cases with sim-

ilar characteristics could lead to more accurate predictions with smaller error margins, 

further optimising the proposed method. 

The methodological framework established here is adaptable and opens avenues for 

diverse applications. By refining the method and adapting it to new contexts, such as ir-

regularly spaced trees or high-density plantations, researchers can expand its applicability 

to meet the challenges of modern precision agriculture and environmental monitoring. 

In addition to subsidy allocation, this method offers broader practical applications in 

agricultural and environmental contexts. For instance, it could enable early detection of 

plantation anomalies, such as tree mortality, disease outbreaks, or stress caused by water 

scarcity. This information could support timely interventions to prevent further damage 

or loss. Moreover, annual density monitoring may help optimise resource distribution, 

such as water or fertilisers, or guide replanting efforts to increase productivity. Further-

more, the method could contribute to post-catastrophe assessments by rapidly evaluating 

damage caused by extreme weather events, fires, or droughts. 
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