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Abstract: Modern high-intensity armed conflicts often lead to extensive damage to urban 
infrastructure. The use of high-resolution remote sensing images can clearly detect dam-
age to individual buildings which is of great significance for monitoring war crimes and 
damage assessments that destroy civilian infrastructure indiscriminately. In this paper, 
we propose SOCA-YOLO (Sampling Optimization and Coordinate Attention–YOLO), an 
automatic detection method for destroyed buildings in high-resolution remote sensing 
images based on deep learning techniques. First, based on YOLOv8, Haar wavelet trans-
form and convolutional blocks are used to downsample shallow feature maps to make 
full use of spatial details in high-resolution remote sensing images. Second, the coordinate 
attention mechanism is integrated with C2f so that the network can use the spatial infor-
mation to enhance the feature representation earlier. Finally, in the feature fusion stage, a 
lightweight dynamic upsampling strategy is used to improve the difference in the spatial 
boundaries of feature maps. In addition, this paper obtained high-resolution remote sens-
ing images of urban battlefields through Google Earth, constructed a dataset for the de-
tection of objects on buildings, and conducted training and verification. The experimental 
results show that the proposed method can effectively improve the detection accuracy of 
destroyed buildings, and the method is used to map destroyed buildings in cities such as 
Mariupol and Volnovaja where violent armed conflicts have occurred. The results show 
that deep learning-based object detection technology has the advantage of fast and accu-
rate detection of destroyed buildings caused by armed conflict, which can provide pre-
liminary reference information for monitoring war crimes and assessing war losses. 

Keywords: armed conflict; destroyed buildings; high resolution remote sensing images; 
object detection; convolutional neural network 
 

1. Introduction 
In contemporary armed conflicts, the extensive utilization of thermal weapons not 

only poses a grave threat to live targets but also presents a significant peril to the natural 
landscape and human environment [1]. Particularly, the devastation of urban infrastruc-
ture incurs substantial costs in terms of both material resources and humanitarian conse-
quences such as triggering a “refugee wave” [2]. Consequently, the indiscriminate de-
struction of civilian infrastructure including residential homes, commercial buildings, 
and cultural landscapes is deemed both inhumane and constitutes a war crime. 
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Since the beginning of the 21st century, the international community has been in tur-
moil due to various conflicts such as the Iraq War, Syrian War, and civil war in Myanmar, 
which have inflicted significant damage on mankind�s living environment and pro-
foundly impacted global peace and development [3–5]. The ongoing Russian–Ukrainian 
conflict and the new round of Israeli–Palestinian conflict have also resulted in extensive 
destruction of non-military facilities like urban infrastructure and civilian buildings. Con-
cerningly, the blockade of war zones and deteriorating security conditions pose chal-
lenges for United Nations peacekeeping efforts [6]. Restricted access for relevant person-
nel hampers field mapping activities while blocked information impedes the international 
community�s supervision and mediation guidance within these areas. Therefore, there is 
an urgent need to conduct rapid and accurate mapping of destroyed buildings in war 
zones to facilitate timely intervention and protection of humanitarian rights [7]. 

The development of earth observation technology provides people with an observa-
tion perspective that is not restricted by the region so that the destroyed buildings can be 
observed more objectively and comprehensively in armed conflicts. However, the resolu-
tion of early remote sensing images is not high, and the application of destroyed building 
detection mainly focuses on the disaster assessment after the occurrence of natural disas-
ters such as earthquakes and mudslides [8]. Currently, Interferometric Synthetic Aperture 
Radar (InSAR) technology and regional spectral change measurement have been used to 
perform rough regional damage perception [9]. Janalipour et al. [10] proposed an auto-
matic building damage detection framework based on the LiDAR data after a disaster, 
which combines texture features with average digital projectors and can greatly improve 
the detection accuracy under the conditions of effective texture feature extraction. Huang 
et al. [11] combined synthetic aperture radar images with different simultaneous phases 
for coherence calculation, combined with open-source building vectors for classification 
extraction of destroyed buildings, and obtained regional detection results consistent with 
events. Based on optical remote sensing images, Ghandourj et al. [12] proposed a method 
to estimate building damage by using shadow features and gray co-occurrence matrix 
features and conducted building damage assessments in areas affected by the Syrian war 
near Damascus. In addition, some scholars have studied the collaborative detection of col-
lapsed buildings by pre-disaster and post-disaster data from the perspective of multi-
source data [13,14]. However, due to the diversity of data and the limitation of low reso-
lution, there was no unified method for the detection of destroyed buildings during this 
period. Most of the methods were highly complex, and the classification features de-
pended on artificial design, so the damage degree of buildings could only be roughly es-
timated. 

Nowadays, countries all over the world have developed and launched high-resolu-
tion military, civilian, and commercial remote sensing satellites, such as Worldview, SPOT, 
and GF-2. The resolution of remote sensing images has been improved to the submeter 
level, enabling high-resolution and fine-grained imaging of individual buildings. Data re-
sources are no longer the bottleneck restricting the acquisition of information in war zones. 
Therefore, how to quickly and accurately detect destroyed building individuals from 
wide-area remote sensing images has become the focus of attention [15]. 

Fortunately, advances in computer vision and artificial intelligence technology have 
made it possible to quickly detect destroyed buildings from a massive and large range of 
high-resolution remote sensing images. Many high-performance methods have been used 
or are being used in this field for research and application, the most typical cases are con-
volutional neural networks (CNNs) (e.g., Faster-RCNN [16], SSD [17], YOLOs [18–26]) 
and the detection with Transformers (e.g., ViT-FRCNN [27], RT-DET [28]). Ji et al. [29] 
took the lead in using a VGG [30] network to detect collapsed buildings after earthquakes 
in remote sensing images, and after fine-tuning, the detection accuracy of the network was 
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effectively improved. Aiming at the classification of collapsed buildings, Wu et al. [31] 
used the improved U-Net [32] network to segment collapsed buildings at the pixel level, 
and the classification accuracy reached 0.792. Shi et al. [33] propose an improved YOLOv4 
[20] algorithm for detecting collapsed buildings in aerial images after earthquakes. How-
ever, the actual post-disaster scene is complex and diverse, the collapsed buildings and 
the background are easily confused, there are still some difficulties in extracting robust 
features, and the detection accuracy is still not high. To solve these problems, Bai et al. [34] 
proposed a pyramid-pool modular semi-twin network for detecting destroyed buildings 
and improved the detection accuracy by adding residual blocks with expansion convolu-
tion and extrusion excitation blocks into the network. Ma et al. [35] took ShuffleNet v2 [36] 
as the backbone network of YOLOv3 [19] and introduced a generalized intersection over 
Union (GIoU) [37] loss to improve the detection accuracy of the model under a complex 
background. Overall, the object detection method based on deep learning has been proven 
to be feasible in detecting destroyed buildings in satellite images. It is worth noting that 
the YOLO series algorithms have been widely adopted in recent years due to their ad-
vantages of both accuracy and efficiency. In addition, attention mechanisms [38–40], fea-
ture pyramids [41–43], sampling methods [44,45], and other methods are often used to 
improve the detection performance of networks in specific scenarios. 

However, most of the current research focuses on the detection of destroyed build-
ings caused by natural disasters such as earthquakes and mudslides, and there are no 
studies on the detection of destroyed buildings in the context of armed conflict. Figure 1 
shows the difference in collapse between buildings destroyed by earthquake and war. 
Earthquake usually leads to overall structural damage to buildings. In particular, a seis-
mic wave will cause the building to lose the support of the facade and collapse as a whole, 
as shown in Figure 1a. In armed conflict, the damage caused by air strikes, shelling, and 
rockets to buildings is often localized and point-like. Large buildings often have partially 
or completely collapsed roofs and relatively intact facades, as shown in Figure 1b, while 
small buildings show irregular ruins, as shown in Figure 1c. 

   
(a) (b) (c) 

Figure 1. Buildings destroyed by earthquakes or war. The red boxes represent the buildings de-
stroyed by the earthquake, and the green boxes represent the war-destroyed buildings. (a) Buildings 
destroyed by the earthquakes (source: [35]); (b) large buildings destroyed by war (source: Google 
Earth); (c) small buildings destroyed by war (source: Google Earth). 

Since the detection of destroyed buildings in high-resolution remote sensing images 
is highly dependent on the robustness of spatial detail feature extraction, we have made 
targeted improvements to CNNs and proposed an effective detection method. The main 
contributions of this work are as follows: (1) obtaining high-resolution Google images of 
the Russian–Ukrainian conflict area, and making the first dataset for the detection of de-
stroyed buildings by visual interpretation and expert annotation; (2) in view of the task�s 
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dependence on spatial details, the Haar wavelet downsampling module (HWD), light-
weight dynamic upsampling module (LDU), and coordinate attention mechanism (CA) 
were used to improve the convolutional neural network, effectively improving the detec-
tion accuracy of destroyed buildings; and (3) a comprehensive assessment and mapping 
of building damage in typical cities during the Russian–Ukrainian conflict is presented, 
and the advantages and limitations of our method for monitoring destroyed buildings in 
high-resolution optical remote sensing images are discussed. 

2. Dataset 
2.1. Remote Sensing Data Acquisition 

In order to verify the effectiveness of the proposed method, we chose Mariupol, a 
city severely damaged by the Russian–Ukrainian conflict, and used its Google Earth im-
ages as the source of the production dataset. From February 2022 to May 2022, both sides 
fought with a large number of air missiles and ground artillery in the course of the armed 
conflict. In addition to military installations, residential and commercial buildings in the 
city were severely damaged. According to a report by UN High Commissioner for Human 
Rights Michelle Bachelet [46], the 82-day armed conflict resulted in the destruction of 90% 
of apartment buildings and 60% of private homes in Mariupol, with many neighborhoods 
razed to the ground. 

Therefore, in this study, we obtained images with a resolution of about 0.3 m from 
Google Earth provided by Maxar, which covers the main urban area of Mariupol and con-
tains a large number of destroyed buildings, as shown in Figure 2. 

 

Figure 2. Collection area of the dataset, the red boxes in the upper right sub-image indicate the 
labels of the destroyed building. (Source: Google Earth.) 

2.2. Dataset Production 

Since the size of the original image is too large to be directly input into the CNN, the 
image needs to be pre-sliced. Meanwhile, in order to ensure the integrity of each individ-
ual building in the sample image, the image was cut into 640 × 640-pixel image slices ac-
cording to the overlap degree of 25%, and the destroyed building was marked by 
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Labelimg Tools [47]. Figure 3 shows the pre-slicing process in the production of the da-
taset and the labeling information of the destroyed buildings. 

 

Figure 3. The production process of the destroyed buildings dataset; The red boxes in the upper 
right sub-image indicate the sliding windows, the green box in the lower right sub-image indicates 
the label of the destroyed building. (Source: Google Earth.) 

In general, we cut the collected high-resolution remote sensing images of Mariupol 
into 14,023 slice samples, screened out 4251 sample images containing destroyed build-
ings, and marked 11,604 destroyed building objects. In addition, we collected the same 
resolution remote sensing images of the Vornovakha region as test data to verify that the 
model can stably detect destroyed buildings in different regions. 

3. Methodology 
In order to effectively take advantage of the rich detail information of high-resolution 

remote sensing images, we improved the sampling method and feature expression of the 
CNN, including the extraction of shallow spatial features and the key screening and utili-
zation of deep semantic features of the CNN. The network structure of SOCA-YOLO is 
shown in Figure 4. 

In the process of feature extraction, geometric features such as the shape and texture 
of the object are crucial for detecting destroyed buildings in high-resolution remote sens-
ing images. In order to avoid excessive loss of shallow spatial details, we introduced the 
Haar wavelet 2D decomposition to replace the early stage of the backbone network for 
downsampling [44]. In addition, we combined the coordinate attention [40] with the C2f 
module in the backbone network to enhance feature representation with spatial detail in-
formation earlier, promoting cross-scale feature fusion. 

In the stage of feature fusion, it is usually necessary to upsample the feature map and 
connect it with the shallow feature map to enrich the multi-scale object information and 
improve the detection performance. In this section, we introduce a lightweight dynamic 
upsampling module [45] into the network. By combining point sampling and offset, a fea-
ture map with more spatial position perception can be obtained and the details of seman-
tic features in the reconstructed feature map can be better retained. 
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Figure 4. The network structure of SOCA-YOLO. 

3.1. Haar Wavelet Downsample 

The structure of the Haar wavelet downsampling (HWD) module is shown in Figure 
5, which is composed of the Haar wavelet transform (HWT) and the convolution block 
(CBS). 

Assume that the input image 𝐼 has 𝐶 channels of size 𝐻 ×𝑊. Row 𝑖 can be repre-
sented as 𝐼௜ = [𝐼௜,଴, 𝐼௜,ଵ,⋯ 𝐼௜,ௐିଵ]. According to the sequence of channels, each row of the 
image is transformed by the one-dimensional Haar wavelet: 𝑎௜,௝ = 𝐼௜,ଶ௝ + 𝐼௜,ଶ௝ାଵ√2 , 𝑗 = 0,1,⋯ ,𝑊2 − 1 (1) 

𝑑௜,௝ = 𝐼௜,ଶ௝ − 𝐼௜,ଶ௝ାଵ√2 , 𝑗 = 0,1,⋯ ,𝑊2 − 1 (2) 

where 𝑎௜,௝ and 𝑑௜,௝ are the low-frequency and high-frequency coefficients of pixels (𝑖, 𝑗), 
respectively. 

Furthermore, 𝑎௜,௝  and 𝑑௜,௝  are made into low-frequency matrix 𝐴  and high-fre-
quency matrix 𝐷, and then each column of them is transformed by a one-dimensional 
Haar wavelet: 𝐶𝐴௞,௟ = 𝐴ଶ௞,௟ + 𝐴ଶ௞ାଵ,௟√2 , 𝑘 = 0,1,⋯ ,𝐻2 − 1, 𝑙 = 0,1,⋯ ,𝑊2 − 1 (3) 

𝐶𝐻௞,௟ = 𝐴ଶ௞,௟ − 𝐴ଶ௞ାଵ,௟√2 , 𝑘 = 0,1,⋯ ,𝐻2 − 1, 𝑙 = 0,1,⋯ ,𝑊2 − 1 (4) 

𝐶𝐻௞,௟ = 𝐷ଶ௞,௟ + 𝐷ଶ௞ାଵ,௟√2 , 𝑘 = 0,1,⋯ ,𝐻2 − 1, 𝑙 = 0,1,⋯ ,𝑊2 − 1 (5) 

𝐶𝐷௞,௟ = 𝐷ଶ௞,௟ − 𝐷ଶ௞ାଵ,௟√2 , 𝑘 = 0,1,⋯ ,𝐻2 − 1, 𝑙 = 0,1,⋯ ,𝑊2 − 1 (6) 

where 𝑘  and 𝑙  represent row and column indexes, respectively. 𝐶𝐴 , 𝐶𝐻 , 𝐶𝑉 , and 𝐶𝐷 
represent the approximate component, horizontal detail component, vertical detail com-
ponent, and diagonal detail component, respectively. These components form a tempo-
rary feature set 𝐼′[𝐻/2,𝑊/2,4𝐶]. Since this can be seen as a lossless coding process, the 
four components obtained after decomposition can contain more spatial features. In par-
ticular, the high-frequency detail features that damage the building are preserved. With 
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𝑋′ as the input of the CBS block, after convolution, batch normalization, and nonlinear 
activation of the SiLU function, the output feature set 𝐹′(𝑥) of HWD is obtained. After 
HWD, the image can be downsampled, while the spatial details are fully preserved, and 
the application of the CBS block also enhances the training stability of the model. 

 

Figure 5. Structure of Haar wavelet downsampling module. 

Figure 6 shows the visualization results of four downsampling methods, including 
Average pooling, Maximum pooling, Strided convolution, and HWD. It is evident that 
the image with Haar wavelet downsampling has clearer texture and shape features. In 
particular, the spatial details of the destroyed buildings in the red boxes are preserved to 
a greater extent. 

 

Figure 6. Visualization of different downsampling methods. The red box marks a damaged building 
in the input image. (a) Input image, (b) result of average pooling, (c) result of maximum pooling, 
(d) result of step convolution, (e) result of HWD. 

3.2. Coordinate Attention 

To further enhance the ability of the CNN to extract and locate the features of de-
stroyed buildings, we constructed a C2f_CA module integrating coordinate attention, as 
shown in Figure 7. The CA module was input into Boottleneck through two stages of co-
ordinate information generation and coordinate attention calculation to enhance spatial 
features and analyze dependency of inter-channel and inter-position dependency. The 
model�s space awareness and feature representation ability are improved by stacking 
multiple CA_Bottleneck. 
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Figure 7. Structure of C2f_CA module. 

In the generation stage of coordinate information, the CNN carries out one-dimen-
sional spatial pooling in the horizontal and vertical directions of the input feature map, 
respectively, so that the attention module can capture accurate spatial position perception 
in different directions. In other words, while effectively capturing long-range dependen-
cies in one spatial direction, the network can also obtain precise location information in 
the other direction, as shown in Equations (7) and (8): 𝑧௖ℎ(ℎ) = 1𝑊 ෍ 𝑥௖(ℎ, 𝑖)଴ஸ௜ழௐ  (7) 

𝑧௖௪(𝑤) = 1𝐻 ෍ 𝑥௖(𝑗, 𝑤)଴ஸ௜ழு  (8) 

where𝑧௖ℎ(ℎ) and 𝑧௖௪(𝑤), respectively, represent the output by the 𝑐 channel with height 𝐻 in the vertical direction and the 𝑐 channel with width 𝑊 in the horizontal direction; 𝑥௖(ℎ, 𝑖) is the 𝑖 pixel value in row ℎ of channel 𝑐 for the input feature map; and 𝑥௖(𝑗, 𝑤) 
is the 𝑗 pixel value in column 𝑤 of channel 𝑐 for the feature map. 

In the coordinate attention calculation stage, the channel dimension of the feature 
graph output in the previous stage is combined to make it have two independent spatial 
direction feature perceptions at the same time. The intermediate feature graph is further 
generated through 2D convolution, normalization, and nonlinearization: 𝑓 = 𝜎(𝐹ଵ([𝑧ℎ, 𝑧௪])) (9) 

where𝑓 is the middle feature map; 𝜎 is the h_swish activation function; 𝐹ଵ is a convolu-
tion operation; [⋅,⋅] is the splicing channels; and 𝑧ℎ and 𝑧௪ are the feature maps gener-
ated in the vertical and horizontal directions, respectively, in the previous stage. 

The intermediate feature map is decomposed again into vertical and horizontal vec-
tors 𝑓ℎ and 𝑓௪, and the number of channels is adjusted by convolution and activated by 
a Sigmoid function to generate the attention weights 𝑔ℎ and 𝑔௪ in the corresponding 
directions. Finally, the attention feature map is obtained by weighting the two directions 
with the input feature map: 𝑦(𝑖, 𝑗) = 𝑥(𝑖, 𝑗) × 𝑔ℎ(𝑖) × 𝑔௪(𝑗) (10) 

where 𝑦(𝑖, 𝑗) is the output attention feature map, 𝑥(𝑖, 𝑗) is the input feature map, and 𝑔ℎ(𝑖) and 𝑔௪(𝑗) are the vertical and horizontal attention weights, respectively. 
With embedding coordinate attention in C2f, different weights can be obtained to 

different spatial positions of input feature maps, enhancing or suppressing feature 
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information. More importantly, the spatial context of local features can be better under-
stood by the network, improving the utilization efficiency and recognition accuracy of 
spatial structure information. 

3.3. Lightweight Dynamic Upsampling 

The lightweight dynamic upsampling module consists of two parts: the Dynamic 
sampling point generator and Dynamic upsampling calculator, whose structures are 
shown in Figure 8a and Figure 8b, respectively. 

 

(a) Dynamic sampling point generator 

 
(b) Dynamic upsampling calculator 

Figure 8. The structure of lightweight dynamic upsampling module. 

The input feature map is denoted by 𝑋, whose size is 𝐶 × 𝐻ଵ ×𝑊ଵ, and the sample 
set 𝑆 has size 2 × 𝐻ଶ ×𝑊ଶ, where 𝐶 is the number of channels, 𝐻 is the height of the 
image, 𝑊 is the width of the image, and 2 in the sample set 𝑆 is the 𝑥 and 𝑦 coordi-
nates. Given the premise that the upsampling rate is 𝑠, the upsampling process can be 
expressed as 𝑋′ = 𝑔𝑟𝑖𝑑_𝑠𝑎𝑚𝑝𝑙𝑒(𝑋, 𝑆) (11) 

where 𝑋′ is the upsampling output. 
Based on this, a linear offset layer 𝑂 with the number of input channels 𝐶 and the 

number of output channels 2𝑠ଶ is introduced into the sampling module on Dysample. 
The coordinate S of each point in the feature graph 𝑋′ can be obtained by 𝑆 = 𝑂 + 𝐺 (12) O = 𝑙𝑖𝑛𝑒𝑎𝑟(𝑋) (13) 

where 𝐺 is the corresponding sampling point and 𝑂 is its corresponding offset. 
When 𝑂 is non-0, the domain information of the sampling point can be taken into 

account. However, too large offset results in mixing other semantic cluster information 
when sampling the edge points of the semantic cluster, leading to the boundary being 
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indivisible. Therefore, multiplying the scaling factor 𝛾 in Equation (13) is used to limit 
the range of offset. After scaling and adjusting the offset, the coordinates are reordered by 
normalization and pixel recombination, and the final position coordinates are obtained by 
adding the positions of the corresponding sampling points. Finally, in order to make the 
offset process more flexible, the scaling factor is generated point by point by way of linear 
projection to adapt to different feature distributions: O = 0.5 ⋅ 𝑠𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑙𝑖𝑛𝑒𝑎𝑟ଵ(𝑋) × 𝑙𝑖𝑛𝑒𝑎𝑟ଶ(𝑋)) (14) 

In this case, the offset range is [0, 0.5]. Compared with the traditional upsampling 
method, the lightweight dynamic upsampling module can retain the geometric feature 
information of the feature graph, and be used against boundary discontinuity and detail 
ambiguity caused by simple upsampling. 

3.4. Slicing-Aided Hyper Inference 

To detect destroyed buildings rapidly in a wide range of remote sensing images, the 
slice-assisted super inference strategy [48] is adopted in the process of network inference. 
The method cuts a wide range of remote sensing images into manageable sub-images, 
detects the destroyed building in sub-images one by one, and splices the detection results. 
It can greatly optimize memory usage and simplify the process of reasoning to visualize 
the geospatial location distribution of destroyed buildings. 

4. Experimental Setting 
4.1. Experimental Environment and Dataset Configuration 

The experimental environment of this paper is as follows: Windows 10 operating sys-
tem and Pytorch deep learning framework. The computer is configured as 12th Gen In-
tel(R) Core (TM) i7-12700H, 2.30 GHZ; 16 GB RAM, NVIDIA GeForce RTX 3050 graphics 
card, and 4G video memory. 

In this work, we use 80% of the samples as the training set and the remaining 20% as 
the validation set. The data distribution is shown in Table 1. 

Table 1. Distribution of experimental datasets. 

 The Number of Sample Images The Number of Destroyed Buildings Average Number of Destroyed 
Buildings per Image 

Train 3400 9348 2.75 
Valid 851 2256 2.65 

There are various types of scenes and objects in the dataset, including a high-density 
low-rise building area, low-density high-rise building area, industrial park, non-residen-
tial area, etc. At the same time, the size and shape of destroyed buildings differ greatly, 
and the characteristics of damage are not inconsistent (such as wall facade collapse and 
roof collapse), as shown in Figure 9, where the green boxes represent the ground truth of the 
destroyed building. Therefore, detecting destroyed buildings in complex and diverse sce-
narios is a challenging task. 
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Scene: Dense building region Scene: Sparse building region Scene: Industrial region Scene: Commercial region 
Objects: Small house Objects: Large apartment Objects: Factory Objects: Large irregular building 

Figure 9. The various scenes and various objects contained in the dataset. The green boxes represent 
the ground truth of the destroyed building. 

4.2. Evaluation Indicators 

The experiment verifies the effectiveness of the algorithm according to the evaluation 
indexes commonly used in object detection, including recall (𝑅), precision rate (𝑃), Aver-
age Precision (𝐴𝑃), 𝐹1 score, model size, parameter number, GFLOPs, and inference time. 
As shown in Formulas (15)–(18). Among them, the recall rate reflects the ability to detect 
the object from the image, and the higher the recall rate, the less missed detection. Preci-
sion reflects the ability to detect the correct object, and the higher the precision, the less 
false detection. 𝐴𝑃  is the definite integral of the 𝑃 − 𝑅  curve, the 𝐹1  score is the har-
monic average of recall and precision; they are all comprehensive indexes to evaluate the 
performance of model detection. model size, parameter number, GFLOPs, and inference 
time measure the efficiency of the model in real-world applications. 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (15) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (16) 

𝐴𝑃 = න 𝑃(𝑅)𝑑𝑅ଵ
଴  (17) 

𝐹1 = 2 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  (18) 

where 𝑇𝑃 is the correctly predicted positive samples; 𝐹𝑁is the incorrectly predicted neg-
ative samples; 𝐹𝑃 is the incorrectly predicted positive samples, and 𝑃(𝑅) is the curve of 
accuracy and recall rate. The larger the average precision, the better the detection perfor-
mance of the model. 

5. Result 
5.1. Comparison of Different Improvement Strategies 

Considering that HWD modules and the coordinate attention mechanism have vari-
ous embeddedness positions and embeddedness ways, we designed several sets of com-
parative experiments to discuss the validity and rationality of the embeddedness posi-
tions and methods in the above methods. 

(1) The embedding position of HWD 

Previous experiments have proved that HWD can fully retain the spatial detail fea-
tures of destroyed buildings when downsampling shallow feature maps. Therefore, in 
this section, we discuss whether consecutively embedding different numbers of HWD 
modules in a backbone network contributes to network performance. To be specific, we 
still use YOLOv8 as the baseline. HWD replaces the first C2f layer (Group A experiment, 
ours), the first two C2f layers (Group B experiment), and all C2f layers (Group C experi-
ment) in the backbone network according to the sequence. The comparison experiment 
results are shown in Table 2. 

Table 2. Experimental results of embedding HWD in different positions. 

 Recall Precision AP50 Model Size/M Number of Parameters GFLOPs Inference Time/ms 
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Baseline 0.661 0.667 0.705 5.96 3,005,843 8.2 5.2 
Group A 0.698 0.660 0.712 5.95 3,002,771 7.8 5.6 
Group B 0.687 0.652 0.708 5.88 2,970,131 7.3 6.3 
Group C 0.660 0.634 0.682 4.73 2,380,563 6.3 7.0 

It can be seen that the HWD module can significantly reduce the model size, model 
parameters, and required GFLOPs, which has the great advantage of being lightweight. 
When the HWD was used to replace the first C2f layer, the AP50 of the model increased 
by 0.7%, but with the continuous embedding of the HWD, the AP50 decreased. The reason 
is that the HWD can improve the expression of shallow spatial features such as edges and 
textures in the initial stage of the network and provide more effective feature input for 
subsequent layers. However, the description of deep feature maps is more dependent on 
semantic features, and the HWD is weak in extracting semantic features. Therefore, the 
continuous use of the HWD to replace the C2f layer will destroy the compatibility and 
consistency of the network structure, and thus reduce the detection accuracy. 

(2) The embedding method of CA 

To discuss the effectiveness of different embedding methods of the CA, we designed 
two sets of comparative experiments based on the Group A experiment. The first method 
is to take the CA as a single layer of the network (Group D experiment) and embed it 
into the last layer of the network�s detection head, enhancing the detection head�s 
focus on important features. The second method is to fuse the CA with a C2f layer in the 
backbone to constitute a C2f_CA module (Group E experiment, ours). The comparative 
experimental results are shown in Table 3. 

Table 3. Experimental results of embedding CA in different ways. 

 Recall Precision AP50 Model Size/M Number of Parameters GFLOPs Inference Time/ms 
Baseline 0.661 0.667 0.705 5.96 3,005,843 8.2 5.2 
Group A 0.698 0.660 0.712 5.95 3,002,771 7.8 5.6 
Group D 0.681 0.662 0.718 5.97 3,014,491 7.8 6.0 
Group E 0.692 0.669 0.723 5.99 3,012,747 7.8 6.1 

It can be seen that the AP50 of Group E is 0.5% higher than that of Group D. This is 
because C2f_CA can make full use of spatial information to enhance feature representa-
tion in the early stage of feature extraction and then make more effective use of global 
context information to generate richer spatial concern graphs on feature maps. In the fol-
low-up inspection process, it is more helpful to accurately locate the destroyed building. 

5.2. Ablation Experiment 

Here, we design a group of ablation experiments to examine the effect of each com-
ponent, as shown in Table 4. Experimental parameters were set as epochs: 100; initial 
learning rate: 0.01; IoU threshold: 0.5; batch size: 16; input image size: 640 × 640; the opti-
mizer adopts SGD; no pre-training weights are used. 

Table 4. The results of the ablation experiment. 

HWD C2f_CA LDU Recall Precision AP50 Model Size/M Number of Parameters GFLOPs 
Inference 
Time/ms 

× × × 0.661 0.667 0.705 5.96 3,005,843 8.2 5.2 
√ × × 0.691 0.660 0.712 5.95 3,002,771 7.8 5.6 
× √ × 0.657 0.671 0.708 5.41 2,695,075 6.9 5.6 
× × √ 0.688 0.649 0.710 5.39 2,696,715 6.8 5.3 



Remote Sens. 2025, 17, 509 13 of 20 
 

 

√ √ × 0.692 0.669 0.723 5.99 3,012,747 7.8 6.1 
√ √ √ 0.670 0.669 0.730 6.01 3,025,099 7.9 6.0 

(AP50 represents the detection accuracy of the destroyed building under the condition that the 
IoU is 0.5.) 

It can be seen that adding the HWD, C2f_CA, and LDU separately improves the de-
tection accuracy of the network, but the reasons are different. By retaining more spatial 
details at the beginning of the network calculation, the model with the HWD improved 
recall by 3.0%, indicating that it learned to more fully express the characteristics of the 
destroyed building. The model with C2f_CA can focus on the accurate expression of fea-
tures, ensure the network learns more robust features, and improve the precision of the 
network. The introduction of the LDU can help the model to distinguish feature edges 
more effectively in the later stage, mainly in the improvement of recall. 

In addition, in the ablation experiment, we observed that after adding the HWD, CA, 
and LDU to the baseline successively, the AP50 is successively increased by 0.7%, 1.8%, 
and 2.5%. It proves that the HWD module provides more spatial details for the subsequent 
feature extraction, and on this basis, C2f_CA can focus more on the expression of im-
portant features, and LDU can further distinguish the boundary distinction during the 
sampling process on the feature map. The information exchange of each module plays an 
active role in improving the detection accuracy of destroyed buildings. 

At the same time, it is observed that the introduction of each module does not bring 
too much parameter number and calculation overhead, the model size is basically main-
tained at about 6.0 M, the number of model parameters is only increased by 0.59% com-
pared with that of the baseline, and GFLOPs decreases from 8.2 to 7.9. It shows that our 
method can significantly improve the detection accuracy of destroyed buildings, as well 
as limit the increase in parameter number and algorithm complexity. 

5.3. Visual Inspection 

Figure 10 shows the detection results of each model in the ablation experiment under 
different scenarios. For large individual buildings, the improved model can more fully 
assess the size of the box, envelop destroyed buildings more completely, and improve 
confidence. Furthermore, it can also improve the recall rate in dense and small destroyed 
building scenes. 
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Ground Truth Baseline +HWD +HWD+C2f_CA 
+HWD+C2f_CA 

+LDU 
(SOCA-YOLO) 

Figure 10. Visualization results of ablation experiments. The green boxes represent the ground truth 
of the destroyed building, the red boxes represent the correctly detected destroyed buildings, the 
yellow boxes represent the undetected destroyed buildings, and the blue circles represent the false 
alarm objects. 

To illustrate the influence of each module on the attention area and degree of the 
network, we visualize the attention of the network detection layer for different sizes of 
objects, as shown in Figure 11. 

For large destroyed buildings, we visualize the attention of the large-scale object de-
tection layer. It is found that the attention of the baseline has inaccurate positioning and 
excessive noise response. With the HWD, the noise response near the object is significantly 
reduced. With the C2f_CA and LDU, the attention is further focused on the destroyed area, 
indicating that the introduction of each module can make the network pay more attention 
to the important features of the destroyed building area. In the detection of small de-
stroyed buildings, heatmaps have the same form. Particularly, C2f_CA and LDU modules 
enable the network to reconstruct large images with more details on the basis of enhanced 
attention and improve the detection accuracy of small destroyed buildings. 

 Ground Truth Baseline +HWD +HWD+C2f_CA
+HWD+C2f_CA

+LDU 
(SOCA-YOLO) 
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Figure 11. Attention visualization of CNN detection heads. The green boxes represent the ground 
truth of the destroyed building. 

5.4. Comparison with Other Methods 

To evaluate the comprehensive performance of the proposed method in terms of de-
tection accuracy, model size, and detection efficiency, we compared the current main-
stream same model size YOLO series algorithms, including YOLOv3-tiny, YOLOv5-n, 
YOLOv6-n, et al. As shown in Table 5. During the experiment, the parameter settings of 
each algorithm are consistent with those in Section 5.2. From the comparison results, it 
can be seen that the AP50 of SOCA-YOLO reaches 0.73, which is 0.3% higher than that of 
the second-best model, YOLOv3-tiny, but the model volume is much smaller than it. 
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Overall, SOCA-YOLO achieves a balance of model size, number of parameters, GFLOPs, 
and inference time while ensuring high-precision detection, and its comprehensive per-
formance is the best. 

Table 5. The detection results of various methods. 

 Recall Precision AP50 Model Size/M Number of Parameters GFLOPs Inference Time/ms 
YOLOv3-tiny [19] 0.695 0.661 0.727 23.2 12128178 18.9 6.3 

YOLOv5-n [21] 0.684 0.652 0.701 5.03 2503139 7.1 5.1 
YOLOv6-n [22] 0.666 0.661 0.700 8.29 4233843 11.8 5.2 
YOLOv8-n [24] 0.661 0.667 0.705 5.96 3005843 8.2 5.0 
YOLOv9-t [25] 0.669 0.644 0.688 4.41 1970979 7.6 6.7 

YOLOv10-n [26] 0.673 0.658 0.707 5.47 2694806 8.2 6.5 
YOLOv11-n [24] 0.662 0.664 0.704 5.22 2582347 6.3 5.5 

SOCA-YOLO 0.670 0.669 0.730 6.01 3025099 7.9 6.0 
Bold represents the optimal value, underlining represents the sub-optimal value, and wavy lines 
represents the third optimal value. 

5.5. Generalization Ability Test 

To test the generalization ability of the model on high-resolution remote sensing im-
ages outside the dataset, we selected high-resolution remote sensing images from the Vor-
novakha region of Ukraine as test data, which were also sourced from Google Earth. The 
image size was 34,318 × 27,634 and was taken on 2 September 2022, containing a large 
number of buildings destroyed by the war. In the process of the generalization ability test, 
a slice-assisted super reasoning strategy was adopted to conduct sliding window detec-
tion on the entire remote sensing image and Mosaic it into a large-scale image. The detec-
tion results are shown in Figure 12, where the red boxes represent the correctly detected 
destroyed buildings, the yellow boxes represent the undetected destroyed buildings, and 
the blue boxes represent the false alarm objects. According to the results of the generali-
zation ability test, as shown in Table 6, the overall recall rate is 0.708, indicating that there 
is a certain number of missed tests. In addition, the missing objects were mostly small 
destroyed buildings (recall rate was 0.655), indicating that the detection ability of the 
model for small destroyed buildings needs to be improved. On the other hand, the overall 
precision is 0.986 with fewer false alarms, indicating that the model has good robustness 
for feature extraction of destroyed buildings. The comprehensive index F1 score is 0.824, 
which verifies that the proposed method has a certain generalization ability for the detec-
tion of destroyed buildings under different scenarios. 

Table 6. The results of generalization ability test. 

Objects Recall Precision F1 Score 
Large destroyed buildings 1.000 0.941 0.967 
Small destroyed buildings 0.655 0.950 0.775 

ALL 0.708 0.986 0.824 

According to the visualization results of geospatial information, the destroyed build-
ings on 2 September 2022 were mainly distributed on the east side of the railway line. The 
main positions of the warring parties in the city were located on the east side of the railway 
line, and the destroyed buildings in the north and the south were especially concentrated. 
The above results show that the method proposed in this paper can provide an important 
reference for rapid disaster assessment and humanitarian relief. 
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Figure 12. Detection results of destroyed buildings in Vornovakha (2 September 2022). The red 
boxes represent the correctly detected destroyed buildings, the yellow boxes represent the unde-
tected destroyed buildings, and the blue boxes represent the false alarm objects. 
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6. Conclusions 
In this study, we designed SOCA-YOLO, an object detection algorithm combining 

Haar wavelet downsampling, lightweight dynamic upsampling, and a coordinate atten-
tion mechanism to detect war-destroyed building objects in high-resolution remote sens-
ing images. In the stage of feature extraction, Haar wavelet is used to decompose high-
resolution remote sensing images in two dimensions to realize downsampling and retain 
the details of remote sensing images to a greater extent. In addition, coordinate attention 
is combined with C2f to make full use of spatial feature information, and a coordinate 
attention module is introduced in the early stage of feature extraction to achieve feature 
optimization and focus to a greater extent. Finally, a lightweight dynamic upsampling 
module is used in the feature fusion phase to further enrich and accurately detail infor-
mation on the feature map. 

To evaluate the effectiveness of the method, we collected high-resolution optical re-
mote sensing images of the Mariupol region, Ukraine, and produced the world�s first da-
tasets for the detection of buildings destroyed by war. The proposed method was verified 
by ablation experiments, and the validity and reasons for the embedding positions and 
methods of HWD and CA were discussed through multiple sets of comparative experi-
ments. Compared with the classical deep learning object detection algorithm, the results 
show that the proposed method has better comprehensive performance in detection accu-
racy, model size, and inference speed. 

It is worth noting that SOCA-YOLO mainly focuses on detecting individual de-
stroyed buildings by making full use of spatial details and enhancing spatial perception. 
However, it still has some limitations: it is limited by the size and region of the training 
samples, the architectural styles of different countries and regions have obvious differ-
ences, and the generalization performance of the model needs to be further improved. In 
addition, the model has limited recognition of difficult objects, some destroyed buildings 
that look like ruins are still missed, and some structurally complex buildings are suscep-
tible to false detection. In addition, the lightweighting and reasoning speed of the model 
need to be improved. In our following work, we will consider classifying destroyed build-
ings according to the degree of damage. By combining a feature recombination strategy 
and difficult object mining, fine-grained identification of buildings with different degrees 
of damage has become another exciting issue. 
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